JP2003004993A - Optical fiber - Google Patents
Optical fiberInfo
- Publication number
- JP2003004993A JP2003004993A JP2001189655A JP2001189655A JP2003004993A JP 2003004993 A JP2003004993 A JP 2003004993A JP 2001189655 A JP2001189655 A JP 2001189655A JP 2001189655 A JP2001189655 A JP 2001189655A JP 2003004993 A JP2003004993 A JP 2003004993A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- coating layer
- primary coating
- curable resin
- bare optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、紫外線硬化型樹
脂からなる被覆層を有する光ファイバ素線に関し、その
疲労特性を向上させたものである。
【0002】
【従来の技術】光ファイバ素線は、図1に示すように、
外径125μmの光ファイバ裸線1上に、紫外線硬化型
樹脂からなる比較的低ヤング率の一次被覆層2を設け、
この一次被覆層2上に紫外線硬化型樹脂からなる比較的
高ヤング率の二次被覆層3を設けた外径250μmのも
のが一般的である。
【0003】このような光ファイバ素線は、その複数本
が種々の集合形態で集合されて光ケーブルとされ、この
光ケーブルは洞道内等に敷設される。敷設された光ケー
ブルには、その敷設状況によっては常時引張力が加わ
り、この引張力の一部が光ケーブルを構成する光ファイ
バ素線にも作用し、光ファイバ素線に長期間にわたって
弱い引張力が持続して加わることがある。このような比
較的小さい引張力が持続して光ファイバ素線に加えられ
た状態では、ある時間経過すると突然光ファイバ素線が
破断したり、やや大きな引張力が加わっただけで破断し
たりすることがある。
【0004】このようなトラブルを避けるためには、光
ファイバ素線に十分な疲労特性を持たせる必要がある。
光ファイバ素線の疲労特性は、その一次および二次被覆
層2,3を構成する紫外線硬化型樹脂の特性によってそ
の大部分が決定され、良好な疲労特性を得るには、これ
ら被覆層2,3に適切な紫外線硬化型樹脂を選択、使用
する必要がある。
【0005】
【発明が解決しようとする課題】よって、本発明におけ
る課題は、光ファイバ素線の被覆層をなす紫外線硬化型
樹脂に適当なものを選択して光ファイバ素線の疲労特性
を高めることにある。
【0006】
【課題を解決するための手段】かかる課題は、光ファイ
バ素線の紫外線硬化型樹脂からなる被覆層の光ファイバ
裸線と直接接する部分のpHを4.5以下とすることで
解決される。
【0007】
【発明の実施の形態】以下、本発明を詳しく説明する。
光ファイバ素線の疲労特性は、紫外線硬化型樹脂からな
る被覆層の光ファイバ裸線に接触する部分のpHに左右
され、そのpHが4.5以下であると疲労特性が向上す
ることが検討の結果判明した。例えば、図1に示した光
ファイバ素線については、その一次被覆層2として、硬
化後のpHが4.5以下であるような紫外線硬化型樹脂
を用いればよい。
【0008】本発明において、紫外線硬化型樹脂からな
る被覆層の硬化後のpHは、以下の方法により測定され
るものを言う。未硬化液状の紫外線硬化型樹脂をガラス
プレートなどに流延し、これに紫外線を30mJ/cm
2 の照射量で照射し、硬化して厚さ約0.1mmの硬化
フィルムを得る。ついで、この硬化フィルム4.0gを
精秤し、メスフラスコなどの密閉容器に入れ、40ml
のイオン交換水を加え、密封して80℃で24時間加熱
する。容器を室温に冷却したのち、容器内の水のpHを
pHメータで測定する。
【0009】このようにして測定されたpHが4.5を
越えた紫外線硬化型樹脂を用いて一次被覆層2を形成す
ると、後述の具体例から明らかなように、光ファイバ素
線の疲労特性が低下する。紫外線硬化後のpHが4.5
以下となるような紫外線硬化型樹脂としては、エポキシ
アクリレート系やウレタンアクリレート系などの紫外線
硬化樹脂の組成、例えば架橋性多官能モノマー、架橋性
多官能オリゴマー、光架橋剤、光架橋促進剤などを適宜
選択したものが用いられる。また、一次被覆層2では、
硬化後のヤング率が0.1〜5kg/mm2 程度の低ヤ
ング率であることが必要とされるので、この条件をも満
たす必要がある。
【0010】また、光ファイバ裸線上に単層の紫外線硬
化型樹脂からなる被覆層を設けた光ファイバ素線にあっ
ては、その単層の被覆層のpHが4.5以下であること
が必要である。
【0011】このような光ファイバ素線にあっては、そ
の疲労特性が高いものとなる。光ファイバ素線の疲労特
性の評価は、IEC60793−1に規定された試験方
法により測定される動疲労係数nによって行われ、本発
明では、この動疲労係数nが、18以上のものを疲労特
性が高いものとした。そして、本発明の光ファイバ素線
は、その被覆層の光ファイバ裸線に接する部分のpHを
4.5以下としたので、動疲労係数nが18以上の値を
示すものとなる。
【0012】また、本発明の光ファイバ素線にあって
は、図1に示すような紫外線硬化型樹脂からなる一次被
覆層2と二次被覆層3とを有するものでは、一次被覆層
2のpHを4.5以下とし、二次被覆層3を構成する紫
外線硬化型樹脂の透湿率が15g/m2 /24hr以下
のものを用いることによって、光ファイバ素線の疲労特
性をさらに向上させることができる。ここで透湿率は、
JIS Z 0208に規定されたカップ法によって求
められたものを言う。
【0013】二次被覆層3は、光ファイバ裸線の機械的
保護の役割を担っているので、そのヤング率が10kg
/mm2 以上、好ましくは50kg/mm2 以上で、か
つ透湿率が15g/m2 /24hr以下であることが好
ましい。このような透湿率およびヤング率の条件を満た
すためには、二次被覆層3をなす紫外線硬化型樹脂の分
子構造、組成、分子量、架橋密度などのパラメータを制
御することによって可能であり、概念的には、硬く、剛
で、凝集エネルギー密度の高い樹脂であれば、上記条件
を満たす。
【0014】以下、具体例を示す。外径125μmの光
ファイバ裸線上に、硬化後のpH値が異なる3種の紫外
線硬化型樹脂(ヤング率0.2〜0.5kg/mm2 )
を塗布、硬化して、厚み30μmの一次被覆層を形成
し、ついでこの上に硬化後の透湿率が異なる2種の紫外
線硬化型樹脂(ヤング率50〜80kg/mm2 )を塗
布、硬化して、厚み37μmの二次被覆層を形成し、仕
上径250μmの光ファイバ素線を製造した。
【0015】一次被覆層のpHは、上述の測定方法によ
って求めた。これらの光ファイバ素線について、IEC
60793−1に準じて動疲労係数nを求めた。結果を
表1に示す。
【0016】
【表1】
【0017】表1の結果から、二次被覆層の種類には関
係なく、一次被覆層のpHが4.5以下であれば動疲労
係数nが18以上となって、良好な疲労特性を有するも
のであることが理解できる。
【0018】
【発明の効果】以上説明したように、本発明の光ファイ
バ素線にあっては、紫外線硬化型樹脂からなる被覆層の
光ファイバ裸線と接する部分のpHを4.5以下とした
ので、その疲労特性が良好であり、この光ファイバ素線
を用いた光ケーブルでは引張力が長期間にわたって加わ
っても、収容されている光ファイバ素線が破断すること
がないなどの効果が得られる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber having a coating layer made of an ultraviolet curable resin, and has improved fatigue characteristics. 2. Description of the Related Art As shown in FIG.
On the bare optical fiber 1 having an outer diameter of 125 μm, a primary coating layer 2 having a relatively low Young's modulus made of an ultraviolet curable resin is provided,
In general, the primary coating layer 2 is provided with a secondary coating layer 3 made of an ultraviolet curable resin and having a relatively high Young's modulus, and has an outer diameter of 250 μm. [0003] A plurality of such optical fiber strands are assembled in various forms to form an optical cable, and this optical cable is laid in a cave or the like. Depending on the laying condition, a tensile force is constantly applied to the laid optical cable, and a part of this tensile force also acts on the optical fiber constituting the optical cable, and a weak tensile force is applied to the optical fiber for a long period of time. May join continuously. In a state where such a relatively small tensile force is continuously applied to the optical fiber, the optical fiber is suddenly broken after a certain period of time, or is broken only by applying a relatively large tensile force. Sometimes. [0004] In order to avoid such troubles, it is necessary to give the optical fiber a sufficient fatigue characteristic.
The fatigue properties of the optical fiber are largely determined by the properties of the UV-curable resin constituting the primary and secondary coating layers 2 and 3. To obtain good fatigue properties, these coating layers 2 and 3 are required. It is necessary to select and use an appropriate ultraviolet-curable resin for (3). SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the fatigue characteristics of an optical fiber by selecting an appropriate UV-curable resin for the coating layer of the optical fiber. It is in. This problem is solved by controlling the pH of the portion of the coating layer made of the ultraviolet-curable resin of the optical fiber which is in direct contact with the bare optical fiber to 4.5 or less. Is done. Hereinafter, the present invention will be described in detail.
The fatigue characteristics of the optical fiber are dependent on the pH of the portion of the coating layer made of the UV-curable resin that comes into contact with the bare optical fiber, and if the pH is 4.5 or less, the fatigue characteristics will be improved. It turned out. For example, as for the optical fiber strand shown in FIG. 1, as the primary coating layer 2, an ultraviolet curable resin having a cured pH of 4.5 or less may be used. In the present invention, the pH after curing of the coating layer made of an ultraviolet-curable resin is measured by the following method. An uncured liquid UV-curable resin is cast on a glass plate or the like, and UV light is applied to the resin at 30 mJ / cm.
Irradiation is performed at an irradiation amount of 2 to cure to obtain a cured film having a thickness of about 0.1 mm. Then, 4.0 g of the cured film was precisely weighed and placed in a closed container such as a volumetric flask, and then 40 ml.
, And then sealed and heated at 80 ° C. for 24 hours. After cooling the container to room temperature, the pH of the water in the container is measured with a pH meter. When the primary coating layer 2 is formed using an ultraviolet curable resin whose pH measured in this way exceeds 4.5, as will be apparent from the specific examples described later, the fatigue characteristics of the optical fiber strand will be described. Decreases. PH after UV curing is 4.5
As the UV-curable resin as described below, a composition of an epoxy-curable or urethane acrylate-based UV-curable resin, such as a crosslinkable polyfunctional monomer, a crosslinkable polyfunctional oligomer, a photocrosslinking agent, a photocrosslinking accelerator, etc. Those appropriately selected are used. In the primary coating layer 2,
Since it is required that the Young's modulus after curing is as low as about 0.1 to 5 kg / mm 2 , it is necessary to satisfy this condition. [0010] Further, in the case of an optical fiber wire in which a single layer of a coating layer made of a UV-curable resin is provided on the bare optical fiber, the pH of the single layer coating layer may be 4.5 or less. is necessary. Such an optical fiber has a high fatigue characteristic. The evaluation of the fatigue characteristics of the optical fiber is performed based on the dynamic fatigue coefficient n measured by the test method specified in IEC 60793-1. Was high. The optical fiber of the present invention has a dynamic fatigue coefficient n of 18 or more because the pH of a portion of the coating layer in contact with the bare optical fiber is 4.5 or less. Further, in the optical fiber of the present invention, if the primary coating layer 2 and the secondary coating layer 3 made of an ultraviolet curing resin as shown in FIG. the pH was adjusted to 4.5 or less, moisture permeability of the ultraviolet ray curable resin constituting the secondary coating layer 3 by using the following 15g / m 2 / 24hr, further improves the fatigue characteristics of the optical fiber be able to. Where the moisture permeability is
It is determined by the cup method specified in JIS Z 0208. Since the secondary coating layer 3 has a role of mechanical protection of the bare optical fiber, its Young's modulus is 10 kg.
/ Mm 2 or more, preferably at 50 kg / mm 2 or more, and it is preferable that moisture permeability is less than 15g / m 2 / 24hr. In order to satisfy the conditions of such moisture permeability and Young's modulus, it is possible to control parameters such as the molecular structure, composition, molecular weight, and crosslink density of the ultraviolet-curable resin forming the secondary coating layer 3; Conceptually, a resin that is hard, rigid, and has a high cohesive energy density satisfies the above conditions. Hereinafter, specific examples will be described. Three types of UV-curable resins (Young's modulus: 0.2 to 0.5 kg / mm 2 ) having different pH values after curing on bare optical fibers having an outer diameter of 125 μm
To form a primary coating layer having a thickness of 30 μm, and then apply and cure two types of ultraviolet-curable resins (Young's modulus: 50 to 80 kg / mm 2 ) having different moisture permeability after curing. Thus, a secondary coating layer having a thickness of 37 μm was formed, and an optical fiber having a finish diameter of 250 μm was manufactured. [0015] The pH of the primary coating layer was determined by the measurement method described above. About these optical fiber strands, IEC
The dynamic fatigue coefficient n was determined according to 60793-1. Table 1 shows the results. [Table 1] From the results shown in Table 1, irrespective of the type of the secondary coating layer, if the pH of the primary coating layer is 4.5 or less, the dynamic fatigue coefficient n becomes 18 or more, and the material has good fatigue properties. It can be understood that it is. As described above, in the optical fiber of the present invention, the pH of the portion of the coating layer made of the ultraviolet-curable resin that comes into contact with the bare optical fiber is 4.5 or less. As a result, its fatigue characteristics are good, and the optical cable using this optical fiber has such an effect that even if a tensile force is applied for a long period of time, the contained optical fiber does not break. Can be
【図面の簡単な説明】
【図1】 本発明にかかる光ファイバ素線の例を示す概
略断面図である。
【符号の説明】
1…光ファイバ裸線、2…一次被覆層、3…二次被覆層BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing an example of an optical fiber according to the present invention. [Description of Signs] 1 ... bare optical fiber, 2 ... primary coating layer, 3 ... secondary coating layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝亦 健 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉事業所内 Fターム(参考) 2H050 BB05Q BB07Q BB14Q BB33Q BB33S BC03 BD00 4G060 AA01 AC15 CB09 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ken Katsumata Fuji Co., Ltd., 1440, Rokuzaki, Sakura City, Chiba Prefecture Kura Sakura Office F term (reference) 2H050 BB05Q BB07Q BB14Q BB33Q BB33S BC03 BD00 4G060 AA01 AC15 CB09
Claims (1)
なる被覆層を設けた光ファイバ素線において、 前記被覆層の光ファイバ裸線に接する部分のpHが4.
5以下であることを特徴とする光ファイバ素線。Claims: 1. An optical fiber having a coating layer made of an ultraviolet curable resin provided on a bare optical fiber, wherein a pH of a portion of the coating layer in contact with the bare optical fiber is pH4.
An optical fiber, wherein the number is 5 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001189655A JP2003004993A (en) | 2001-06-22 | 2001-06-22 | Optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001189655A JP2003004993A (en) | 2001-06-22 | 2001-06-22 | Optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003004993A true JP2003004993A (en) | 2003-01-08 |
Family
ID=19028546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001189655A Pending JP2003004993A (en) | 2001-06-22 | 2001-06-22 | Optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003004993A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008287191A (en) * | 2007-05-21 | 2008-11-27 | Hitachi Cable Ltd | Optical fiber, end face sealing method of optical fiber, connecting structure of optical fiber, and optical connector |
JP2008292558A (en) * | 2007-05-22 | 2008-12-04 | Hitachi Cable Ltd | Optical fiber, connection structure of optical fiber and optical connector |
JP2013018669A (en) * | 2011-07-08 | 2013-01-31 | Sumitomo Electric Ind Ltd | Method of manufacturing optical fiber |
US20130343714A1 (en) * | 2012-06-22 | 2013-12-26 | Sumitomo Electric Industries, Ltd. | Coated optical fiber |
US11372155B2 (en) * | 2017-07-31 | 2022-06-28 | Sumitomo Electric Industries, Ltd. | Optical fiber and method for manufacturing optical fiber |
-
2001
- 2001-06-22 JP JP2001189655A patent/JP2003004993A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008287191A (en) * | 2007-05-21 | 2008-11-27 | Hitachi Cable Ltd | Optical fiber, end face sealing method of optical fiber, connecting structure of optical fiber, and optical connector |
JP2008292558A (en) * | 2007-05-22 | 2008-12-04 | Hitachi Cable Ltd | Optical fiber, connection structure of optical fiber and optical connector |
JP2013018669A (en) * | 2011-07-08 | 2013-01-31 | Sumitomo Electric Ind Ltd | Method of manufacturing optical fiber |
US20130343714A1 (en) * | 2012-06-22 | 2013-12-26 | Sumitomo Electric Industries, Ltd. | Coated optical fiber |
US9557477B2 (en) * | 2012-06-22 | 2017-01-31 | Sumitomo Electric Industries, Ltd. | Coated optical fiber |
US11372155B2 (en) * | 2017-07-31 | 2022-06-28 | Sumitomo Electric Industries, Ltd. | Optical fiber and method for manufacturing optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01133011A (en) | Optical fiber with synthetic resin coating and manufacture thereof | |
JP2001088222A5 (en) | ||
US6253013B1 (en) | Optical fiber arrays | |
JPH085879A (en) | Optical fiber ribbon | |
JPWO2008029488A1 (en) | Optical fiber core and optical fiber ribbon | |
US4733941A (en) | Optical fibre comprising a synthetic resin cladding and method of and device for manufacturing such an optical fibre | |
JPS59181303A (en) | Multifilament composite material and manufacture thereof | |
DK159026B (en) | PROCEDURE FOR MANUFACTURING A SMALL END SURFACE ON AN OPTICAL FIBER AND COVERED CUT OPTIC FIBER CUT | |
JP2003004993A (en) | Optical fiber | |
JP2006528798A (en) | Optical fiber ribbon with preferential tear | |
CA1276845C (en) | Method of manufacturing an optical fibre | |
JPH11511865A (en) | Optical fibers and optical fiber ribbons and related manufacturing methods | |
JP2019164360A (en) | Optical fiber and method for producing the same | |
JP2000275483A (en) | Coated optical fiber | |
JP2529671B2 (en) | Optical glass fiber with synthetic resin coating and curable elastomer-forming material | |
US6022585A (en) | Method of coating an optical fiber | |
Zhandarov et al. | Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test | |
JP2002196201A (en) | Coated optical fiber tape | |
JPH08129119A (en) | Optical fiber | |
US7088897B2 (en) | Double-coated optical fiber | |
JPH0551545B2 (en) | ||
JP4279214B2 (en) | Colored optical fiber | |
JP2002122761A (en) | Optical fiber and optical fiber unit | |
JP2680895B2 (en) | Membrane structure material | |
JPH01178850A (en) | Evaluating method of characteristics of plastic-coated fiber for light transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071126 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091208 |