JPH0551545B2 - - Google Patents

Info

Publication number
JPH0551545B2
JPH0551545B2 JP58247487A JP24748783A JPH0551545B2 JP H0551545 B2 JPH0551545 B2 JP H0551545B2 JP 58247487 A JP58247487 A JP 58247487A JP 24748783 A JP24748783 A JP 24748783A JP H0551545 B2 JPH0551545 B2 JP H0551545B2
Authority
JP
Japan
Prior art keywords
optical fiber
curable resin
buffer layer
protective layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP58247487A
Other languages
Japanese (ja)
Other versions
JPS60171246A (en
Inventor
Hisaharu Yanagawa
Kinya Kumazawa
Mikio Kokayu
Hisashi Murata
Taiji Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP58247487A priority Critical patent/JPS60171246A/en
Publication of JPS60171246A publication Critical patent/JPS60171246A/en
Publication of JPH0551545B2 publication Critical patent/JPH0551545B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は被覆光フアイバの製造方法に関する。 光フアイバ心線と称されている第1図の被覆光
フアイバ1は、一般にコアおよびクラツドからな
るガラス製(例えば石英製)の光フアイバ2と、
その外周に設けられた緩衝層3と、さらにその外
周に設けられた保護層4とからなり、上記緩衝層
3は1次コートを兼ねるとともにクツシヨン効果
を発揮し、保護層4は殻として機械的強度を発揮
するようになつている。 上記被覆光フアイバの場合、低損失化を実現さ
せることはいうまでもないが、これとともに緩衝
層3、保護層4相互の密着性を確保するのが液密
性、強度上の観点から望ましい。 以下、これらに関する実験例について説明す
る。 コア径50μm、外径125μm、比屈折率差1%の
グレーデツド型マルチモード光フアイバ2と、外
径0.23mmの緩衝層3と、外径0.4mmの保護層4と
からなる被覆光フアイバ1において、緩衝層3の
材質、保護層4材質が異なる各種被覆光フアイバ
をつくり、これらの伝送特性を測定した。 なお、この際の測定ではそれぞれ1Km長とした
被覆光フアイバに張力150gを加えながらこれを
胴径340mmのボビンに巻きとり、それぞれ巻取前、
巻取後の伝送損失差を波長1.3μmで評価した。 上記巻取状態では被覆光フアイバに側圧=張
力/曲率半径=150g/170mmが加わつているの
で、次表に示す測定結果は対側圧特性を評価して
いることになる。
The present invention relates to a method of manufacturing coated optical fiber. The coated optical fiber 1 of FIG. 1, which is referred to as an optical fiber core, generally includes an optical fiber 2 made of glass (for example, quartz) consisting of a core and a cladding.
It consists of a buffer layer 3 provided on the outer periphery and a protective layer 4 further provided on the outer periphery.The buffer layer 3 doubles as a primary coat and also exerts a cushioning effect, and the protective layer 4 serves as a mechanical shell. It is starting to show strength. In the case of the above-mentioned coated optical fiber, it goes without saying that it is possible to reduce the loss, but it is also desirable from the viewpoint of liquid tightness and strength to ensure mutual adhesion between the buffer layer 3 and the protective layer 4. Experimental examples regarding these will be described below. In a coated optical fiber 1 consisting of a graded multimode optical fiber 2 with a core diameter of 50 μm, an outer diameter of 125 μm, and a relative refractive index difference of 1%, a buffer layer 3 with an outer diameter of 0.23 mm, and a protective layer 4 with an outer diameter of 0.4 mm. Various coated optical fibers were made with different materials for the buffer layer 3 and the protective layer 4, and their transmission characteristics were measured. In this measurement, each 1 km long coated optical fiber was wound onto a bobbin with a body diameter of 340 mm while applying a tension of 150 g.
The transmission loss difference after winding was evaluated at a wavelength of 1.3 μm. In the above-mentioned rolled state, lateral pressure=tension/radius of curvature=150 g/170 mm is applied to the coated optical fiber, so the measurement results shown in the following table evaluate the contralateral pressure characteristics.

【表】 上記表により明らかなごとく、緩衝層3は熱硬
化性のシリコーンゴムまたは光硬化性のブタジエ
ンアクリレート、シリコーンアクリレート、ウレ
タンアクリレートなどの軟かい硬化性樹脂製と
し、保護層4は光硬化性エポキシアクリレートの
ごとき硬い硬化性樹脂製とするのがよく、こうす
ることにより対側圧性の優れた被覆光フアイバが
得られる。 ところが上記のごとき対側圧性のある被覆光フ
アイバ例えば表中No.6,No.7に1%スクリーニン
グテストを実施した場合、緩衝層3、保護層4相
互に層間剥離が生じ、これら両層3,4の密着性
に問題のあることが判明した。 これは対側圧性を改善すべく緩衝層3をできる
だけ軟かい材質とし、保護層4をできるだけ硬い
材質とした場合における両層相互の大きな物性相
異に起因しているといえる。 本発明は上記の問題点に対処すべく、対側圧特
性とともに緩衝層、保護層相互の密着性をも確保
するようにしたものであり、以下その具体的方法
につき、図示の実施例を参照して説明する。 第3図において、母材供給機5、紡糸炉6を備
えた既知の紡糸装置7により石英系のプリフオー
ムロツド8を紡糸してこれを前記光フアイバ2に
加工した後、当該光フアイバ2をダイス型コータ
9内に引き通し、ここで光フアイバ外周には緩衝
層3用とした未硬化(液状で未架橋)の軟質硬化
性樹脂を塗布するとともに上記コータ9のつぎに
ある硬化炉10を介してその未硬化軟質硬化性樹
脂に硬化エネルギを与え、同樹脂を飽和架橋密度
90〜99%程度の半硬化状態(半架橋状態)にす
る。 こうして半硬化状態の軟質硬化性樹脂で被覆さ
れた上記光フアイバ2は、これをつぎのダイス型
コータ11内に引き通し、ここで軟質硬化性樹脂
(半硬化緩衝層3)の外周に保護層4用とした未
硬化(液状で未架橋)の硬質硬化性樹脂を塗布し
た後、同状態のものを次段の硬化炉12内でつぎ
のごとく硬化処理する。 つまり、この硬化炉内では所定の硬化エネルギ
を与えて保護層4用の硬化樹脂を完全に硬化(架
橋)するだけでなく、前記において半硬化状態に
あつた緩衝層3用軟質硬化性樹脂の完全硬化(完
全架橋)をも同時に行なう。 架橋密度に関する一般的事項として、第2図の
ごとく、ある硬化エネルギESまではそのエネルギ
の増加とともに架橋密度も増加するが、未反応基
がすべて消費されてしまうとES以上の硬化エネル
ギでも架橋密度は増加せず、一定値で飽和する。 前述した本発明では、緩衝層3用の軟質硬化性
樹脂を架橋するにあたり、ESよりも小さいEB
硬化エネルギにより同樹脂を半架橋状態とし、さ
らにその上に保護層4用の硬化性樹脂を塗布した
後、適当な硬化エネルギによりこれら両樹脂を完
全架橋するのであり、かかる方法によるとき、こ
の際の硬化性樹脂反応がラジカル反応となつてそ
の反応が官能基の異同を問わず進行するから、上
記緩衝用樹脂と保護層用樹脂との間でこれらを連
結する分子のリンクが生じ、これにより緩衝層3
と保護層4との密着力が高まる。 このようにして光フアイバ2の外周に緩衝層
3、保護層4が形成された後、これら両層3,4
を有する光フアイバ2すなわち被覆光フアイバ1
はキヤプスタン13を経てボビン14に巻きとら
れる。 なお、緩衝層3を形成する軟質の硬化性樹脂、
保護層4を形成する硬質の硬化性樹脂に関しては
熱硬化性のものでもよいが、熱硬化性のものは原
子間結合力が強い場合のラジカル反応時、高温を
必要とするので、これら緩衝層3用、保護層4用
の樹脂としては紫外線照射などにより硬化する光
硬化性樹脂を採用するのがよく、具体的にはブタ
ジエンアクリレート、トリコーンアクリレート、
ウレタンアクリレートなどが緩衝層3用として採
用され、エポキシアクリレートが保護層4用とし
て採用される。 硬化後における緩衝層3の硬さはヤング率で
1.0Kg/mm2以下がよく、保護層4の硬さはヤング
率で50Kg/mm2以上がよい。 さらに上記両層3,4を形成する樹脂(光硬化
性)を紫外線照射型の硬化炉12により完全硬化
するとき、その硬化エネルギ(光エネルギ)は前
記ESを上回つてよいが、あまり大きな硬化エネル
ギを与えると樹脂の分解が予測され、したがつて
この際の硬化エネルギはESの数倍程度に抑えてお
くのがよい。 また、緩衝層3を硬化炉10により半硬化状態
とした場合、外観状態、硬さは硬化状態と比べて
さほど低下せず、したがつて同層3の外周を保護
層用樹脂で被覆するとき、特に問題は生じない。 つぎに本発明方法の具体例について説明する
と、第3図で述べた方法により前記実験例で述べ
たと同様の被覆光フアイバ1をつくるとき、緩衝
層3、保護層4をつぎのような仕様で形成した。 緩衝層3の場合 材質:ウレタンアクリレート(硬化特性第4図) 硬化前の粘度:2500CP 硬化後のヤング率:0.1Kg/mm2 半硬化時のエネルギ:1.5ジユール/cm2 保護層4の場合 材質:エポキシアクリレート 硬化前の粘度:5500CP 硬化後のヤング率:70Kg/cm2 このような仕様で製造された被覆光フアイバ1
は張力巻きによる損失増加が0.5dB/Kmと小さ
く、1%のスクリーニングテストを施しても緩衝
層3、保護層4相互の層間剥離が生じなかつた。 さらに上記被覆光フアイバ1を6本、第5図に
示すごとく0.4mmφのステンレス製テンシヨンメ
ンバ15の周囲に撚り合わせ、その撚合物の外周
ならびに隙間にシリコーンアクリレートを施し、
これを紫外線硬化させることにより1.3mmφの充
実層16を形成して光ケーブルユニツト17とし
た。 このユニツト17は伝送損失に変化のない完全
充填の液密型となり、充実層16のヤング率が前
記保護層4のヤング率よりも3桁以上小さいた
め、各心線ごとに分離するための端末処理が容易
に行なえた。 以上説明した通り、本発明は光フアイバの外周
に緩衝層と該緩衝層外周の保護層とを形成する被
覆光フアイバの製造方法において、上記緩衝層の
材質は軟質硬化性樹脂とし、上記保護層の材質は
軟質硬化性樹脂とし、光フアイバの外周に未硬化
の軟質硬化性樹脂を塗布するとともに同樹脂に硬
化エネルギを与えてこれを半硬化状態とし、その
後、半硬化状態の軟質硬化性樹脂外周に未硬化の
硬質硬化性樹脂を塗布し、これに硬化エネルギを
与えて該未硬化の硬質硬化性樹脂ならびに上記半
硬化状態の軟質硬化性樹脂を完全に硬化すること
を特徴としているから、単に対側圧特性がよいだ
けでなく、緩衝層と保護層との密着性にも優れる
被覆光フアイバが製造できる。
[Table] As is clear from the above table, the buffer layer 3 is made of a thermosetting silicone rubber or a soft curable resin such as photocurable butadiene acrylate, silicone acrylate, or urethane acrylate, and the protective layer 4 is made of a photocurable resin. It is preferably made of a hard curable resin such as epoxy acrylate, which provides a coated optical fiber with excellent contralateral pressure properties. However, when a 1% screening test was carried out on coated optical fibers with contralateral pressure properties as described above, for example No. 6 and No. 7 in the table, delamination occurred between the buffer layer 3 and the protective layer 4, and both layers 3 , 4 was found to have a problem with adhesion. This can be said to be due to the large difference in physical properties between the two layers when the buffer layer 3 is made of as soft a material as possible and the protective layer 4 is made of as hard a material as possible in order to improve contralateral pressure properties. In order to address the above-mentioned problems, the present invention is designed to ensure not only contralateral pressure characteristics but also adhesion between the buffer layer and the protective layer. I will explain. In FIG. 3, a quartz-based preform rod 8 is spun into the optical fiber 2 using a known spinning device 7 equipped with a base material feeder 5 and a spinning furnace 6. is passed through a die-type coater 9, where an uncured (liquid, uncrosslinked) soft curable resin for the buffer layer 3 is applied to the outer periphery of the optical fiber, and a curing furnace 10 located next to the coater 9 is applied. Applying curing energy to the uncured soft curable resin through
Achieve a semi-cured state (semi-crosslinked state) of approximately 90 to 99%. The optical fiber 2 thus coated with the soft hardening resin in a semi-hardened state is passed through the next dice-type coater 11, where a protective layer is applied to the outer periphery of the soft hardening resin (semi-hardened buffer layer 3). After applying an uncured (liquid and uncrosslinked) hard curable resin for use in No. 4, the same state is cured in the next stage curing furnace 12 as follows. In other words, in this curing furnace, not only is the cured resin for the protective layer 4 completely cured (crosslinked) by applying a predetermined curing energy, but also the soft curable resin for the buffer layer 3, which was in a semi-cured state in the above, is Complete curing (complete crosslinking) is also performed at the same time. As a general matter regarding crosslink density, as shown in Figure 2, the crosslink density increases as the energy increases up to a certain curing energy E S , but once all unreacted groups are consumed, even at a curing energy of E S or higher, the cross link density increases. The crosslink density does not increase and saturates at a constant value. In the above-mentioned invention, when crosslinking the soft curable resin for the buffer layer 3, the resin is brought into a semi-crosslinked state by the curing energy of E B which is smaller than E S , and then the curable resin for the protective layer 4 is further applied. After the resin is applied, both resins are completely crosslinked using appropriate curing energy. When this method is used, the reaction of the curable resin becomes a radical reaction, and the reaction proceeds regardless of the difference in functional groups. Therefore, a molecular link is generated between the buffer resin and the protective layer resin, and this causes the buffer layer 3
The adhesion between the protective layer 4 and the protective layer 4 increases. After the buffer layer 3 and the protective layer 4 are formed on the outer periphery of the optical fiber 2 in this way, both layers 3 and 4 are
An optical fiber 2 or a coated optical fiber 1 having
is wound onto a bobbin 14 via a capstan 13. Note that the soft curable resin forming the buffer layer 3,
The hard curable resin that forms the protective layer 4 may be thermosetting, but thermosetting resins require high temperatures during radical reactions with strong interatomic bonding forces, so these buffer layers are not suitable. As the resin for layer 3 and protective layer 4, it is preferable to use a photocurable resin that is cured by ultraviolet irradiation, and specifically, butadiene acrylate, tricone acrylate,
Urethane acrylate or the like is used for the buffer layer 3, and epoxy acrylate is used for the protective layer 4. The hardness of the buffer layer 3 after curing is Young's modulus.
The hardness of the protective layer 4 is preferably 1.0 Kg/mm 2 or less, and the hardness of the protective layer 4 is preferably 50 Kg/mm 2 or more in terms of Young's modulus. Furthermore, when the resin (photocurable) forming both the layers 3 and 4 is completely cured in the ultraviolet ray irradiation type curing furnace 12, the curing energy (light energy) may exceed the E S , but it is too large. It is predicted that the resin will decompose when curing energy is applied, so it is best to keep the curing energy at this time to several times the ES . Furthermore, when the buffer layer 3 is made into a semi-hardened state in the curing furnace 10, the appearance and hardness do not decrease much compared to the hardened state. , no particular problem arises. Next, a specific example of the method of the present invention will be explained. When a coated optical fiber 1 similar to that described in the experimental example is manufactured by the method described in FIG. 3, the buffer layer 3 and the protective layer 4 are formed with the following specifications. Formed. Material for buffer layer 3: Urethane acrylate (curing characteristics Figure 4) Viscosity before curing: 2500CP Young's modulus after curing: 0.1 Kg/mm 2 Energy during semi-curing: 1.5 Joule/cm 2 Material for protective layer 4 : Epoxy acrylate Viscosity before curing: 5500CP Young's modulus after curing: 70Kg/cm 2Coated optical fiber 1 manufactured with these specifications
The loss increase due to tension winding was as small as 0.5 dB/Km, and no delamination occurred between the buffer layer 3 and the protective layer 4 even when a 1% screening test was performed. Furthermore, six coated optical fibers 1 are twisted together around a stainless steel tension member 15 of 0.4 mmφ as shown in FIG.
By curing this with ultraviolet rays, a solid layer 16 with a diameter of 1.3 mm was formed to form an optical cable unit 17. This unit 17 is a completely filled liquid-tight type with no change in transmission loss, and the Young's modulus of the solid layer 16 is more than three orders of magnitude smaller than that of the protective layer 4. Processing was easy. As explained above, the present invention provides a method for manufacturing a coated optical fiber in which a buffer layer is formed on the outer periphery of the optical fiber and a protective layer around the outer periphery of the buffer layer, wherein the material of the buffer layer is a soft curable resin, and the material of the buffer layer is a soft curable resin. The material of is a soft hardening resin, and the unhardened soft hardening resin is applied to the outer periphery of the optical fiber, and curing energy is applied to the resin to make it into a semi-hardened state, and then the semi-hardened soft hardening resin is applied. The method is characterized in that an uncured hard curable resin is applied to the outer periphery and curing energy is applied thereto to completely cure the uncured hard curable resin and the semi-cured soft curable resin. A coated optical fiber that not only has good contralateral pressure characteristics but also excellent adhesion between the buffer layer and the protective layer can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被覆光フアイバの断面図、第2図は架
橋密度と硬化エネルギとの関係を示した図、第3
図は本発明方法の1実施例を略示した図、第4図
はウレタンアクリレートの硬化特性を示した図、
第5図は本発明方法により製造された被覆光フア
イバで構成した光ケーブルユニツトの断面図であ
る。 1……被覆光フアイバ、2……光フアイバ、3
……緩衝層、4……保護層、9,11……ダイス
型コータ、10,12……硬化炉。
Figure 1 is a cross-sectional view of the coated optical fiber, Figure 2 is a diagram showing the relationship between crosslink density and curing energy, and Figure 3 is a diagram showing the relationship between crosslink density and curing energy.
The figure is a diagram schematically showing one embodiment of the method of the present invention, and Figure 4 is a diagram showing the curing characteristics of urethane acrylate.
FIG. 5 is a sectional view of an optical cable unit constructed from coated optical fibers manufactured by the method of the present invention. 1...Coated optical fiber, 2...Optical fiber, 3
... Buffer layer, 4 ... Protective layer, 9, 11 ... Dice type coater, 10, 12 ... Curing furnace.

Claims (1)

【特許請求の範囲】 1 光フアイバの外周に緩衝層と該緩衝層外周の
保護層とを形成する被覆光フアイバの製造方法に
おいて、上記緩衝層の材質は軟質硬化性樹脂と
し、上記保護層の材質は硬質硬化性樹脂とし、光
フアイバの外周に未硬化の軟質硬化性樹脂を塗布
するとともに同樹脂に硬化エネルギを与えてこれ
を半硬化状態とし、その後、半硬化状態の軟質硬
化性樹脂外周に未硬化の硬質硬化性樹脂を塗布
し、これに硬化エネルギを与えて該未硬化の硬質
硬化性樹脂ならびに上記半硬化状態の軟質硬化性
樹脂を完全に硬化させる被覆光フアイバの製造方
法。 2 緩衝層用の軟質硬化性樹脂、保護層用の硬質
硬化性樹脂が光硬化性樹脂からなる特許請求の範
囲第1項記載の被覆光フアイバの製造方法。
[Scope of Claims] 1. A method for manufacturing a coated optical fiber in which a buffer layer is formed on the outer periphery of the optical fiber and a protective layer around the outer periphery of the buffer layer, wherein the material of the buffer layer is a soft curable resin, and the material of the protective layer is The material is a hard curable resin, and an uncured soft curable resin is applied to the outer periphery of the optical fiber, and curing energy is applied to the resin to make it into a semi-hardened state. A method for manufacturing a coated optical fiber, which comprises applying an uncured hard curable resin to the fiber and applying curing energy to completely cure the uncured hard curable resin and the semi-cured soft curable resin. 2. The method for producing a coated optical fiber according to claim 1, wherein the soft curable resin for the buffer layer and the hard curable resin for the protective layer are made of a photocurable resin.
JP58247487A 1983-12-29 1983-12-29 Manufacture of covered optical fiber Granted JPS60171246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247487A JPS60171246A (en) 1983-12-29 1983-12-29 Manufacture of covered optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247487A JPS60171246A (en) 1983-12-29 1983-12-29 Manufacture of covered optical fiber

Publications (2)

Publication Number Publication Date
JPS60171246A JPS60171246A (en) 1985-09-04
JPH0551545B2 true JPH0551545B2 (en) 1993-08-02

Family

ID=17164193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247487A Granted JPS60171246A (en) 1983-12-29 1983-12-29 Manufacture of covered optical fiber

Country Status (1)

Country Link
JP (1) JPS60171246A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723239B2 (en) * 1986-03-03 1995-03-15 日本電信電話株式会社 High-speed coating method for optical fiber coated with UV curable resin
JPS63128309A (en) * 1986-11-18 1988-05-31 Mitsubishi Cable Ind Ltd Optical fiber
JPH01214808A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH01214809A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH01260406A (en) * 1988-04-12 1989-10-17 Furukawa Electric Co Ltd:The Coated optical fiber

Also Published As

Publication number Publication date
JPS60171246A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
KR900002554B1 (en) Coated optical fiber
JPH01133011A (en) Optical fiber with synthetic resin coating and manufacture thereof
JPS6087308A (en) Optical glass fiber having primary and secondary covers
JPH0559056B2 (en)
US6004675A (en) Optical glass fiber
JP2950264B2 (en) Manufacturing method of optical fiber ribbon
JPS60262115A (en) Fiber for optical transmission
JPH0551545B2 (en)
JPH09113773A (en) Coated optical fiber ribbon
JPH0776118B2 (en) Manufacturing method of coated optical fiber
JPS58211707A (en) Coated optical fiber
JPS61249008A (en) Optical fiber
JP2583996B2 (en) Optical fiber coating equipment
JPH03163505A (en) Coated optical fiber
JP3303460B2 (en) Glass fiber for optical transmission and method of manufacturing the same
JPH05241052A (en) Coated optical fiber
JP2975034B2 (en) Manufacturing method of optical fiber core
JPH09138330A (en) High-strength optical fiber cord
JPH01167264A (en) Method for coating optical fiber
JPS6014208A (en) Coated optical fiber
JPS63123840A (en) Production of optical fiber
JPH0629888B2 (en) Coated optical fiber
JP2547773B2 (en) Optical fiber manufacturing method
JPS6046512A (en) Plastic coated optical fiber
JPH11149020A (en) Optical fiber cord

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees