JPH01133011A - Optical fiber with synthetic resin coating and manufacture thereof - Google Patents

Optical fiber with synthetic resin coating and manufacture thereof

Info

Publication number
JPH01133011A
JPH01133011A JP63252936A JP25293688A JPH01133011A JP H01133011 A JPH01133011 A JP H01133011A JP 63252936 A JP63252936 A JP 63252936A JP 25293688 A JP25293688 A JP 25293688A JP H01133011 A JPH01133011 A JP H01133011A
Authority
JP
Japan
Prior art keywords
layer
synthetic resin
optical fiber
fiber
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63252936A
Other languages
Japanese (ja)
Inventor
Dirk J Broer
ディルク・ヤン・ブロアー
Cornelis M G Jochem
コルネリス・マリヌス・ヘリット・ヨヘム
Theodorus M Meeuwsen
テオドルス・マリア・メーウーセン
Daniel C L Vangheluwe
ダニエル・セサル・レオン・ファンヘルウェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Publication of JPH01133011A publication Critical patent/JPH01133011A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4438Means specially adapted for strengthening or protecting the cables for facilitating insertion by fluid drag in ducts or capillaries

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE: To prevent optical transmission loss arising from microbending by specifying the thickness of the first layer and modulus of elasticity of the second layer of an optical fiber having a synthetic resin coating consisting of the first sheath layer of synthetic rubber and the next synthetic resin sheath layer having the modulus of elasticity larger than the modulus of elasticity of the first layer. CONSTITUTION: A glass fiber 1 is provided with a soft buffer layer 2 consisting of the synthetic rubber having the modulus of elasticity of 0.1 to 10MPa right after the formation of this glass fiber. The first layer 2 is provided thereon with the solid upper layer 3 consisting of the second synthetic resin having the modulus of elasticity larger than the modulus of elasticity of the first layer in order to protect the soft buffer layer 2 during the execution of another treatment. The thickness of the first layer 2 is specified to 5 to 20μm and the modulus of elasticity of the second layer 3 to >=1000MPa. The modulus of elasticity of the second layer which exhibits a high value has an advantage in the mechanical resistance force of the optical fiber. As a result, the optical transmission loss occurring in the microbending is prevented.

Description

【発明の詳細な説明】 本発明は合成樹脂コーティングを備える光ファイバに関
するもので、ガラスファイバ、0.1〜10MPaの弾
性率を有する合成ゴムの第1外皮層及び第1層より大き
な弾性率を有する次の合成樹脂外皮層から成る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber provided with a synthetic resin coating, including a glass fiber, a first outer skin layer of synthetic rubber having an elastic modulus of 0.1 to 10 MPa, and an elastic modulus greater than that of the first layer. It consists of the following synthetic resin outer skin layer:

更に、本発明はかがる光ファイバの製造方法に関するも
のである。
Furthermore, the present invention relates to a method of manufacturing a curved optical fiber.

光学的テレコミュニケーション用のガラスファイバは一
般的に機械的損害を回避するために合成樹脂コーティン
グで被覆されている。マイクロベンドにより生ずる光学
伝送損失を避けるため、様々な層から成るコーティング
が好ましい。例えば、次の方法が用いられている。例え
ば、プレフォームから線引きしたり、二重るつぼ法を用
いることによりガラスファイバを形成した後すぐに、ま
ず弾性率が0.1〜10MPaの合成ゴムの軟緩衝層を
通用する。他の処理を行う間、軟緩衝層を保護するため
に、光ファイバに弾性率100 MPaを超える弾性率
を有する第2の合成樹脂の固い上部層(toplaye
r)を第1Nの上に適用する。かかる上部層もガラスフ
ァイバを形成した後直ちに、すなわち、ファイバをガイ
ドホイールに巻き取るか又は、貯蔵する前に施す。緩衝
N (buffer 1ayer)と上部層はいっしょ
にガラスファイバの第1の合成樹脂コーティングを形成
する。第1の合成樹脂コーティングを有するガラスファ
イバの直径の通常値は、250μmで、ガラスファイバ
の直径は125μmである。
Glass fibers for optical telecommunications are generally coated with a synthetic resin coating to avoid mechanical damage. Coatings consisting of various layers are preferred to avoid optical transmission losses caused by microbending. For example, the following method is used. For example, immediately after forming a glass fiber by drawing from a preform or by using a double crucible method, a soft buffer layer of synthetic rubber having an elastic modulus of 0.1 to 10 MPa is applied. To protect the soft buffer layer during other treatments, the optical fiber is coated with a hard top layer of a second synthetic resin with an elastic modulus of more than 100 MPa.
r) on top of the 1N. Such a top layer is also applied immediately after forming the glass fiber, i.e. before winding the fiber onto a guide wheel or storing it. The buffer layer and the top layer together form the first synthetic resin coating of the glass fiber. Typical values for the diameter of the glass fiber with the first synthetic resin coating are 250 μm and the diameter of the glass fiber is 125 μm.

電送(cabling)の間、ケーブルを敷く間、ケー
ブルの寿命の間の周囲からの影響から光ファイバを保護
するために、しばしば光ファイバにI GPaのより大
きい弾性率を有するより厚い第2の合成樹脂コーティン
グを更に設ける。かかる第2の合成樹脂コーティングは
ガラスファイバの形成後直ちに適用する必要はない。
To protect the optical fiber from environmental influences during cabling, during cable laying, and during the life of the cable, optical fibers are often coated with a thicker second composite with a greater modulus of elasticity of I GPa. A resin coating is further provided. Such a second synthetic resin coating need not be applied immediately after forming the glass fiber.

2つの例のかかる第2の合成樹脂コーティングが用いら
れる。第−例において、第1の合成樹脂コーティングを
備えた光ファイバに、管を形成する第2合成樹脂コーテ
ィングを少し離して配置する。光ファイバと管の間の空
隙は例えば極めて細かい石英粒子で満たされたシリコー
ンオイルのようなチキソトロピー性液体又はゲルで満た
されている。管内に1以上の光ファイバを収容すること
も可能である。もう一つの例においては、第2合成樹脂
コーティングを第1合成樹脂コーティングに接着法で接
合させる。
Two examples of such second synthetic resin coatings are used. In a third example, an optical fiber provided with a first synthetic resin coating is placed at a distance with a second synthetic resin coating forming a tube. The gap between the optical fiber and the tube is filled with a thixotropic liquid or gel, such as silicone oil filled with extremely fine quartz particles. It is also possible to house one or more optical fibers within the tube. In another example, the second synthetic resin coating is adhesively bonded to the first synthetic resin coating.

欧州特許出願EP第155051号において、放射にさ
らすことにより硬化する硬化性合成樹脂組成物から形成
される合成樹脂コーティングを備えた光ファイバが開示
されている。第1合成樹脂コーティングは各々弾性率が
0.1〜10MPa及び100 MPaの2つの層から
成る。両方の層はそれぞれ約30μmの厚みを有する。
In European patent application EP 155 051, an optical fiber is disclosed with a synthetic resin coating formed from a curable synthetic resin composition that is cured by exposure to radiation. The first synthetic resin coating consists of two layers, each having an elastic modulus of 0.1-10 MPa and 100 MPa. Both layers each have a thickness of approximately 30 μm.

本発明の目的は、例えばファイバ上の横方向の力のよう
な内部的な機械的影響に対し無感度である光ファイバを
提供することにある。該ファイバはマイクロベンディン
グに対しても極めて感度が低くなければならず、ファイ
バの処理温度中(−60〜+80°C) 、m械的及び
光学的特性は可能な限り、温度に左右されてはならない
。更に、第2合成樹脂コーティングが省略できるような
光ファイバを提供することが望ましい。
It is an object of the invention to provide an optical fiber that is insensitive to internal mechanical influences, such as lateral forces on the fiber. The fiber must also be extremely insensitive to microbending, and the mechanical and optical properties should be as temperature-independent as possible during the processing temperatures of the fiber (-60 to +80 °C). It won't happen. Furthermore, it would be desirable to provide an optical fiber in which the second synthetic resin coating can be omitted.

本発明の目的は序文に記載した光ファイバにより達せら
れ第1層の厚みは5〜20μmで第2層の弾性率は、1
000MPa以上であることが特徴である。
The object of the present invention is achieved by the optical fiber described in the preamble, in which the thickness of the first layer is 5 to 20 μm and the modulus of elasticity of the second layer is 1.
It is characterized by a pressure of 000 MPa or more.

弾性率の値は室温で測定する。The elastic modulus values are measured at room temperature.

第2層の弾性率が高い値を示すのは光ファイバの機械的
抵抗力に利点がある。他の利点は高い弾性率を有する物
質は高いガラス転移点を有し、これは光ファイバの通用
範囲を超えるものである。
The high elastic modulus of the second layer is advantageous for the mechanical resistance of the optical fiber. Another advantage is that materials with high elastic moduli have high glass transition temperatures, which are beyond the range of optical fibers.

このことは光ファイバの温度依存性を小さくするのに役
立つ。充填剤のないイソトロピック合成樹脂の弾性率の
実際の上限は3000MPaである。充填粒子は光ファ
イバに局部的な圧力を及ぼすので充填剤は好ましくなく
、該圧力は伝送損失を導(。
This helps reduce the temperature dependence of the optical fiber. The practical upper limit of the elastic modulus of filler-free isotropic synthetic resins is 3000 MPa. Fillers are undesirable because the filler particles exert local pressure on the optical fiber, which leads to transmission losses.

高い弾性率の値は一般的に、例えば5〜20X10−’
/ ’Cのような線熱膨張係数の低い値を伴う。石英ガ
ラスの対応値は5 Xl0−’/ ’Cで軟緩衝層の物
質は5〜40X10−’/ ’Cである。ファイバを冷
却する管、例えば、ファイバを製造した後又はファイバ
を使用する間に、石英ガラスとコーティングとの線熱膨
張係数の間の大きな差異は光フアイバ中に軸上のベンド
を導くこととなり、これは伝送損失を呈する。更に放射
方向における上部層及び緩衝層の膨張係数の間の差異は
光ファイバと軟緩衝層の間に接合問題を提供する。しか
しながら概して合成樹脂コーティングの線膨張係数は、
例えば石英ガラスのようなものから製造されている光フ
ァイバのものより大きく、緩衝層の収縮は、上部層より
かなり速く、緩衝層をファイバから分離することができ
る。
High modulus values are generally e.g.
/'C with a low value of linear thermal expansion coefficient. The corresponding value for quartz glass is 5X10-'/'C and for the material of the soft buffer layer is 5-40X10-'/'C. In the tube that cools the fiber, for example after manufacturing the fiber or during use of the fiber, large differences between the coefficients of linear thermal expansion of the fused silica and the coating can lead to axial bends in the optical fiber. This presents a transmission loss. Furthermore, the difference between the expansion coefficients of the top layer and the buffer layer in the radial direction presents bonding problems between the optical fiber and the soft buffer layer. However, in general, the linear expansion coefficient of synthetic resin coating is
Larger than that of optical fibers made from materials such as fused silica, the shrinkage of the buffer layer is much faster than the top layer, allowing the buffer layer to be separated from the fiber.

本発明は、上部層に極めて固い物質を用いるこ゛とによ
り生ずる問題を、大きくならないように第1の軟層の厚
みを選択することにより克服できるという知見に基づい
ている。薄い第1層は十分な保護を与えるが、厚い層と
異なり、常に圧縮圧力に課されており収縮により光ファ
イバから分離することができない。更に、温度変化によ
り生ずる光ファイバの曲げはある程度曲げにより生ずる
電送損失が小さくなることを妨げる。
The invention is based on the finding that the problems caused by the use of very hard materials in the upper layer can be overcome by choosing the thickness of the first soft layer to be modest. A thin first layer provides sufficient protection, but unlike a thicker layer, it is constantly subjected to compressive pressure and cannot be separated from the optical fiber by shrinkage. Additionally, bending of optical fibers caused by temperature changes to some extent prevents transmission losses caused by bending from being reduced.

光ファイバの周りに正確に同心円的に設けなければなら
ない薄い第1層の装備は、制御しにくいプロセスである
。かかる薄層の装備を測定し、制御する方法はオランダ
国特許出願第8701346号に開示されている。
The provision of a thin first layer, which must be placed precisely concentrically around the optical fiber, is a difficult process to control. A method for measuring and controlling the installation of such thin layers is disclosed in Dutch Patent Application No. 8701346.

固い上部層の厚みはほとんど臨界的でなく、合成樹脂コ
ーティングを備えた光ファイバの直径が合計で約250
μmとなるように選択されることが好ましい。石英ガラ
スファイバの直径は通常125μmであるので、上部層
の厚みは40〜60μmとなることを意味する。上部層
の大きい厚み、例えばコーティングを伴うファイバの2
50μmを超える全体直径は、温度変化によりファイバ
中に曲げを生ずる大きな力となる。
The thickness of the hard top layer is hardly critical, and the total diameter of the optical fiber with synthetic resin coating is approximately 250 mm.
Preferably, it is selected to be .mu.m. The diameter of quartz glass fibers is typically 125 μm, which means that the thickness of the top layer is between 40 and 60 μm. 2 of the fiber with a large thickness of the top layer, e.g.
An overall diameter greater than 50 μm results in large forces that cause bending in the fiber due to temperature changes.

本発明の光ファイバを製造する方法は両層を硬化性合成
樹脂組成物から形成し、これを光ファイバを線引きした
後直ちに適用し、UV光又は電子にさらすことにより硬
化させるように行なわれるのが好ましい。本発明のファ
イバは熱硬化性合成樹脂組成物を用いることにより選択
的に製造することができる。充填されていない合成樹脂
の固い層を設ける問題は、第2Nをエトキシル化ビスフ
ェノール−Aジアクリレート、イソシアヌレートトリア
クリレート及び少な(ともポリウレタンアクリレートを
含む硬化性樹脂組成物から形成することで解決される。
The method of manufacturing the optical fiber of the present invention is such that both layers are formed from a curable synthetic resin composition, which is applied immediately after the optical fiber is drawn and cured by exposure to UV light or electrons. is preferred. The fiber of the present invention can be selectively manufactured by using a thermosetting synthetic resin composition. The problem of providing a hard layer of unfilled synthetic resin is solved by forming the second N from a curable resin composition containing ethoxylated bisphenol-A diacrylate, isocyanurate triacrylate, and less (both polyurethane acrylate). .

本発明の好適例において第1の軟層をポリエーテルウレ
タンアクリレートを含む硬化性合成樹脂組成物から成形
する。−緩衝層の製造に使用するに適している合成樹脂
組成物は欧州特許出願EP第167199号に開示され
ている。
In a preferred embodiment of the invention, the first soft layer is molded from a curable synthetic resin composition containing polyether urethane acrylate. - Synthetic resin compositions suitable for use in the production of buffer layers are disclosed in European patent application EP 167199.

緩衝層及び上部層の製造に対して使用する硬化性合成樹
脂組成物は他の成分も含むことができ、例えばモノマー
のアクリレート化合物のようなものであり、これは、硬
化速度を速め、粘性を適正にし、更には、硬化がUV光
に照射することにより行なわれる場合には光感性開始剤
や触媒及び表面活性物質等である。
The curable synthetic resin compositions used for the manufacture of the buffer layer and the top layer can also contain other ingredients, such as monomeric acrylate compounds, which speed up the curing rate and reduce the viscosity. Appropriate additions include photosensitive initiators, catalysts and surface-active substances when curing is carried out by irradiation with UV light.

欧州特許出願第213680号にはあらかじめ決められ
た好ましい方向に高い弾性率を呈する物質をコーティン
グに部分に含む光ファイバが開示されている。放射方向
においては、弾性率が600 MPaである。かかる物
質は、第2及び第1の合成樹脂コーティングで使用する
ことができる。
European Patent Application No. 213,680 discloses an optical fiber whose coating includes a portion of a material exhibiting a high modulus of elasticity in a predetermined preferred direction. In the radial direction, the elastic modulus is 600 MPa. Such materials can be used in the second and first synthetic resin coatings.

軟緩衝層の厚みは30μmである。The thickness of the soft buffer layer is 30 μm.

米国特許第3980390号明細書には熱的に硬化する
合成樹脂の5〜10μm厚の層で被覆され、その後、例
えばポリテン又は、ナイロンのような熱可塑性物質の多
くの層を全体の厚みが50〜200μmを有するように
溶融押し出しにより適用した光ファイバが開示されてい
る。かかる物質は温度及び湿度のような周囲の影響に左
右されない強い光ファイバを製造するには不適当である
と考えられる。
U.S. Pat. No. 3,980,390 discloses coating with a 5-10 μm thick layer of thermally cured synthetic resin, followed by multiple layers of thermoplastic material, such as polythene or nylon, to a total thickness of 50 μm. Optical fibers applied by melt extrusion to have a diameter of ˜200 μm are disclosed. Such materials are considered unsuitable for producing strong optical fibers that are insensitive to ambient influences such as temperature and humidity.

本発明を図面を参照して次の実施例及び比較例により説
明する。
The present invention will be explained by the following examples and comparative examples with reference to the drawings.

1立皿上 多モードガラスファイバを既知の方法でプレフォームか
ら線引きすることにより形成した。ここでガラスファイ
バはガラス又は石英ガラスのファイバを意味することに
留意すべきである。当該ファイバは、屈折率の異なるコ
アガラスおよびタララドガラス(第1図には図示せず)
を含む。あるいはまた、ファイバは内側から外側へ徐々
に変化する屈折率を有するものも有効であり、更に、プ
レフォームから線引きしたファイバのかわりに二重るつ
ぼ法(double crucible method
)により製造したものも用いることができる。第1図に
示したガラスファイバ1は円形断面(直径125μm)
を有するが断面は他の形状を呈してもよい。
A one-sided dish multimode glass fiber was formed by drawing from a preform using known methods. It should be noted that glass fiber here means a fiber of glass or quartz glass. The fiber is made of core glass and Talarad glass (not shown in Figure 1) with different refractive indices.
including. Alternatively, the fiber may have a refractive index that gradually changes from the inside to the outside, and the double crucible method can be used instead of drawing the fiber from a preform.
) can also be used. The glass fiber 1 shown in Fig. 1 has a circular cross section (diameter 125 μm).
, but the cross section may have other shapes.

ガラスファイバ1を形成した後すぐに、硬化性合成樹脂
組成物の層を設け、次で硬化し、それにより厚さ11μ
mの合成ゴムの緩衝層を形成した。
Immediately after forming the glass fiber 1, a layer of a curable synthetic resin composition is applied and then cured, thereby forming a thickness of 11 μm.
A synthetic rubber buffer layer of m was formed.

光ファイバに薄層を施す方法は米国特許第464489
8号明細書に開示されている。
A method for applying thin layers to optical fibers is described in U.S. Pat. No. 4,644,899.
It is disclosed in Specification No. 8.

硬化性合成樹脂組成物は、欧州特許出願第167199
号に開示されている如く主成分として(68重量%)次
式 (式中のnは平均値120を示す)に表されるポリエー
テルウレタンアクリレートを含む、該硬化性合成樹脂組
成物は更に次式、 で表わされる反応性モノマー2−フェノキシ−エチルプ
ロアクリレート(6重量%)及び次式で表わされるトリ
ピレングリコールジアクリレート(6重量%)、次式 で表わされる光感性開始剤2.2−ジメトキシ−2−フ
ェニル−アセトフェノン(2重量%)及び次式 で表わされるp−クロロベンゾフェノン−2−エトキシ
−エチルアクリレート(2重量%)を含む。
The curable synthetic resin composition is disclosed in European Patent Application No. 167199.
The curable synthetic resin composition, which contains polyether urethane acrylate represented by the following formula (n in the formula represents an average value of 120) as a main component (68% by weight) as disclosed in No. Reactive monomers 2-phenoxy-ethyl proacrylate (6% by weight) represented by the formula, tripylene glycol diacrylate (6% by weight) represented by the following formula, photosensitive initiator 2.2- Contains dimethoxy-2-phenyl-acetophenone (2% by weight) and p-chlorobenzophenone-2-ethoxy-ethyl acrylate (2% by weight) represented by the following formula.

また、該硬化性合成樹脂組成物は次式 に示す如くモル比にして1:1のモノ及びジ−2−アク
リロイルエトキシホスフェートの混合物を2重量%含む
0例えば、ポリシロキサンのような他の硬化性合成樹脂
組成物も本発明のガラスファイバの合成樹脂コーティン
グの緩衝層に用いるに適している。
The curable synthetic resin composition also contains 2% by weight of a mixture of mono- and di-2-acryloylethoxyphosphate in a molar ratio of 1:1 as shown in the following formula. The synthetic resin composition is also suitable for use in the buffer layer of the synthetic resin coating of the glass fiber of the present invention.

硬化性合成樹脂組成物を高圧水銀放電灯を用いて照射す
ることにより硬化させる。咳灯は、合成樹脂層で測定し
て最大0.5秒の間で、主に200〜400 no+の
波長及び0.27w/cm”の強度を有するUV光を発
する。硬化性合成樹脂組成物を他の方法、例えば電子放
射にさらすことにより硬化することができ、この方法に
おいては硬化性合成樹脂組成物は光感性開始剤を含むこ
とを要しない、硬化後、緩衝層の物質の弾性率は室温で
1.3 MPaであった。
The curable synthetic resin composition is cured by irradiating it with a high-pressure mercury discharge lamp. Cough lamps emit UV light with a wavelength of 200-400 no+ and an intensity of 0.27 w/cm'' for a maximum of 0.5 seconds measured at the synthetic resin layer.Curable synthetic resin composition can be cured by other methods, for example by exposure to electron radiation, in which the curable synthetic resin composition does not need to contain a photosensitive initiator, after curing the elastic modulus of the material of the buffer layer was 1.3 MPa at room temperature.

屈折率は1.4808であった。線膨張係数は一5°C
を超える温度で23xlO−’/’cであり一60’C
で10 X 10− ’/’Cまで温度が低くなるにつ
れ減少した。
The refractive index was 1.4808. The coefficient of linear expansion is -5°C
23xlO-'/'c at temperatures exceeding -60'C
It decreased as the temperature decreased to 10 × 10-'/'C.

次いで、硬化性合成樹脂組成物でファイバを被覆し、U
V光にさらすことにより硬化せしめることで合成樹脂3
の第2層を厚さ52μmでファイノくに適用した。かか
る第2N<第1合成樹脂コーティングの上部層)に適切
な、合成樹脂層には、次式 で示されるポリエステルウレタンアクリレート19.1
重量%、次式 で示されるイソシアヌレートトリアクリレート23.9
重量%、次式 で示される2、2−ジメトキシ−2−フェニル−アセト
フェノン4,5重量%、次式 で示されるエトキシル化ビスフェノールA ジアクリレ
ー)52.5重量%を含む。硬化後、かかる物質の弾性
率は−60”Cで1995 MPa、+20°Cで15
85MPa及び+80゛Cで501 MPaであった。
Next, the fiber is coated with a curable synthetic resin composition and U
Synthetic resin 3 is cured by exposing it to V light.
A second layer of 52 μm thick was applied to the fiber. The synthetic resin layer suitable for the second N<the upper layer of the first synthetic resin coating includes a polyester urethane acrylate 19.1 represented by the following formula.
Weight %, isocyanurate triacrylate of the following formula: 23.9
4.5% by weight of 2,2-dimethoxy-2-phenyl-acetophenone represented by the following formula, and 52.5% by weight of ethoxylated bisphenol A diacrylate represented by the following formula. After curing, the modulus of such material is 1995 MPa at -60"C and 15 at +20"C.
It was 501 MPa at 85 MPa and +80°C.

屈折率は20°Cで1.5279であった。ガラス転移
温度Tgは、約100°Cであった。線膨張係数は−5
’Cより低い温度で5X10−5/’Cであり、80°
Cで18X10−5/”Cの値まで温度が高くなるにつ
れて増大した。
The refractive index was 1.5279 at 20°C. The glass transition temperature Tg was about 100°C. The coefficient of linear expansion is -5
5X10-5/'C at a temperature lower than 'C and 80°
It increased with increasing temperature up to a value of 18X10-5/''C.

このように製造した光ファイバ、本例においては多モー
ドファイバを多数の試験に課して伝送損失を測定した。
The optical fiber thus manufactured, in this example a multimode fiber, was subjected to a number of tests to measure transmission loss.

圧縮試験は、0.5mの長さを有するファイバ片を2枚
の平坦な板の間に50 KPaの留め力(clampi
B force)で留めて行なった。2枚の板の1つに
よ、鋭い淵を有する12個のみぞが設けられていた。こ
のような条件下及び850 nmの光の波長で、オ例に
よるファイバは、−60°Cで0.38dB、 +20
°Cで0.19dB及び+80°Cで0.18dBの損
失増大を示した、 応力のかからない条件下では、温度及び張力に°おける
変化により生ずる伝送損失は室温と比較して一60°C
で0.2 dB/km、  55°C及び+80°Cで
0.056B/kmより小さい。
The compression test was performed by applying a clamping force of 50 KPa between a piece of fiber having a length of 0.5 m between two flat plates.
I held it in place (B force). One of the two plates had twelve grooves with sharp edges. Under these conditions and at a wavelength of light of 850 nm, the fiber according to the example is 0.38 dB at -60 °C, +20
Under unstressed conditions, the transmission loss caused by changes in temperature and tension at -60°C compared to room temperature showed a loss increase of 0.19 dB at +80°C and 0.18 dB at +80°C.
less than 0.2 dB/km at 55°C and 0.056B/km at +80°C.

ス1」し口LΣl 単一モードファイバを用いる以外は、実施例1に記載し
た方法と同様にして光ファイバを製造し、被覆した。各
々緩衝層の厚さは12又は19μmで上部層の厚さは5
0又は43μmであった。
An optical fiber was manufactured and coated in the same manner as described in Example 1, except that a single mode fiber was used. The thickness of the buffer layer is 12 or 19 μm, respectively, and the thickness of the upper layer is 5 μm.
It was 0 or 43 μm.

応力のかからない条件下では、温度及び張力における変
化により生ずる伝送損失は室温と比較して13.00 
nmの光の波長で測定して一60°C及び80°Cで0
.0 dB/kmであった。
Under unstressed conditions, the transmission loss caused by changes in temperature and tension is 13.00 compared to room temperature.
Measured at the wavelength of light of nm - 0 at 60°C and 80°C
.. It was 0 dB/km.

横方向の力に課する前の光ファイバの怒度を、直径0.
5 mのシリンダーに150mの光ファイバを巻き取る
ことにより測定した。該シリンダーはやすり紙(No、
120)で被われている。巻き上げ力は2Nであった。
The strength of the optical fiber before being subjected to a lateral force is set to a diameter of 0.
Measurements were made by winding 150 m of optical fiber into a 5 m cylinder. The cylinder is covered with sandpaper (No.
120). The winding force was 2N.

かかる処置の結果としての伝送損失の増加は1300n
m及び1500nmの光の波長で0.1 dB/km、
1700nmで0.6dB/kmであり、緩衝層の厚み
は両方とも12nm及び19nmであった。
The increase in transmission loss as a result of such treatment is 1300n
m and 0.1 dB/km at a wavelength of light of 1500 nm,
It was 0.6 dB/km at 1700 nm, and the buffer layer thicknesses were both 12 nm and 19 nm.

ス新11支 緩衝層の厚みが8μmで上部層の厚みが55μmである
以外は実施例1に記載した方法と同様にして光ファイバ
を製造し、被覆した。上部層は、次式 で示めされるポリエステルウレタンアクリレート10重
量%、次式′ で示されるイソシアヌレートトリアクリレート18重量
%、次式 で示されるエポキシアクリレート10重量%、次式)I
n で示される1−ヒドロキシシクロへキシルフェニルケト
ン4重量%、及び次式 で示されるエトキシレートビスフェノール−Aジアクリ
レート58重量%から成る硬化性合成樹脂組成物から製
造した。硬化後、かかる物質の弾性率は室温で1420
MPaであった。
An optical fiber was produced and coated in the same manner as described in Example 1, except that the thickness of the buffer layer was 8 μm and the thickness of the upper layer was 55 μm. The upper layer consists of 10% by weight of polyester urethane acrylate represented by the following formula, 18% by weight of isocyanurate triacrylate represented by the following formula', 10% by weight of epoxy acrylate represented by the following formula, and 10% by weight of epoxy acrylate represented by the following formula) I
A curable synthetic resin composition was prepared from 4% by weight of 1-hydroxycyclohexylphenylketone represented by n and 58% by weight of ethoxylate bisphenol-A diacrylate represented by the following formula. After curing, the elastic modulus of such material is 1420 at room temperature.
It was MPa.

止奴五土 緩衝層を適用しないこと以外は実施例1に記載した方法
で単一モード光ファイバを製造した。
A single mode optical fiber was manufactured by the method described in Example 1, except that the Tonko-Goto buffer layer was not applied.

応力のかからない条件下では、温度変化により生ずる伝
送損失は室温と比較して1300nmの光の波長で測定
して一60°C及び80゛Cで0.0 dB/kmであ
った。
Under stress-free conditions, the transmission loss caused by temperature changes was 0.0 dB/km at -60°C and 80°C, measured at a wavelength of light of 1300 nm, compared to room temperature.

横方向荷重感度(transverse−1oad 5
ensitivity)をやすり紙試験により測定した
。伝送損失の増加は、1300nmの光の波長で1..
3 dB/km  、1550nmで2.0 dB/k
m及び1700nmで3.1 dB/kmであった。
Transverse load sensitivity (transverse-1oad 5
sensitivity) was measured by the emery paper test. The increase in transmission loss is 1. at a wavelength of 1300 nm. ..
3 dB/km, 2.0 dB/k at 1550 nm
m and 3.1 dB/km at 1700 nm.

本比較例において、光ファイバの温度感度(tempa
ratuve 5ensitivity)は小さいが、
横方向荷重感度は大きく望ましくない。
In this comparative example, the temperature sensitivity (tempa
5 sensitivity) is small, but
The lateral load sensitivity is large and undesirable.

土較且1反墾主 多モードファイバを実施例1に記載した方法で製造した
。各々、緩衝層の厚さは27又は35μmで上部層の厚
さは36又は27μmであった。
A single-layer multimode fiber was prepared as described in Example 1. The thickness of the buffer layer was 27 or 35 μm and the thickness of the top layer was 36 or 27 μm, respectively.

35μmの緩衝層を有するファイバを実施例1に記載し
た圧縮試験に課した場合、伝送損失は室温で0.05d
Bで光の波長は850 nmであった。
When a fiber with a 35 μm buffer layer is subjected to the compression test described in Example 1, the transmission loss is 0.05 d at room temperature.
In B, the wavelength of light was 850 nm.

応力のかからない条件下では、温度変化により生ずる伝
送損失は室温と比較して一60°C及び850nmの光
の波長で、27μmの緩衝層を有する光ファイバに関し
ては1.0dB/kmで35μmの緩衝層を有するファ
イバに関しては、10dB/Kmより大きくなった。更
に、両方のファイバとも、+80’Cの温度で0.05
dB/kmより小さい伝送損失を有した。
Under stress-free conditions, the transmission loss caused by temperature changes is -35 μm buffer at 1.0 dB/km for an optical fiber with a 27 μm buffer layer at -60°C and a wavelength of light of 850 nm compared to room temperature. For fibers with layers, it was greater than 10 dB/Km. Furthermore, both fibers have a temperature of 0.05 at +80'C.
It had a transmission loss of less than dB/km.

荷重悪魔は小さいが、本比較例のファイバは温度変化、
特に冷却に対してはかなりの程度感度が高く望ましくな
い。
Although the load resistance is small, the fiber of this comparative example is sensitive to temperature changes,
In particular, it is undesirably highly sensitive to cooling.

此ぷ1口」υys 単一モードファイバを実施例1に記載の方法で製造した
。各々緩衝層の厚さは24又は33μm、上部層の厚さ
は39又は30μmであった。
This single-mode fiber was manufactured by the method described in Example 1. The thickness of the buffer layer was 24 or 33 μm, respectively, and the thickness of the top layer was 39 or 30 μm.

33μmの緩衝層を有するファイバの横方向荷重感度を
やすり紙により測定した。伝送損失の増加は1300又
は1550nmの光の波長で0.05dB/kmより小
さく、1700nmで0.1 dB/kmであった。
The lateral load sensitivity of the fiber with a 33 μm buffer layer was measured with emery paper. The increase in transmission loss was less than 0.05 dB/km at wavelengths of light of 1300 or 1550 nm, and 0.1 dB/km at 1700 nm.

応力のかからない条件下では、温度変化により生ずる伝
送損失は室温と比較して一60゛c及び1300nmの
光の波長で24μmの緩衝層を有するファイバに関して
は0.8 dB/kmで33μmの緩衝層を有するファ
イバに関しては4 dB/kmより大きかった。
Under unstressed conditions, the transmission loss caused by temperature changes is 0.8 dB/km compared to room temperature for a fiber with a 24 μm buffer layer at wavelengths of light of -60 °C and 1300 nm for a 33 μm buffer layer. was greater than 4 dB/km for fibers with .

荷重悪魔は小さいが、本比較例のファイバは温度変化、
特に冷却に対してはかなりの程度感度が高く望ましくな
い。
Although the load resistance is small, the fiber of this comparative example is sensitive to temperature changes,
In particular, it is undesirably highly sensitive to cooling.

止較拠旦 多モードファイバを実施例1に記載した方法で製造した
。緩衝層の厚さは33μm、上部層の厚さは32μmで
あった。緩衝層を市場で入手し得る合成樹脂組成物、デ
ソ) (Desoto)社製のデソライト(Deso 
1 i te) 039■より製造し、上部層をデッド
社製のデソライト042■より製造した。両方の合成樹
脂組成物とも光感性開始剤を含む。硬化後、デソライト
042■の弾性率は一60°Cで1585 MPa、 
+20゛Cで398MPa及び+80°Cで13 MP
aであった。
A static multimode fiber was manufactured as described in Example 1. The thickness of the buffer layer was 33 μm, and the thickness of the top layer was 32 μm. A commercially available synthetic resin composition for the buffer layer is Desolite (Deso) manufactured by Desoto.
1 ite) 039■, and the upper layer was manufactured from Desolite 042■ manufactured by DEAD. Both synthetic resin compositions contain a photosensitive initiator. After curing, the elastic modulus of Desolite 042■ is 1585 MPa at -60°C.
398 MPa at +20°C and 13 MPa at +80°C
It was a.

応力のかからない条件下では、温度変化により生ずる伝
送損失は室温と比較して、850 nmの光の波長で一
60゛Cで0.1 dB/km及び+80゛Cで0.0
5dB/kmより小さかった。
Under stress-free conditions, the transmission loss caused by temperature changes is 0.1 dB/km at -60°C and 0.0 at +80°C at a wavelength of 850 nm light compared to room temperature.
It was smaller than 5dB/km.

実施例1に記載した圧縮試験において、850 nmの
光の波長で、伝送損失は一60°Cで0.69dB、+
20°Cで0.21dB及び+80°Cで0.37dB
であった。本比較例のファイバは機械的荷重にかなり感
度が高(望ましくない。
In the compression test described in Example 1, at a wavelength of light of 850 nm, the transmission loss was 0.69 dB at -60°C, +
0.21dB at 20°C and 0.37dB at +80°C
Met. The fiber of this comparative example is quite sensitive to mechanical loading (undesirable).

且較±ユ 単一モード光ファイバを比較例6に記載した合成樹脂組
成物により製造した。緩衝層の厚さは32μmで上部層
の厚さは33μmであった。
A comparative single mode optical fiber was manufactured from the synthetic resin composition described in Comparative Example 6. The thickness of the buffer layer was 32 μm and the thickness of the top layer was 33 μm.

応力のかからない条件下では、温度変化により生ずる伝
送損失は室温と比較して、1300nmの光の波長で一
60″Cで0.05dB/kmより小さく、+80”C
で0.0 dB/kmであった。
Under stress-free conditions, the transmission loss caused by temperature changes is less than 0.05 dB/km at -60"C and +80"C at a wavelength of 1300nm light compared to room temperature.
It was 0.0 dB/km.

光ファイバの横方向荷重感度をやすり紙(abrsiν
epapen)試験により測定した。伝送損失の増加は
、1300nmの光の波長で1.3 dB/km 、 
1550nmで2.7 dB/km 、 1700nm
で5.5 dB/kmであった。本比較例のファイバは
横方向荷重に対して極めて感度が高かった。
The lateral load sensitivity of the optical fiber is measured using sandpaper (abrsiν
epapen) test. The increase in transmission loss is 1.3 dB/km at a wavelength of 1300 nm,
2.7 dB/km at 1550nm, 1700nm
It was 5.5 dB/km. The fiber of this comparative example was extremely sensitive to lateral loads.

機械的荷重に対する大きな抵抗力及び温度変化に対する
高い無感度性を有する光ファイバは高い弾性率を有する
上部層と薄くなくてはならないが存在がなくてはならな
い軟緩衝層から成る合成樹脂コーティングを用いること
によってのみ得られことが上記例より明らかである。臨
界厚みは緩衝層と上部層の間の熱膨張差に左右され、超
過してはならない。
Optical fibers with high resistance to mechanical loads and high insensitivity to temperature changes use synthetic resin coatings consisting of an upper layer with a high elastic modulus and a soft buffer layer that must be thin but must be present. It is clear from the above example that this can only be obtained by The critical thickness depends on the differential thermal expansion between the buffer layer and the top layer and must not be exceeded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の光ファイバの断面図である。 1・・・ガラスファイバ  2・・・緩衝層3・・・第
2合成樹脂層
FIG. 1 is a cross-sectional view of the optical fiber of the present invention. 1... Glass fiber 2... Buffer layer 3... Second synthetic resin layer

Claims (1)

【特許請求の範囲】 1、ガラスファイバ、0.1〜10MPaの弾性率を有
する合成ゴムの第1外皮層及び第1層より大きな弾性率
を有する次の合成樹脂外皮層から成る合成樹脂コーティ
ングを備えた光ファイバにおいて、第1層の厚みが5〜
20μmで第2層の弾性率が1000MPa以上である
ことを特徴とする合成樹脂コーティングを備えた光ファ
イバ。 2、請求項1に記載のファイバを製造するに当り、両層
を硬化性合成樹脂組成物から形成し、これを光ファイバ
を線引きした後直ちに適用し、UV光又は電子にさらす
ことにより硬化させることを特徴とする合成樹脂コーテ
ィングを備えた光ファイバの製造方法。 3、第2の固い層をエトキシル化ビスフェノール−Aジ
アクリレート、イソシアヌレートトリアクリレート及び
少なくともポリウレタンアクリレートを含む硬化性樹脂
組成物から形成することを特徴とする請求項2記載の方
法。 4、第1軟層を少なくとも一種のポリエーテルウレタン
アクリレートを含む硬化性合成樹脂組成物から形成する
ことを特徴とする請求項2記載の方法。
[Claims] 1. A synthetic resin coating consisting of a glass fiber, a first outer skin layer of synthetic rubber having an elastic modulus of 0.1 to 10 MPa, and a next synthetic resin outer skin layer having an elastic modulus greater than that of the first layer. In the optical fiber provided, the thickness of the first layer is 5~
An optical fiber provided with a synthetic resin coating, characterized in that the elastic modulus of the second layer is 1000 MPa or more at 20 μm. 2. In manufacturing the fiber according to claim 1, both layers are formed from a curable synthetic resin composition, which is applied immediately after drawing the optical fiber and cured by exposure to UV light or electrons. A method for manufacturing an optical fiber with a synthetic resin coating, characterized in that: 3. The method of claim 2, wherein the second hard layer is formed from a curable resin composition comprising an ethoxylated bisphenol-A diacrylate, an isocyanurate triacrylate, and at least a polyurethane acrylate. 4. The method according to claim 2, wherein the first soft layer is formed from a curable synthetic resin composition containing at least one type of polyether urethane acrylate.
JP63252936A 1987-10-08 1988-10-08 Optical fiber with synthetic resin coating and manufacture thereof Pending JPH01133011A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8702395 1987-10-08
NL8702395A NL8702395A (en) 1987-10-08 1987-10-08 OPTICAL FIBER FITTED WITH A PLASTIC COVER.

Publications (1)

Publication Number Publication Date
JPH01133011A true JPH01133011A (en) 1989-05-25

Family

ID=19850721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63252936A Pending JPH01133011A (en) 1987-10-08 1988-10-08 Optical fiber with synthetic resin coating and manufacture thereof

Country Status (6)

Country Link
US (1) US4904051A (en)
EP (1) EP0311186B1 (en)
JP (1) JPH01133011A (en)
CN (1) CN1023472C (en)
DE (1) DE3880775T2 (en)
NL (1) NL8702395A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323161A (en) * 1992-05-20 1993-12-07 Sumitomo Electric Ind Ltd Glass fiber for optical transmission
JP2003519076A (en) * 1999-12-30 2003-06-17 コーニング インコーポレイテッド Secondary coating composition for optical fibers
US7706659B2 (en) 2000-11-22 2010-04-27 Dsm Ip Assets B.V. Coated optical fibers
JP2016098127A (en) * 2014-11-19 2016-05-30 Jsr株式会社 Liquid curable resin composition for secondary coat layer for optical fiber element wire

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962992A (en) * 1989-05-15 1990-10-16 At&T Bell Laboratories Optical transmission media and methods of making same
US5062685A (en) * 1989-10-11 1991-11-05 Corning Incorporated Coated optical fibers and cables and method
DE3935777A1 (en) * 1989-10-27 1991-05-02 Rheydt Kabelwerk Ag Irradiation of optical fibre coating - using UV lamps focused by elliptical reflectors
US5182784A (en) * 1991-07-19 1993-01-26 Owens-Corning Fiberglas Technology, Inc. Optical fiber or filament reinforcement coating
KR0134762B1 (en) * 1992-05-20 1998-04-23 쿠라우찌 노리타카 Light transmitting glass fiber
US6379794B1 (en) * 1992-06-17 2002-04-30 Ppg Industries Ohio, Inc. Acrylic impregnant for fibers
US6472450B2 (en) * 1995-03-13 2002-10-29 Dsm N.V. Radiation-curable optical fiber coating composition
AU703184B2 (en) * 1995-03-13 1999-03-18 Dsm Ip Assets B.V. Radiation curable optical fiber coating composition
US6240230B1 (en) * 1997-03-06 2001-05-29 Dsm N.V. Protective materials for optical fibers which do not substantially discolor
US5761363A (en) * 1996-03-07 1998-06-02 Siecor Corporation Optical fiber ribbon which is strippable and peelable
DE29607239U1 (en) * 1996-04-23 1996-06-05 J & M Analytische Mess & Regeltechnik Gmbh Capillary holder
FR2764994B1 (en) * 1997-06-19 1999-08-06 Alsthom Cge Alcatel OPTICAL CONDUCTOR AND OPTICAL CONDUCTOR TAPE
US6775451B1 (en) 1999-12-30 2004-08-10 Corning Incorporated Secondary coating composition for optical fibers
US6377724B1 (en) * 2000-03-22 2002-04-23 Corning, Incorporated Optical component coating
US6579914B1 (en) 2000-07-14 2003-06-17 Alcatel Coating compositions for optical waveguides and optical waveguides coated therewith
US6584263B2 (en) 2000-07-26 2003-06-24 Corning Incorporated Optical fiber coating compositions and coated optical fibers
EP1209132A1 (en) 2000-11-22 2002-05-29 Dsm N.V. Coated optical fibers, primary coating composition, method for curing, as well as an assembly and a method for measuring
AU2002225536A1 (en) 2000-12-29 2002-07-16 Dsm Ip Assets B.V. Non-crystal-forming oligomers for use in radiation-curable fiber optic coatings
KR100889698B1 (en) * 2001-02-20 2009-03-24 스미토모덴키고교가부시키가이샤 Coated optical fiber, optical fiber tape core using it and optical fiber unit
US6707977B2 (en) 2001-03-15 2004-03-16 Corning Incorporated All fiber polarization mode dispersion compensator
WO2003091177A1 (en) 2002-04-24 2003-11-06 Pirelli & C. S.P.A. Optical fiber with reduced attenuation loss
WO2003091346A1 (en) 2002-04-24 2003-11-06 Dsm Ip Assets B.V. Radiation curable coating composition for optical fiber with reduced attenuation loss
WO2003091781A1 (en) * 2002-04-24 2003-11-06 Pirelli & C. S.P.A. Method for controlling microbending induced attenuation losses in an optical fiber
KR100537177B1 (en) * 2002-06-10 2005-12-20 주식회사 씨씨텍 UV Curable Resin Composition for Optical Fiber Cable Strength Member
FR2858067B1 (en) * 2003-07-25 2005-10-14 France Telecom OPTICAL FIBER MICRO-CABLE STRUCTURE ADAPTED FOR PUSH-PUSHING IN A MICRO-CONDUCT
AU2003304518B2 (en) * 2003-09-30 2010-09-09 Prysmian Cavi E Sistemi Energia S.R.L. Telecommunication loose tube optical cable with reduced diameter
ATE466304T1 (en) 2003-12-04 2010-05-15 Draka Fibre Technology Bv OPTICAL FIBER
WO2008015386A2 (en) * 2006-07-29 2008-02-07 Emtelle Uk Limited Signal transmitting cable
ATE498595T1 (en) 2006-12-14 2011-03-15 Dsm Ip Assets Bv D1364 BT SECONDARY COATING FOR OPTICAL FIBERS
US20080226912A1 (en) * 2006-12-14 2008-09-18 Norlin Tyson Dean D1365 bj radiation curable primary coating for optical fiber
CN101535201B (en) * 2006-12-14 2012-06-27 帝斯曼知识产权资产管理有限公司 D1370 r radiation curable secondary coating for optical fiber
ATE514728T1 (en) * 2006-12-14 2011-07-15 Dsm Ip Assets Bv D1381 SUPER COATINGS FOR OPTICAL FIBERS
WO2008133668A2 (en) * 2006-12-14 2008-11-06 Dsm Ip Assets B.V. D1369 d radiation curable secondary coating for optical fiber
US20080226911A1 (en) * 2006-12-14 2008-09-18 Xiaosong Wu D1378 ca radiation curable primary coating for optical fiber
US20080226916A1 (en) * 2006-12-14 2008-09-18 Paulus Antonius Maria Steeman D1363 bt radiation curable primary coatings on optical fiber
JP2010509452A (en) * 2006-12-14 2010-03-25 ディーエスエム アイピー アセッツ ビー.ブイ. Radiation curable primary coating on D1379P optical fiber
CN101535198B (en) * 2006-12-14 2012-06-27 帝斯曼知识产权资产管理有限公司 D1368 CR radiation curable primary coating for optical fiber
EP2206001B1 (en) * 2007-11-09 2014-04-16 Draka Comteq B.V. Microbend- resistant optical fiber
US8041168B2 (en) * 2007-11-09 2011-10-18 Draka Comteq, B.V. Reduced-diameter ribbon cables with high-performance optical fiber
US8031997B2 (en) * 2007-11-09 2011-10-04 Draka Comteq, B.V. Reduced-diameter, easy-access loose tube cable
US8145026B2 (en) * 2007-11-09 2012-03-27 Draka Comteq, B.V. Reduced-size flat drop cable
US8041167B2 (en) * 2007-11-09 2011-10-18 Draka Comteq, B.V. Optical-fiber loose tube cables
US8165439B2 (en) * 2007-11-09 2012-04-24 Draka Comteq, B.V. ADSS cables with high-performance optical fiber
US8081853B2 (en) * 2007-11-09 2011-12-20 Draka Comteq, B.V. Single-fiber drop cables for MDU deployments
US8467650B2 (en) * 2007-11-09 2013-06-18 Draka Comteq, B.V. High-fiber-density optical-fiber cable
PL2344911T3 (en) * 2008-11-07 2015-10-30 Draka Comteq Bv Reduced-diameter optical fiber
CN103185917A (en) * 2011-12-27 2013-07-03 鸿富锦精密工业(深圳)有限公司 Optical fiber and manufacturing method thereof
US9383511B2 (en) 2013-05-02 2016-07-05 Corning Incorporated Optical fiber with large mode field diameter and low microbending losses
CN105150652A (en) * 2015-08-19 2015-12-16 无锡市富仕德特种玻璃纤维有限公司 Crease-free optical fiber membrane
US10852473B2 (en) * 2016-07-29 2020-12-01 Draka Comteq France Reduced diameter optical fiber and manufacturing method
CN110304821A (en) * 2019-07-16 2019-10-08 成都中住光纤有限公司 A kind of small diameter fiber and its manufacturing method of low attenuation change
EP3779537A3 (en) * 2019-08-13 2021-06-09 Sterlite Technologies Limited Reduced diameter optical fibre
EP3816686A3 (en) * 2019-10-30 2021-07-14 Sterlite Technologies Limited Ultra reduced diameter optical fibre

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132542A (en) * 1984-11-22 1986-06-20 Fujitsu Ltd Coating of optical fiber
JPS6227710A (en) * 1985-07-23 1987-02-05 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Optical glass fiber having synthetic resin coating and hardening elastomer forming material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2729648A1 (en) * 1977-06-30 1979-01-04 Siemens Ag TENSION-RESISTANT LIGHT WAVE GUIDE
US4239335A (en) * 1978-08-28 1980-12-16 Sea-Log Corporation Fiber reinforced optical fiber cable
US4763981A (en) * 1981-03-02 1988-08-16 The United States Of America As Represented By The Secretary Of The Navy Ultimate low-loss electro-optical cable
DE3147137A1 (en) * 1981-11-27 1983-06-01 Siemens AG, 1000 Berlin und 8000 München Optical transmission element having a fibrous optical waveguide and process for its production
NL8303252A (en) * 1983-09-22 1985-04-16 Philips Nv OPTICAL GLASS FIBER WITH A FIRST AND A SECOND COVER.
NL8400727A (en) * 1984-03-07 1985-10-01 Philips Nv OPTICAL GLASS FIBER PROVIDED WITH A PLASTIC COATING AND METHOD FOR THE MANUFACTURE THEREOF.
NL8401981A (en) * 1984-06-22 1986-01-16 Philips Nv OPTICAL GLASS FIBER PROVIDED WITH A PLASTIC COATING AND METHOD FOR THE MANUFACTURE THEREOF.
NL8401982A (en) * 1984-06-22 1986-01-16 Philips Nv OPTICAL GLASS FIBER FITTED WITH A PLASTIC COVER.
NL8403179A (en) * 1984-10-18 1986-05-16 Philips Nv METHOD FOR MANUFACTURING AN OPTICAL FIBER INCLUDING A PLASTIC COATING AND OPTICAL FIBER WITH PLASTIC COATING MADE BY THE METHOD
NL8502402A (en) * 1985-09-03 1987-04-01 Philips Nv OPTICAL FIBER PROVIDED WITH A PLASTIC COATING, AND METHOD AND APPARATUS FOR MANUFACTURING SUCH OPTICAL FIBER.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132542A (en) * 1984-11-22 1986-06-20 Fujitsu Ltd Coating of optical fiber
JPS6227710A (en) * 1985-07-23 1987-02-05 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Optical glass fiber having synthetic resin coating and hardening elastomer forming material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323161A (en) * 1992-05-20 1993-12-07 Sumitomo Electric Ind Ltd Glass fiber for optical transmission
JP2003519076A (en) * 1999-12-30 2003-06-17 コーニング インコーポレイテッド Secondary coating composition for optical fibers
JP4958360B2 (en) * 1999-12-30 2012-06-20 コーニング インコーポレイテッド Secondary coating composition for optical fiber
US7706659B2 (en) 2000-11-22 2010-04-27 Dsm Ip Assets B.V. Coated optical fibers
US7865055B2 (en) 2000-11-22 2011-01-04 Dsm Ip Assets B.V. Coated optical fibers
US7886612B2 (en) 2000-11-22 2011-02-15 Dsm Ip Assets B.V. Coated optical fibers
JP2016098127A (en) * 2014-11-19 2016-05-30 Jsr株式会社 Liquid curable resin composition for secondary coat layer for optical fiber element wire

Also Published As

Publication number Publication date
CN1023472C (en) 1994-01-12
CN1033982A (en) 1989-07-19
NL8702395A (en) 1989-05-01
EP0311186B1 (en) 1993-05-05
DE3880775T2 (en) 1993-11-11
DE3880775D1 (en) 1993-06-09
US4904051A (en) 1990-02-27
EP0311186A1 (en) 1989-04-12

Similar Documents

Publication Publication Date Title
JPH01133011A (en) Optical fiber with synthetic resin coating and manufacture thereof
US4690503A (en) Glass optical fiber having a primary and a secondary coating
US4733941A (en) Optical fibre comprising a synthetic resin cladding and method of and device for manufacturing such an optical fibre
US5644670A (en) Broad bandwidth optical fibers, jacketed optical fibers and optical fiber cords
KR100321507B1 (en) Optical fiber element and method of making
AU608420B2 (en) Polymer claddings for optical fibre waveguides
JPH085879A (en) Optical fiber ribbon
US4682850A (en) Optical fiber with single ultraviolet cured coating
JPH06510316A (en) Curable coating composition and optical fiber comprising the same
US4741597A (en) Method of manufacturing an optical fibre having a synthetic resin coating and optical fibre having a synthetic resin coating manufactured according to the method
US4758447A (en) Method of manufacturing an optical fibre
US6004675A (en) Optical glass fiber
JP7370995B2 (en) Optical fiber core wire and optical fiber cable
JP3518089B2 (en) Broadband optical fiber, its core, cord, and optical fiber with connector, cord
Bouten et al. Doubly coated optical fibres with a low sensitivity to temperature and microbending
JPS6057811A (en) Manufacture of plastic optical fiber cord
JPH0629888B2 (en) Coated optical fiber
KR0142676B1 (en) Polymer claddings for optical fibre waveguides
JPH0425685Y2 (en)
JPH0643345A (en) Coated optical fiber
KR910005554B1 (en) Plastic-coated optical transmission fiber and an estimating method thereof
JPH08129119A (en) Optical fiber
JPH09138330A (en) High-strength optical fiber cord
JPH03163505A (en) Coated optical fiber
Sarkar et al. High performance UV-cured optical fiber primary coating