JPH05323161A - Glass fiber for optical transmission - Google Patents

Glass fiber for optical transmission

Info

Publication number
JPH05323161A
JPH05323161A JP4151180A JP15118092A JPH05323161A JP H05323161 A JPH05323161 A JP H05323161A JP 4151180 A JP4151180 A JP 4151180A JP 15118092 A JP15118092 A JP 15118092A JP H05323161 A JPH05323161 A JP H05323161A
Authority
JP
Japan
Prior art keywords
coating
optical transmission
fiber
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4151180A
Other languages
Japanese (ja)
Inventor
Kazumasa Oishi
和正 大石
Nobuhiro Akasaka
伸宏 赤坂
Tatsuya Tsunoda
樹哉 角田
Wataru Katsurajima
渉 桂島
Hiroo Matsuda
裕男 松田
Shigeru Tomita
茂 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4151180A priority Critical patent/JPH05323161A/en
Priority to FI932225A priority patent/FI113093B/en
Priority to KR1019930008385A priority patent/KR0134762B1/en
Priority to ES93108100T priority patent/ES2089633T3/en
Priority to DE69301761T priority patent/DE69301761T2/en
Priority to CA002096451A priority patent/CA2096451C/en
Priority to AU38610/93A priority patent/AU674844B2/en
Priority to EP93108100A priority patent/EP0570917B1/en
Priority to NO931823A priority patent/NO308875B1/en
Priority to US08/063,788 priority patent/US5422182A/en
Publication of JPH05323161A publication Critical patent/JPH05323161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To provide a thin film-coated optical fiber having the almost same light transmission characteristics and fiber strength as a conventional coated optical fiber and to realize high-density optical fiber. CONSTITUTION:This glass fiber for optical transmission has a UV-curing resin coating layer around a glass fiber 1 for optical transmission. The outermost layer 3 consists of such resin satisfying [elongation (%)/Young's modulus (kg/mm<2>)]>=0.2 and is formed to have <=200mum diameter. More preferably, the Young's modulus of the outermost layer 3 is >=100kg/mm<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信に用いる光伝送
用ガラスファイバにおいて、特に優れた光伝送特性及び
ファイバ強度を有する光伝送用ガラスファイバ、特に薄
肉被覆光伝送用ガラスファイバ(被覆径:200μm以
下)に関するものである。特に、本発明は、樹脂被覆光
ファイバにおいての被覆樹脂の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission glass fiber used for optical communication, and particularly to an optical transmission glass fiber having excellent optical transmission characteristics and fiber strength, particularly a thin-walled optical transmission glass fiber (coating diameter). : 200 μm or less). In particular, the present invention relates to improvement of coating resin in resin-coated optical fibers.

【0002】[0002]

【従来の技術】光伝送用ガラスファイバ(光ガラスファ
イバ)は、線引されたままの状態では機械的特性や光伝
送特性を維持していく上で問題があるため、その外周に
高分子材料等の被覆層を設けている。
2. Description of the Related Art A glass fiber for optical transmission (optical glass fiber) has a problem in maintaining mechanical characteristics and optical transmission characteristics in the as-drawn state. And the like.

【0003】その材料は、生産性の観点から紫外線硬化
型樹脂(以下、UV樹脂という)が一般に用いられてい
る。その被覆は、一般に2層構造となっており、内層と
して比較的柔らかい緩衝層(被覆径:約200μmφ、
ヤング率:0.1〜0.2kg/mm2 程度)が設けら
れ、更にその外周に硬い保護層(被覆径:約250μm
φ程度、ヤング率:30〜100kg/mm2 )が施さ
れている。
As the material, an ultraviolet curable resin (hereinafter referred to as UV resin) is generally used from the viewpoint of productivity. The coating generally has a two-layer structure, and a relatively soft buffer layer (coating diameter: about 200 μmφ, as an inner layer,
Young's modulus: about 0.1 to 0.2 kg / mm 2 ) is provided, and a hard protective layer (coating diameter: about 250 μm) is provided on the outer periphery thereof.
φ, Young's modulus: 30 to 100 kg / mm 2 ).

【0004】ところで、近年、電話網の光化を進めるに
当たり、ケーブルのさらなる高密度化が必要とされてい
る。複数本のUV樹脂被覆光ファイバを平行に束ね、共
通のUV樹脂被覆で結合したテープ状光ガラスファイバ
を集合したテープスロット型ケーブルにおいては、従来
ファイバの被覆外径(:250μmφ程度)のままでの
高密度化はもはや限界であり、被覆の薄肉化(最外層の
被覆径200μmφ以下)が進められている。
By the way, in recent years, in order to promote the opticalization of telephone networks, it is necessary to further increase the density of cables. In a tape slot type cable in which a plurality of UV resin-coated optical fibers are bundled in parallel and a tape-shaped optical glass fiber combined by a common UV resin coating is assembled, the conventional fiber coating outer diameter (about 250 μmφ) remains unchanged. There is no limit to increasing the density of the coating, and thinning of the coating (coating diameter of the outermost layer of 200 μmφ or less) is being promoted.

【0005】ところが、最外層の被覆材として従来のU
V樹脂(ヤング率:30〜100kg/mm2 )を用い
た薄肉被覆光ファイバ(被覆外径200μmφ以下)で
は、その被覆層の薄さの故に、耐側圧特性の極端な低下
が生じている。
However, as a coating material for the outermost layer, the conventional U
In a thin-coated optical fiber (Coating outer diameter of 200 μmφ or less) using V resin (Young's modulus: 30 to 100 kg / mm 2 ), the lateral pressure resistance is extremely lowered due to the thinness of the coating layer.

【0006】そこで、薄肉被覆光ファイバ(被覆外径2
00μmφ以下)においては、側圧特性を向上させるた
めに、最外層に用いられるUV樹脂の超高ヤング率化が
図られている。これにより、従来の被覆光ファイバ(被
覆外径250μmφ程度)並みの耐側圧特性を維持して
いる。なお、ここで言う側圧特性とは、ファイバに外側
(側圧)を加えた時、ファイバに微小な曲げが生じ、そ
の結果として光伝送損失が増加する、この一連の特性で
ある。
Therefore, a thin-walled coated optical fiber (coated outer diameter 2
In the case of 00 μmφ or less), the UV resin used for the outermost layer has an ultra-high Young's modulus in order to improve lateral pressure characteristics. As a result, the lateral pressure resistance characteristic equivalent to that of the conventional coated optical fiber (coated outer diameter of about 250 μmφ) is maintained. It should be noted that the lateral pressure characteristic referred to here is a series of characteristics in which a slight bending occurs in the fiber when the outside (lateral pressure) is applied to the fiber, and as a result, the optical transmission loss increases.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、最外層
に超高ヤング率(100kg/mm2 以上)のUV樹脂
被覆を施した薄肉被覆光ファイバ(被覆外径200μm
以下)では、光伝送特性の悪化、更にはスクリーニング
破断強度の低下を招いている。これは、最外層に用いた
UV樹脂のヤング率が高く、且つ伸び特性が極めて小さ
い(6%程度)ために、
However, a thin-walled optical fiber whose outermost layer is coated with a UV resin having an ultra-high Young's modulus (100 kg / mm 2 or more) (outer diameter of 200 μm)
In the following), the optical transmission characteristics are deteriorated and the screening rupture strength is reduced. This is because the UV resin used for the outermost layer has a high Young's modulus and the elongation property is extremely small (about 6%).

【0008】 被覆表面の傷が曲げ応力によりクラッ
クとなり易く、最外層被覆が座屈を起こし、ガラス部に
不均質歪みを与え、光伝送特性を悪化させる。 また、そのクラックの成長により、スクリーニング
時に容易に破断する。 と考えられている。
The scratches on the surface of the coating are apt to be cracks due to bending stress, the outermost layer coating is buckled, and non-uniform strain is given to the glass portion, deteriorating the optical transmission characteristics. Further, the growth of the cracks easily breaks during screening. It is believed that.

【0009】ここで、スクリーニングとは、ファイバ全
長に定張力を与えることにより、長手方向の最低強度を
保証する試験である。また、伸びとは、引張試験におい
て試験片が破断するまでに、試験片の標点間に生じた伸
びと原標点距離との比の百分率のことである。
Here, the screening is a test for guaranteeing the minimum strength in the longitudinal direction by applying a constant tension to the entire length of the fiber. Elongation is the percentage of the ratio of the elongation between the gauge points of the test piece to the original gauge point distance before the test piece breaks in the tensile test.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために種々検討の結果、最外層の被覆樹脂の
物性、特に〔伸び(%)÷ヤング率(kg/mm2 )〕
の値が、光伝送特性に大きく影響すること、つまり、薄
肉被覆ファイバ(被覆外径200μmφ以下)において
は、この値を0.2以上とすることにより、光伝送特性
を良好に維持し、スクリーニング強度を向上できること
を見出し、これにより本発明の新規な光伝送用ガラスフ
ァイバに到達できたのである。
Means for Solving the Problems As a result of various investigations for solving the above problems, the present inventors have found that the physical properties of the coating resin for the outermost layer, particularly [elongation (%) ÷ Young's modulus (kg / mm 2 )]. ]
Value greatly affects the optical transmission characteristics, that is, in the case of a thin coated fiber (outer diameter of the coating is 200 μmφ or less), by setting this value to 0.2 or more, good optical transmission characteristics are maintained and screening is performed. It has been found that the strength can be improved, and thereby, the novel glass fiber for optical transmission of the present invention can be reached.

【0011】すなわち、本発明は: 光伝送用ガラスファイバの外周上に紫外線硬化型樹
脂からなる被覆層を少なくとも1層施してなる光伝送用
ガラスファイバにおいて、最外層に用いる該紫外線硬化
型樹脂の〔伸び(%)÷ヤング率(kg/mm2 )〕の
値が0.2以上であり、且つ最外層の被覆径が200μ
m以下であることを特徴とする、光伝送用ガラスファイ
バであり、また 光伝送用ガラスファイバの最外層被覆のヤング率が
100kg/mm2 以上である点にも特徴を有する。
That is, the present invention is: In an optical transmission glass fiber having at least one coating layer made of an ultraviolet curable resin on the outer periphery of the optical transmission glass fiber, the ultraviolet curable resin used as the outermost layer The value of [elongation (%) ÷ Young's modulus (kg / mm 2 )] is 0.2 or more, and the coating diameter of the outermost layer is 200 μ.
The glass fiber for optical transmission is characterized in that it is m or less, and the Young's modulus of the outermost coating of the glass fiber for optical transmission is 100 kg / mm 2 or more.

【0012】以下、本発明を図面に基いて詳細に説明す
る。本発明の光伝送用ガラスファイバは、基本的に図2
に示されるような複層構造、好ましくは薄肉化の観点か
ら少なくとも2層構造を持つものである。すなわち、ガ
ラス光ファイバ1の最外層に、緩衝層2を介して本発明
の特定の物性値を持つ保護層3が設けられている。
The present invention will be described in detail below with reference to the drawings. The glass fiber for optical transmission of the present invention is basically shown in FIG.
The multi-layer structure as shown in, preferably at least a two-layer structure from the viewpoint of thinning. That is, the outermost layer of the glass optical fiber 1 is provided with the protective layer 3 having a specific physical property value of the present invention via the buffer layer 2.

【0013】上記最外層の保護被覆3を構成する紫外線
硬化型樹脂としては、紫外線硬化型の樹脂であって、上
記高ヤング率化と高伸長化との機能が得られるなら特に
制限されないが、エポキシアクリレート、ウレタンアク
リレート、エステルアクリレート等が上記高ヤング率化
と高伸長化との効果が比較的容易に得られることから望
ましい。なお、これらは、それ単独(一般にオリゴマー
の形態)の使用でもよいが、更に光開始剤や多官能性モ
ノマーをも併用しても良い。
The ultraviolet curable resin constituting the outermost protective coating 3 is an ultraviolet curable resin and is not particularly limited as long as it has the functions of high Young's modulus and high elongation. Epoxy acrylate, urethane acrylate, ester acrylate and the like are desirable because the effects of increasing the Young's modulus and increasing the elongation can be relatively easily obtained. These may be used alone (generally in the form of an oligomer), but may also be used in combination with a photoinitiator or a polyfunctional monomer.

【0014】緩衝層2としては、上記最外層の紫外線硬
化型樹脂を適宜使用してもよいし、またシリコーン樹脂
などの比較的柔らかな被覆材を用いることができる。勿
論、必要に応じて上記保護層若しくは緩衝層の材料と同
一又は異なる層をさらに設けても良い。本発明の光伝送
用ガラスファイバは、図3に示されるような、慣用の光
ファイバの製造装置によって容易に製造できる。
As the buffer layer 2, the ultraviolet curable resin for the outermost layer may be used as appropriate, or a relatively soft coating material such as silicone resin may be used. Of course, if necessary, a layer that is the same as or different from the material for the protective layer or the buffer layer may be further provided. The optical transmission glass fiber of the present invention can be easily manufactured by a conventional optical fiber manufacturing apparatus as shown in FIG.

【0015】[0015]

【作用】上記最外層の被覆3は、ガラスを外圧から防ぐ
殻の役目を果たしている。従って、その被覆3のヤング
率が高いほど外圧(側圧)に対して強いことになる。し
かし、その反面、伸び特性が小さいと、曲げに対して極
めて脆く割れ易くなる。
The outermost coating 3 serves as a shell for protecting the glass from external pressure. Therefore, the higher the Young's modulus of the coating 3, the stronger the external pressure (side pressure). However, on the other hand, when the elongation property is small, it is extremely brittle and easily cracked when bent.

【0016】これは、被覆表面の不均質性を招き、ガラ
スに歪みを与えて光伝送特性を悪化させ、ひいてはファ
イバ強度を低下させていると考えられる。この効果は、
最外層の被覆樹脂のヤング率が高くなればなるほど顕著
であるため、ヤング率を高くするに伴い、伸び特性も大
きくする必要がある。
It is considered that this causes non-uniformity of the coating surface, strains the glass to deteriorate the optical transmission characteristics, and eventually reduces the fiber strength. This effect is
Since the higher the Young's modulus of the coating resin of the outermost layer is, the more remarkable it is. Therefore, it is necessary to increase the elongation property as the Young's modulus is increased.

【0017】本発明においては、最外層被覆材のヤング
率と伸び特性と光伝送特性との関係を種々検討・調査し
た結果、〔伸び(%)÷ヤング率(kg/mm2 )〕の
値と光伝送特性との相関関係を見出し、特に薄肉被覆フ
ァイバ(被覆外径200μmφ以下)での光伝送特性及
びファイバ強度とを最良にするヤング率と伸び特性の組
み合わせを決定した。
In the present invention, as a result of various studies and investigations on the relationship between the Young's modulus of the outermost layer coating material, the elongation characteristics and the optical transmission characteristics, the value of [elongation (%) ÷ Young's modulus (kg / mm 2 )] And the optical transmission characteristics were found, and in particular, a combination of Young's modulus and elongation characteristics that optimizes the optical transmission characteristics and the fiber strength in a thin-coated fiber (outer diameter of the coating is 200 μmφ or less) was determined.

【0018】ところで、従来のファイバ(被覆径;25
0μmφ程度)においては、被覆層が十分厚いために、
最外層被覆の高ヤング率化の効果が小さく、またその必
要性もあまりなかった。しかし、被覆層の薄い薄肉被覆
ファイバ(被覆外径;200μmφ以下)にあってこ
そ、本発明のような高ヤング率化+高伸長化の効果が必
要不可欠とされるのである。
By the way, the conventional fiber (coating diameter: 25
(About 0 μmφ), the coating layer is sufficiently thick,
The effect of increasing the Young's modulus of the outermost layer coating was small, and the necessity thereof was not so large. However, the effect of high Young's modulus and high elongation as in the present invention is indispensable only in a thin-walled coated fiber having a thin coating layer (coating outer diameter: 200 μmφ or less).

【0019】[0019]

【実施例】本発明は実施例により具体的に説明される
が、これらは本発明の範囲を制限しない。図3に示され
る光ファイバの製造装置を用いて、光ファイバ母材4を
線引炉5において線引して、ガラス光ファイバ1を得
る。該光ファイバ1を樹脂塗布装置6に通して光ファイ
バ1上に樹脂被覆を設けた後、紫外線照射ランプ7を備
えた紫外線照射装置9により該紫外線硬化型樹脂被覆を
硬化させて、図2に示された構造の薄肉光ファイバ1を
得た。
The present invention is illustrated by the examples, which do not limit the scope of the invention. Using the optical fiber manufacturing apparatus shown in FIG. 3, the optical fiber preform 4 is drawn in the drawing furnace 5 to obtain the glass optical fiber 1. After the resin coating is provided on the optical fiber 1 by passing the optical fiber 1 through the resin coating device 6, the ultraviolet ray curable resin coating is cured by the ultraviolet ray irradiation device 9 provided with the ultraviolet ray irradiation lamp 7. A thin optical fiber 1 having the structure shown was obtained.

【0020】内層(緩衝層)2には、常温でのヤング率
が0.10kg/mm2 の紫外線硬化型ウレタンアクリ
レート樹脂を全て共通に用い、被覆外径150μmφと
した。一方、外層(保護層)3には、表1に示したよう
にヤング率と伸び特性が異なる各種紫外線硬化型ウレタ
ンアクリレート樹脂を用いて、被覆外径180μmφに
仕上げた。
For the inner layer (buffer layer) 2, a UV-curable urethane acrylate resin having a Young's modulus of 0.10 kg / mm 2 at room temperature was commonly used, and the coating outer diameter was 150 μmφ. On the other hand, for the outer layer (protective layer) 3, various UV-curable urethane acrylate resins having different Young's moduli and elongation characteristics as shown in Table 1 were used to finish the coating outer diameter to 180 μmφ.

【0021】各被覆光ファイバの側圧特性及び光伝送特
性を調べた。その結果を表1に示す。また、従来の被覆
光ファイバ(被覆外径250μm)での特性も併せて記
す。
The lateral pressure characteristics and optical transmission characteristics of each coated optical fiber were investigated. The results are shown in Table 1. The characteristics of the conventional coated optical fiber (coating outer diameter 250 μm) are also shown.

【0022】[0022]

【表1】 [Table 1]

【0023】注)*1)平板側圧試験:荷重50kg時
の伝送損失増;Δα(1.55μm)で表す。 *2)ボビン巻き状態での光伝送特性(1.55μ
m)。 *3)700gスクリーニング試験での100km当た
りの破断回数。 *4)ヤング率、伸びはJIS 法に準じて測定。
Note) * 1) Flat plate lateral pressure test: increase in transmission loss at a load of 50 kg; expressed by Δα (1.55 μm). * 2) Optical transmission characteristics (1.55μ in the bobbin winding state)
m). * 3) Number of breaks per 100 km in 700 g screening test. * 4) Young's modulus and elongation are measured according to JIS method .

【0024】また、図1には、表1に示した被覆光ファ
イバA〜Fの最外層被覆樹脂の〔伸び(%)÷ヤング率
(kg/mm2 )〕と光伝送特性との関係を示す。この
結果より、最外層に用いられる被覆樹脂の〔伸び(%)
÷ヤング率(kg/mm2 )〕の値が0.2以上であれ
ば、光伝送特性及びファイバ強度において、従来ファイ
バと同等な薄肉被覆光ファイバが得られることが分かっ
た。
Further, FIG. 1 shows the relationship between [elongation (%) / Young's modulus (kg / mm 2 )] of the outermost layer coating resin of the coated optical fibers A to F shown in Table 1 and the optical transmission characteristics. Show. From this result, the [elongation (%) of the coating resin used for the outermost layer
It was found that when the value of ÷ Young's modulus (kg / mm 2 )] is 0.2 or more, a thin-coated optical fiber equivalent to the conventional fiber in optical transmission characteristics and fiber strength can be obtained.

【0025】なお、上述では、内層及び外層が各1層の
場合を例に説明したが、本発明は、ファイバ外周上に少
なくとも1層の紫外線硬化型樹脂被覆を有する被覆光フ
ァイバにおいて、最外層の被覆樹脂での〔伸び(%)÷
ヤング率(kg/mm2 )〕の値が本発明の限定範囲の
ものであれば、同様の効果が得られる。
In the above description, the case where each of the inner layer and the outer layer is one layer has been described as an example. However, in the coated optical fiber having at least one layer of ultraviolet curable resin coating on the outer circumference of the fiber, the present invention is the outermost layer. [Elongation (%) ÷
If the value of Young's modulus (kg / mm 2 )] is within the limit range of the present invention, similar effects can be obtained.

【0026】[0026]

【発明の効果】以上説明したように、本発明は、従来の
被覆光ファイバとほぼ同等の光伝送特性及びファイバ強
度を維持しうる薄肉被覆光ファイバ(被覆外径200μ
mφ以下)を提供することができ、光ケーブルの高密度
化に対して非常に有効である。
As described above, according to the present invention, a thin-walled coated optical fiber (coated outer diameter of 200 μm) capable of maintaining almost the same optical transmission characteristics and fiber strength as the conventional coated optical fiber.
mφ or less), which is very effective for increasing the density of optical cables.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いた最外層被覆樹脂の〔伸び(%)
÷ヤング率(kg/mm2 )〕の値と光伝送特性との関
係を示すグラフである。
FIG. 1 shows the [elongation (%)] of the outermost layer coating resin used in the present invention.
÷ Young's modulus (kg / mm 2 )] and the optical transmission characteristics.

【図2】本発明の樹脂被覆光ファイバの1例の断面図で
ある。
FIG. 2 is a cross-sectional view of an example of a resin-coated optical fiber of the present invention.

【図3】本発明の光伝送用ファイバを製造するのに用い
た光ファイバ製造装置の概略を示す模式図である。
FIG. 3 is a schematic view showing an outline of an optical fiber manufacturing apparatus used for manufacturing the optical transmission fiber of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス光ファイバ 2 緩衝層 3 保護層(最外層) 4 光ファイバ母材 5 線引炉 6 樹脂塗布装置 7 紫外線照射ランプ 8 筒状体 9 紫外線照射装置 10 反射鏡 11 樹脂被覆光ファイバ 12 巻取機 DESCRIPTION OF SYMBOLS 1 Glass optical fiber 2 Buffer layer 3 Protective layer (outermost layer) 4 Optical fiber base material 5 Drawing furnace 6 Resin coating device 7 Ultraviolet irradiation lamp 8 Cylindrical body 9 Ultraviolet irradiation device 10 Reflecting mirror 11 Resin coating optical fiber 12 Winding Machine

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 樹哉 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 桂島 渉 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 松田 裕男 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 冨田 茂 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Juya Tsunoda 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works (72) Wataru Katsurajima 1-tani, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Denki Kogyo Co., Ltd. Yokohama Works (72) Inventor Hiroo Matsuda 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Denki Kogyo Co., Ltd. Yokohama Works (72) Inventor Shigeru Tomita 1-1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo No. 6 Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光伝送用ガラスファイバの外周上に紫外
線硬化型樹脂からなる被覆層を少なくとも1層施してな
る光伝送用ガラスファイバにおいて、最外層に用いる該
紫外線硬化型樹脂の〔伸び(%)÷ヤング率(kg/m
2 )〕の値が0.2以上であり、且つ最外層の被覆径
が200μm以下であることを特徴とする、光伝送用ガ
ラスファイバ。
1. A glass fiber for optical transmission comprising at least one coating layer made of an ultraviolet curable resin on the outer circumference of the glass fiber for optical transmission, wherein the elongation (% (% ) ÷ Young's modulus (kg / m
m 2 )] is 0.2 or more, and the coating diameter of the outermost layer is 200 μm or less, a glass fiber for optical transmission.
【請求項2】 光伝送用ガラスファイバの最外層被覆の
ヤング率が100kg/mm2 以上であることを特徴と
する、請求項1記載の光伝送用ガラスファイバ。
2. The glass fiber for optical transmission according to claim 1, wherein the outermost coating of the glass fiber for optical transmission has a Young's modulus of 100 kg / mm 2 or more.
JP4151180A 1992-05-20 1992-05-20 Glass fiber for optical transmission Pending JPH05323161A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP4151180A JPH05323161A (en) 1992-05-20 1992-05-20 Glass fiber for optical transmission
FI932225A FI113093B (en) 1992-05-20 1993-05-17 Light transmitting glass fiber
KR1019930008385A KR0134762B1 (en) 1992-05-20 1993-05-17 Light transmitting glass fiber
ES93108100T ES2089633T3 (en) 1992-05-20 1993-05-18 LIGHT TRANSMISSION GLASS FIBER.
DE69301761T DE69301761T2 (en) 1992-05-20 1993-05-18 Optical fiber
CA002096451A CA2096451C (en) 1992-05-20 1993-05-18 Light transmitting glass fiber
AU38610/93A AU674844B2 (en) 1992-05-20 1993-05-18 Light transmitting glass fiber
EP93108100A EP0570917B1 (en) 1992-05-20 1993-05-18 Light transmitting glass fiber
NO931823A NO308875B1 (en) 1992-05-20 1993-05-19 Light transmitting fiberglass
US08/063,788 US5422182A (en) 1992-05-20 1993-05-20 Light transmitting glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151180A JPH05323161A (en) 1992-05-20 1992-05-20 Glass fiber for optical transmission

Publications (1)

Publication Number Publication Date
JPH05323161A true JPH05323161A (en) 1993-12-07

Family

ID=15513049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151180A Pending JPH05323161A (en) 1992-05-20 1992-05-20 Glass fiber for optical transmission

Country Status (1)

Country Link
JP (1) JPH05323161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065038A (en) * 2006-09-07 2008-03-21 Fujikura Ltd Optical fiber drop cable and optical fiber indoor cable

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125304A (en) * 1985-11-27 1987-06-06 Furukawa Electric Co Ltd:The Clad optical fiber
JPS63128308A (en) * 1986-11-18 1988-05-31 Mitsubishi Cable Ind Ltd Quartz glass type optical fiber
JPH01133011A (en) * 1987-10-08 1989-05-25 Philips Gloeilampenfab:Nv Optical fiber with synthetic resin coating and manufacture thereof
JPH01234406A (en) * 1988-03-14 1989-09-19 Nippon Kayaku Co Ltd Di(meth)acrylic ester, resin composition using same and coating agent from said composition
JPH0451004A (en) * 1990-06-18 1992-02-19 Nippon Telegr & Teleph Corp <Ntt> Coated optical fiber
JPH0519144A (en) * 1991-07-11 1993-01-29 Fujikura Ltd Optical fiber
JPH0560953A (en) * 1991-09-03 1993-03-12 Sumitomo Electric Ind Ltd Glass fiber for optical transmission
JPH0560954A (en) * 1991-06-25 1993-03-12 Furukawa Electric Co Ltd:The Fine diameter optical fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125304A (en) * 1985-11-27 1987-06-06 Furukawa Electric Co Ltd:The Clad optical fiber
JPS63128308A (en) * 1986-11-18 1988-05-31 Mitsubishi Cable Ind Ltd Quartz glass type optical fiber
JPH01133011A (en) * 1987-10-08 1989-05-25 Philips Gloeilampenfab:Nv Optical fiber with synthetic resin coating and manufacture thereof
JPH01234406A (en) * 1988-03-14 1989-09-19 Nippon Kayaku Co Ltd Di(meth)acrylic ester, resin composition using same and coating agent from said composition
JPH0451004A (en) * 1990-06-18 1992-02-19 Nippon Telegr & Teleph Corp <Ntt> Coated optical fiber
JPH0560954A (en) * 1991-06-25 1993-03-12 Furukawa Electric Co Ltd:The Fine diameter optical fiber
JPH0519144A (en) * 1991-07-11 1993-01-29 Fujikura Ltd Optical fiber
JPH0560953A (en) * 1991-09-03 1993-03-12 Sumitomo Electric Ind Ltd Glass fiber for optical transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065038A (en) * 2006-09-07 2008-03-21 Fujikura Ltd Optical fiber drop cable and optical fiber indoor cable

Similar Documents

Publication Publication Date Title
US6269210B1 (en) Optical fiber
JP2525523B2 (en) Optical cable composite bobbin with grooved base layer
US4957344A (en) Optical fiber tape assembly and canister
JPH0560953A (en) Glass fiber for optical transmission
US6181859B1 (en) Coated optical fiber and method of making the same
JPH08129122A (en) Optical fiber ribbon
JPH05323161A (en) Glass fiber for optical transmission
KR0134762B1 (en) Light transmitting glass fiber
JPH05323160A (en) Glass fiber for optical transmission
EP1197775B1 (en) Fiber optic cable with non-corrugated armor shielding
JPH0627887B2 (en) Fiber for optical transmission
JPH0519144A (en) Optical fiber
JPH0862466A (en) Fiber tape for ultra-multiple cores
JPH0854546A (en) Optical fiber having small diameter
JPH0560954A (en) Fine diameter optical fiber
JP3845136B2 (en) Optical tape cord and optical fiber cable
JP3008863B2 (en) Optical fiber unit
JP3303460B2 (en) Glass fiber for optical transmission and method of manufacturing the same
JPH11133277A (en) Extremely small diameter optical fiber cord and its manufacture
JPH10300996A (en) Coated optical fiber
JPH1010379A (en) High-strength optical fiber cord
JPH0611634A (en) Small-diameter coated optical fiber
JPH0836123A (en) Coated optical fiber
JP2000081552A (en) Core wire of optical fiber
JPH04371906A (en) Coated optical fiber with colored layer