JPH0560954A - Fine diameter optical fiber - Google Patents

Fine diameter optical fiber

Info

Publication number
JPH0560954A
JPH0560954A JP3351835A JP35183591A JPH0560954A JP H0560954 A JPH0560954 A JP H0560954A JP 3351835 A JP3351835 A JP 3351835A JP 35183591 A JP35183591 A JP 35183591A JP H0560954 A JPH0560954 A JP H0560954A
Authority
JP
Japan
Prior art keywords
optical fiber
layer coating
diameter
young
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3351835A
Other languages
Japanese (ja)
Inventor
Masami Hara
雅美 原
Yukihiro Kawada
幸広 川田
Keigo Maeda
恵吾 前田
Shuji Okagawa
周司 岡川
Akihiro Otake
明博 大竹
Shigeru Tomita
茂 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Publication of JPH0560954A publication Critical patent/JPH0560954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a fine diameter optical fiber having sufficient mechanical strength and little in increase of transmission loss caused by lateral pressure. CONSTITUTION:In the fine diameter optical fiber having <=230mum outside diameter and provided with an inner covering layer and an outer covering layer made from an ultraviolet curing resin on an optical fiber having 125mum outside diameter, the resin having 0.8-2.5 product of Young's modulus E1 (kg/mm<2>) and area of cross section of the outer covering layer S (mm<2>) is used for the outer covering layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度多心光ケーブル
等に使用される外径 230μm 以下の細径光ファイバ心線
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-diameter optical fiber core wire having an outer diameter of 230 μm or less, which is used for a high-density multi-core optical cable or the like.

【0002】[0002]

【従来の技術】従来から、石英ガラス製光ファイバを用
いた光ファイバ心線では、光ファイバを衝撃などから保
護し、信頼性を確保するため、光ファイバに紫外線硬化
性樹脂よりなる内層被覆と外層被覆を施した構造が採用
されている。内層被覆と外層被覆はヤング率が異ってお
り、内層被覆には軟らかい材料が、外層被覆には硬い材
料が使用されている。この被覆構造は、硬い外層被覆で
外力を受け止め、軟らかい内層被覆で光ファイバに外力
を伝え難くして、光ファイバを保護するものである。従
来の光ファイバ心線は、外径 125μm の光ファイバに上
記の二層被覆を施して、外径を 400μm としたものと、
250μm としたものが一般に使用されている。
2. Description of the Related Art Conventionally, in an optical fiber core wire using an optical fiber made of silica glass, in order to protect the optical fiber from impact and secure reliability, the optical fiber has an inner layer coating made of an ultraviolet curable resin. A structure with an outer coating is used. Young's modulus is different between the inner layer coating and the outer layer coating, and a soft material is used for the inner layer coating and a hard material is used for the outer layer coating. This coating structure protects the optical fiber by receiving an external force with a hard outer layer coating and making it difficult to transmit the external force to the optical fiber with a soft inner layer coating. The conventional optical fiber core wire has an outer diameter of 400 μm by applying the above two-layer coating to an optical fiber with an outer diameter of 125 μm.
The size of 250 μm is generally used.

【0003】[0003]

【発明が解決しようとする課題】近年、通信需要の著し
い拡大および多様化にともない、光ケーブルを高密度多
心化する要求が高まり、光ケーブルを構成する光ファイ
バ心線も、現状の信頼性を保持して、さらに細径化する
ことが望まれている。
In recent years, along with the remarkable expansion and diversification of communication demand, the demand for high-density multi-core optical cables has increased, and the optical fiber cores constituting the optical cables maintain the current reliability. Therefore, it is desired to further reduce the diameter.

【0004】光ファイバ心線を細径化するには、光ファ
イバの外径を変えないとすれば、被覆厚を薄くする以外
に方法はなく、被覆厚を薄くすると、従来の被覆構造で
は被覆が弱くなり、剥離しやすくなると共に、スクリー
ニング劣化や側圧損失増などが発生し、信頼性の点で問
題があった。
If the outer diameter of the optical fiber is not changed in order to reduce the diameter of the optical fiber, there is no other method than to reduce the coating thickness. If the coating thickness is reduced, the conventional coating structure is used. Was weakened and peeled off easily, and there was a problem in terms of reliability due to deterioration of screening and increase of lateral pressure loss.

【0005】[0005]

【課題を解決するための手段】本発明は、上記のような
課題を解決した細径光ファイバ心線を提供するもので、
その構成は、外径125 μm の石英ガラス製光ファイバ
に、紫外線硬化性樹脂よりなる内層被覆と外層被覆を施
した外径230 μm 以下の細径光ファイバ心線において、
外層被覆材に、ヤング率E1 (kg/mm2 )と外層被覆の
断面積S(mm2 )との積E1 ×Sが 0.8〜2.5 の範囲に
ある樹脂を用いたことを特徴とするものである。また内
層被覆材には、ヤング率E2 (kg/mm2 )が0.3 以下の
樹脂を用いることが望ましい。
The present invention provides a small-diameter optical fiber core wire that solves the above problems.
The configuration is as follows: In a small-diameter optical fiber core with an outer diameter of 230 μm or less, which is obtained by applying an inner layer coating made of UV-curable resin and an outer layer coating to a quartz glass optical fiber with an outer diameter of 125 μm.
A resin having a product E 1 × S of the Young's modulus E 1 (kg / mm 2 ) and the cross-sectional area S (mm 2 ) of the outer layer coating in the range of 0.8 to 2.5 is used for the outer layer coating material. It is a thing. It is desirable to use a resin having a Young's modulus E 2 (kg / mm 2 ) of 0.3 or less for the inner layer coating material.

【0006】[0006]

【作用】本発明は外径が 230μm 以下の細径光ファイバ
心線に適用される。このような細径光ファイバ心線は従
来、被覆層の厚さが薄すぎて、スクリーニング劣化、側
圧による損失増加あるいは被覆の剥離などが発生しやす
く、実用に耐え得なかったが、外層被覆材に、ヤング率
1 が外層被覆の断面積Sに対し上記の関係にある樹脂
を使用すると、これらの問題が克服できることが実験的
に確かめられた。また内層被覆材に上記のようなヤング
率を有する樹脂を使用すると、側圧による損失増加の少
ない細径光ファイバ心線が得られることが実験的に確か
められた。
The present invention is applied to a small-diameter optical fiber core wire having an outer diameter of 230 μm or less. Conventionally, such a small-diameter optical fiber core cannot be put to practical use because the coating layer is too thin and screening deterioration, increase in loss due to lateral pressure, or peeling of the coating easily occurs, but it cannot be used practically. It has been experimentally confirmed that these problems can be overcome by using a resin whose Young's modulus E 1 has the above relationship with the cross-sectional area S of the outer layer coating. It was experimentally confirmed that when a resin having the above Young's modulus is used for the inner layer coating material, a small-diameter optical fiber core wire with little loss increase due to lateral pressure can be obtained.

【0007】[0007]

【実施例】以下、本発明の実施例を試作、試験結果に基
づき詳細に説明する。なお実験1から実験5で使用して
いる内層被覆材のヤング率E2 はすべて0.3 kg/mm2
ある。
EXAMPLES Examples of the present invention will be described in detail below on the basis of test production and test results. The Young's modulus E 2 of all the inner layer coating materials used in Experiments 1 to 5 is 0.3 kg / mm 2 .

【0008】実験1 外径 125μm の石英ガラス製シングルモード光ファイバ
を線引し、線引直後に紫外線硬化性樹脂よりなる内層被
覆を施し、さらにこの上に紫外線硬化性樹脂よりなる外
層被覆を施し、表1に示す内層被覆外径および外層被覆
外径の光ファイバ心線をそれぞれ5000m製造した。
Experiment 1 A quartz glass single mode optical fiber having an outer diameter of 125 μm was drawn, an inner layer coating made of an ultraviolet curable resin was applied immediately after the drawing, and an outer layer coating made of an ultraviolet curable resin was further applied thereon. The optical fiber core wires having the outer diameter of the inner layer and the outer diameter of the outer layer shown in Table 1 were each manufactured in a length of 5000 m.

【0009】光ファイバ心線は心線強度が十分でないと
破断が生じるため、全製造長に対し0.6%の応力負荷を
かけたスクリーニングテストを行い、そのときの破断回
数を測定した。その結果を表1に示す。
Since the optical fiber core is broken if the strength of the optical fiber is not sufficient, a screening test in which a stress load of 0.6% is applied to the entire manufacturing length was performed, and the number of breaks at that time was measured. The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】この結果から、細径光ファイバ心線では被
覆層をより薄くすることが望まれるが、光ファイバ心線
の外径が230 μm 以下になると破断回数が増えることが
分かった。
From these results, it was found that it is desirable to make the coating layer thinner in the thin optical fiber core wire, but the number of breaks increases when the outer diameter of the optical fiber core wire becomes 230 μm or less.

【0012】実験2 破断回数は、外層被覆に依存していることから、表2に
示すように、紫外線硬化性樹脂よりなる外径 180μm の
内層被覆の外側に、ヤング率の異なる4種類の紫外線硬
化性樹脂よりなる外層被覆を施して、外径 200μm の光
ファイバ心線をそれぞれ5000m製造し、実験1と同様の
テストを行った。その結果、表2に示すように、外層被
覆材のヤング率の上昇にともない、破断回数が減少する
ことが分かった。
Experiment 2 Since the number of breaks depends on the outer layer coating, as shown in Table 2, four kinds of ultraviolet rays having different Young's moduli are provided on the outer side of the inner layer coating made of an ultraviolet curable resin having an outer diameter of 180 μm. An outer layer coating made of a curable resin was applied, optical fiber cores with an outer diameter of 200 μm were manufactured for 5000 m each, and the same test as Experiment 1 was conducted. As a result, as shown in Table 2, it was found that the number of breaks decreased as the Young's modulus of the outer coating material increased.

【0013】[0013]

【表2】 [Table 2]

【0014】実験3 破断回数は、外層被覆材のヤング率に依存することか
ら、外層被覆の断面積にも影響されることが推察され
る。そこで表3に示すように、外層被覆の断面積が異な
る4種類の光ファイバ心線を、外層被覆材にヤング率15
0kg/mm2 の紫外線硬化性樹脂を用いて製造し、実験1と
同様のテストを行った。その結果、表3に示すように、
破断回数は外層被覆の断面積にも依存し、外層被覆材の
ヤング率が低い場合は、外層被覆の断面積が減少する
と、破断回数が増加することが分かった。
Experiment 3 Since the number of breaks depends on the Young's modulus of the outer coating material, it is presumed that it is also affected by the cross-sectional area of the outer coating material. Therefore, as shown in Table 3, four types of optical fiber core wires with different cross-sectional areas of the outer layer coating were used as the outer layer coating material with Young's modulus of 15
It was manufactured by using 0 kg / mm 2 of an ultraviolet curable resin, and the same test as Experiment 1 was performed. As a result, as shown in Table 3,
It was found that the number of breaks also depends on the cross-sectional area of the outer layer coating, and when the Young's modulus of the outer layer coating material is low, the number of breaks increases as the cross-sectional area of the outer layer coating decreases.

【0015】[0015]

【表3】 [Table 3]

【0016】以上の結果から、外層被覆のヤング率と断
面積の積E1 ×Sと、破断回数との関係を調べると図1
のようになり、両者には相関が認められ、ヤング率と断
面積の積E1 ×Sが0.8 を越すと、破断がほとんど起こ
らないことが分かった。したがって外層被覆材に、ヤン
グ率E1 が 0.8/S以上の樹脂を使用すれば、スクリー
ニング強度に優れた細径光ファイバ心線を製造すること
ができる。
From the above results, the relationship between the Young's modulus of the outer layer coating and the product E 1 × S of the cross-sectional area and the number of breaks was examined, and FIG.
It was found that there was a correlation between the two, and when the product E 1 × S of Young's modulus and cross-sectional area exceeded 0.8, almost no fracture occurred. Therefore, if a resin having a Young's modulus E 1 of 0.8 / S or more is used for the outer layer coating material, a small-diameter optical fiber core wire having excellent screening strength can be manufactured.

【0017】実験4 光ファイバ心線は、強度特性だけでなく、ケーブル化時
の伝送損失増加を抑えるために、側圧特性にも優れてい
ることが要求される。そこで細径光ファイバ心線の側圧
特性を調べるため、前述の試料No.2〜12の細径光ファ
イバ心線を胴径160 mmφのプラスチックボビンに張力40
gで巻いたときの、波長1.55μm における伝送損失の増
加を測定した。その結果は表4のとおりであり、E1 ×
Sの値が大きいと、伝送損失の増加も大きくなる傾向が
見られた。
Experiment 4 The optical fiber core wire is required to have not only strength characteristics but also excellent lateral pressure characteristics in order to suppress an increase in transmission loss during cable formation. Therefore, in order to investigate the lateral pressure characteristics of the thin optical fiber core wire, the sample No. 2 to 12 small-diameter optical fiber cores are placed on a plastic bobbin with a body diameter of 160 mmφ and tension is 40
The increase in transmission loss at a wavelength of 1.55 μm when wound with g was measured. The results are shown in Table 4, and E 1 ×
It was observed that when the value of S was large, the increase in transmission loss was also large.

【0018】[0018]

【表4】 [Table 4]

【0019】実験5 そこで新たに表5に示すE1 ×Sの値の異なる種々の細
径光ファイバ心線を試作し、実験4と同じ条件で側圧特
性を調べた。その結果を表5に示す。
Experiment 5 Therefore, various small diameter optical fiber core wires having different values of E 1 × S shown in Table 5 were newly manufactured, and the lateral pressure characteristics were examined under the same conditions as in Experiment 4. The results are shown in Table 5.

【0020】[0020]

【表5】 [Table 5]

【0021】また実験4と実験5の結果をグラフで示す
と、図2のようになる。これらの結果から、外層被覆の
ヤング率と断面積の積E1 ×Sが増加すると、側圧特性
が悪くなる傾向があることが分かり、特にE1 ×Sが2.
5 より大きくなると、側圧特性が著しく劣化することが
分かる。したがって側圧特性を良好なレベルに保つため
にはE1 ×Sの値を2.5 以下にする必要がある。
The results of Experiment 4 and Experiment 5 are shown in a graph of FIG. From these results, it was found that when the product E 1 × S of the Young's modulus and the cross-sectional area of the outer layer coating increases, the lateral pressure characteristics tend to deteriorate, and especially E 1 × S is 2.
It can be seen that when it exceeds 5, lateral pressure characteristics are significantly deteriorated. Therefore, in order to maintain the lateral pressure characteristic at a good level, the value of E 1 × S must be 2.5 or less.

【0022】以上の結果から、強度および側圧特性が共
に優れた細径光ファイバ心線を得るためには、外層被覆
のヤング率と断面積の積E1 ×Sを0.8〜2.5 の範囲に
すればよいことがわかる。
From the above results, in order to obtain a small-diameter optical fiber core wire having both excellent strength and lateral pressure characteristics, the product E 1 × S of Young's modulus and cross-sectional area of the outer layer coating can be set within the range of 0.8 to 2.5. I understand that it is good.

【0023】実験6 さらに細径光ファイバ心線の側圧特性の検討を行ってい
くうちに、細径光ファイバ心線の側圧特性には、前述の
1 ×Sの値のみでなく、内層被覆のヤング率も影響し
ていることを見出した。そこで表6に示すように、E1
×Sの値が一定で、内層被覆材のヤング率E2 が異なる
各種の細径光ファイバ心線を試作し、実験4と同じ条件
で側圧特性を調べた。その結果を表6および図3に示
す。
Experiment 6 While further studying the lateral pressure characteristics of the small-diameter optical fiber core, the lateral pressure characteristics of the small-diameter optical fiber core are not limited to the above-mentioned E 1 × S value, but also the inner layer coating. It was found that the Young's modulus of the product also had an effect. Therefore, as shown in Table 6, E 1
Various small-diameter optical fiber core wires having a constant value of × S and different Young's moduli E 2 of the inner layer coating material were made on a trial basis, and the lateral pressure characteristics were examined under the same conditions as in Experiment 4. The results are shown in Table 6 and FIG.

【0024】[0024]

【表6】 [Table 6]

【0025】この結果から、内層被覆材のヤング率E2
が0.3 kg/mm2 を越えると、伝送損失の増加が著しく増
大することが分かる。したがって側圧特性に優れた細径
光ファイバ心線を得るためには、内層被覆材のヤング率
2 を 0.3以下とすることが望ましい。
From these results, Young's modulus E 2 of the inner layer coating material
It can be seen that the transmission loss increases remarkably when the value exceeds 0.3 kg / mm 2 . Therefore, in order to obtain a small diameter optical fiber having excellent lateral pressure characteristics, it is desirable to set the Young's modulus E 2 of the inner layer coating material to 0.3 or less.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、従
来より外径が小さくて、しかも十分な強度および側圧特
性を有する細径光ファイバ心線を得ることができ、高密
度多心光ケーブルの実現に大きく貢献できる。
As described above, according to the present invention, it is possible to obtain a small-diameter optical fiber core wire having an outer diameter smaller than that of the prior art and having sufficient strength and lateral pressure characteristics. Can greatly contribute to the realization of.

【図面の簡単な説明】[Brief description of drawings]

【図1】 細径光ファイバ心線の外層被覆のヤング率と
断面積の積E1 ×Sと、スクリーニングテスト時の破断
回数との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the Young's modulus and cross-sectional area product E 1 × S of the outer layer coating of a small-diameter optical fiber and the number of breaks during a screening test.

【図2】 細径光ファイバ心線の外層被覆のヤング率と
断面積の積E1 ×Sと、側圧による伝送損失増加との関
係を示すグラフ。
FIG. 2 is a graph showing the relationship between the product E 1 × S of Young's modulus and cross-sectional area of the outer layer coating of the small-diameter optical fiber and the increase in transmission loss due to lateral pressure.

【図3】 細径光ファイバ心線の内層被覆のヤング率E
2 と、側圧による伝送損失増加との関係を示すグラフ。
FIG. 3 Young's modulus E of the inner layer coating of a small-diameter optical fiber
2 is a graph showing the relationship between 2 and the increase in transmission loss due to lateral pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 恵吾 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 岡川 周司 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 大竹 明博 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 冨田 茂 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keigo Maeda 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Shuji Okakawa 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Akihiro Otake 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Shigeru Tomita 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】外径125 μm の石英ガラス製光ファイバ
に、紫外線硬化性樹脂よりなる内層被覆と外層被覆を施
した外径230 μm 以下の細径光ファイバ心線において、
外層被覆材に、ヤング率E1 (kg/mm2 )と外層被覆の
断面積S(mm2 )との積E1 ×Sが 0.8〜2.5 の範囲に
ある樹脂を用いたことを特徴とする細径光ファイバ心
線。
1. A small-diameter optical fiber core having an outer diameter of 230 μm or less obtained by applying an inner layer coating made of an ultraviolet curable resin and an outer layer coating to a silica glass optical fiber having an outer diameter of 125 μm,
A resin having a product E 1 × S of the Young's modulus E 1 (kg / mm 2 ) and the cross-sectional area S (mm 2 ) of the outer layer in the range of 0.8 to 2.5 is used for the outer layer coating material. Small diameter optical fiber core.
【請求項2】内層被覆材に、ヤング率E2 (kg/mm2
が 0.3以下の樹脂を用いたことを特徴とする請求項1記
載の細径光ファイバ心線。
2. Young's modulus E 2 (kg / mm 2 ) is applied to the inner layer coating material.
2. The small-diameter optical fiber core wire according to claim 1, characterized in that a resin having a value of 0.3 or less is used.
JP3351835A 1991-06-25 1991-12-16 Fine diameter optical fiber Pending JPH0560954A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17887491 1991-06-25
JP3-178874 1991-06-25

Publications (1)

Publication Number Publication Date
JPH0560954A true JPH0560954A (en) 1993-03-12

Family

ID=16056208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351835A Pending JPH0560954A (en) 1991-06-25 1991-12-16 Fine diameter optical fiber

Country Status (1)

Country Link
JP (1) JPH0560954A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323161A (en) * 1992-05-20 1993-12-07 Sumitomo Electric Ind Ltd Glass fiber for optical transmission
US6460321B1 (en) 1996-12-12 2002-10-08 Gosen Co., Ltd. Racquet string
US10908354B2 (en) 2019-02-28 2021-02-02 Sumitomo Electric Industries, Ltd. Optical fiber
US11022749B2 (en) 2019-02-28 2021-06-01 Sumitomo Electric Industries, Ltd. Optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323161A (en) * 1992-05-20 1993-12-07 Sumitomo Electric Ind Ltd Glass fiber for optical transmission
US6460321B1 (en) 1996-12-12 2002-10-08 Gosen Co., Ltd. Racquet string
US10908354B2 (en) 2019-02-28 2021-02-02 Sumitomo Electric Industries, Ltd. Optical fiber
US11022749B2 (en) 2019-02-28 2021-06-01 Sumitomo Electric Industries, Ltd. Optical fiber

Similar Documents

Publication Publication Date Title
KR100960185B1 (en) Optical fiber tape core
US6028976A (en) Split type ribbon optical fiber core cable
EP0530715A1 (en) Optical glass fiber
JPH0560954A (en) Fine diameter optical fiber
JPH08129122A (en) Optical fiber ribbon
JPH0519144A (en) Optical fiber
JPH0611634A (en) Small-diameter coated optical fiber
US5422182A (en) Light transmitting glass fiber
JPH10115727A (en) Dispersion compensating optical fiber
JP2003241039A (en) Coated optical fiber ribbon and method for manufacturing the same
JPH06313827A (en) Optical fiber tape fiber
JPH11133277A (en) Extremely small diameter optical fiber cord and its manufacture
JP2002341208A (en) Coated optical fiber of optical fiber ribbon and optical fiber cable
JP3303460B2 (en) Glass fiber for optical transmission and method of manufacturing the same
JPH11194242A (en) Coated optical fiber
JPH04184307A (en) Small-diameter coated optical fiber
JPH05323160A (en) Glass fiber for optical transmission
JPS6066214A (en) Coated optical fiber
JPH10170775A (en) Optical fiber unit for optical marine cable
JPH04371906A (en) Coated optical fiber with colored layer
JPH03163505A (en) Coated optical fiber
JPH05323161A (en) Glass fiber for optical transmission
JPH01138514A (en) Optical fiber
JPH11202174A (en) Coated optical fiber tapes
JP3462634B2 (en) Optical fiber core and method of removing coating