JPS60171246A - Manufacture of covered optical fiber - Google Patents

Manufacture of covered optical fiber

Info

Publication number
JPS60171246A
JPS60171246A JP58247487A JP24748783A JPS60171246A JP S60171246 A JPS60171246 A JP S60171246A JP 58247487 A JP58247487 A JP 58247487A JP 24748783 A JP24748783 A JP 24748783A JP S60171246 A JPS60171246 A JP S60171246A
Authority
JP
Japan
Prior art keywords
optical fiber
curable resin
resin
soft
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58247487A
Other languages
Japanese (ja)
Other versions
JPH0551545B2 (en
Inventor
Hisaharu Yanagawa
柳川 久治
Kinya Kumazawa
金也 熊沢
Mikio Kokayu
小粥 幹夫
Hisashi Murata
久 村田
Taiji Murakami
村上 泰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP58247487A priority Critical patent/JPS60171246A/en
Publication of JPS60171246A publication Critical patent/JPS60171246A/en
Publication of JPH0551545B2 publication Critical patent/JPH0551545B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To obtain a covered optical fiber having high adhesive strength between resin layers and superior resistance to lateral pressure by coating a semicured layer of a soft curable resin formed around an optical fiber with an uncured rigid curable resin and by completely curing both the resins. CONSTITUTION:A quartz preform rod 8 is spun into an optical fiber 2 in a spinning apparatus 7 composed of a rod feeder 5 and a spinning furnace 6. The fiber 2 is coated with an uncured soft curable resin by passing through a die type coater 9, and the resin is cured to a semicured state in a curing oven 10. The fiber 2 is then passed through a coater 11 to coat the semicured layer with an uncured rigid curable resin, and both the resins are completely cured in a curing oven 12 to obtain a covered optical fiber 1 having a buffer layer 3 of the soft resin and a protective layer 4 of the rigid resin formed successively around the optical fiber 2. The fiber 1 is wound around a bobbin 14 through a capstan 13.

Description

【発明の詳細な説明】 本発明は被覆光ファイバの製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a coated optical fiber.

光フアイバ心線と称されている第1図の被覆光ファイバ
1は、一般にコアおよびクラッドからなるガラス製(例
えば石莢製)の光ファイバ2と、その外周に設けられた
緩衝層3と、さらKその外周に設けられた保護層4とか
らなり、上記緩衝層3は1次コートを兼ねるとともにク
ノンヨン効果を発揮し、保護層4は殻として機械的強度
を発揮するようになっている。
The coated optical fiber 1 shown in FIG. 1, which is called a cored optical fiber, generally includes an optical fiber 2 made of glass (for example, made of stone pod), which is composed of a core and a cladding, and a buffer layer 3 provided on the outer periphery of the optical fiber 2. Furthermore, it consists of a protective layer 4 provided on its outer periphery, the buffer layer 3 serving also as a primary coat and exhibiting the Knonyon effect, and the protective layer 4 exhibiting mechanical strength as a shell.

上記被覆光ファイバの場合、低損失化を実現させること
はいう−までもないが、これとともに緩衝層3、保護層
4相互の密着性を確保するのが液密性、強度−ヒの観点
から望ましい。
In the case of the above-mentioned coated optical fiber, it goes without saying that it is necessary to achieve low loss, but it is also necessary to ensure mutual adhesion between the buffer layer 3 and the protective layer 4 from the viewpoint of liquid tightness and strength. desirable.

以下、これらに関する実験例について説明する。Experimental examples regarding these will be described below.

コア径50μm、外径125μm1比屈折率差1チのグ
レーデッド型マルチモード光ファイバ2と、外径023
I+++++の緩衝層3と、外径04簡の保護層4とか
らなる被覆光ファイバI ICおいて、緩衝層3の材質
、保護層4材質が異なる各種被覆光ファイバをつくり、
これらの伝送特性を測定した。
A graded multimode optical fiber 2 with a core diameter of 50 μm, an outer diameter of 125 μm, and a relative refractive index difference of 1 inch, and an outer diameter of 023 μm.
In the coated optical fiber I IC, which consists of a buffer layer 3 of I++++++ and a protective layer 4 with an outer diameter of 04 mm, various coated optical fibers with different materials for the buffer layer 3 and the protective layer 4 are made,
We measured their transmission characteristics.

なお、この際の測定ではそれぞれ1h長とした被覆光フ
ァイバに張力150gを加えながらこれを胴径340鰭
のボビンに巻きとり、それぞれ巻取前、巻取後の伝送損
失差を波長1.3μmで評価した。
In addition, in this measurement, each coated optical fiber was 1 hour long and wound onto a bobbin with a body diameter of 340 fins while applying a tension of 150 g, and the difference in transmission loss before and after winding was measured at a wavelength of 1.3 μm. It was evaluated by

上記巻取状態では被覆光ファイバに側圧=張力7萌率半
径−150g/ 170+mが加わっているので、次表
に示す測定結果は対側圧特性を評価していることになる
In the above-mentioned wound state, a lateral pressure=tension=7 bud radius-150 g/170+m is applied to the coated optical fiber, so the measurement results shown in the following table evaluate the contralateral pressure characteristics.

上記表により明らかなごとく、緩衝層3は熱硬化性のシ
リコーンゴムまたは光硬化性のブタジェンアクリレート
、シリコーンアクリレート、ウレタンアクリレートなど
の軟かい硬化性樹脂製とし、保護層4は光硬化性エポキ
シアクリレートのごとき硬い硬化性樹脂製とするのがよ
く、こうすることにより対側圧性の優れた被覆光ファイ
バが得られる。
As is clear from the above table, the buffer layer 3 is made of thermosetting silicone rubber or a soft curable resin such as photocurable butadiene acrylate, silicone acrylate, or urethane acrylate, and the protective layer 4 is made of photocurable epoxy acrylate. It is preferable to use a hard curable resin such as , and by doing so, a coated optical fiber with excellent contralateral pressure properties can be obtained.

ところが上記のごとき対側圧性のある被覆光ファイバ例
えば表中46、/I67に1%スクリーニングテストを
実施した場合、緩衝層3、保護層4相互に層間剥離が生
じ、これら両層3.4の密着性に問題のあることが判明
した。
However, when a 1% screening test was carried out on coated optical fibers with contralateral pressure properties as described above, such as 46 and /I67 in the table, delamination occurred between the buffer layer 3 and the protective layer 4, and the It was found that there was a problem with adhesion.

これは対側圧性を改善すべく緩衝層3をできるだけ軟か
い拐質とし、保護層4をできるだけ硬い拐質とした場合
における両層相互の大きな物性相異に起因しているとい
える。
This can be said to be due to the large difference in physical properties between the two layers when the buffer layer 3 is made of as soft a fibrous material as possible and the protective layer 4 is made of as hard a fibrous material as possible in order to improve contralateral pressure properties.

本発明は上記の問題点に対処すべく、対側圧特性ととも
に緩衝層、保護層相互の密着性をも確保するようにした
ものであり、以下その具体的方法につき、図示の実施例
を参照して説明する。
In order to address the above-mentioned problems, the present invention is designed to ensure not only contralateral pressure characteristics but also adhesion between the buffer layer and the protective layer. I will explain.

第2図において、母材供給機5、紡糸炉6を備えた既知
の紡糸製置了により石英系のプリフォームロッド8を紡
糸してこれを前記光ファイバ2に加工した後、当該光フ
ァイバ2をダイス型コータ9内に引き通し、ここで光フ
アイバ外周には緩衝層3用とした未硬化(液状で未架橋
)の軟質硬化性樹脂を塗布するとともに上記コータ9の
つぎにある硬化炉1oを介してその未硬化軟質硬化性樹
脂に硬化エネルギを与え、同樹脂を半硬化状態(半架橋
状態)にする。
In FIG. 2, after spinning a quartz-based preform rod 8 and processing it into the optical fiber 2 using a known spinning machine equipped with a base material feeder 5 and a spinning furnace 6, the optical fiber 2 is is passed through a die-type coater 9, where an uncured (liquid and uncrosslinked) soft curable resin for the buffer layer 3 is applied to the outer periphery of the optical fiber, and a curing furnace 1o located next to the coater 9 is applied. Applying curing energy to the uncured soft curable resin, the resin becomes a semi-cured state (semi-crosslinked state).

こうして半硬化状態の軟質硬化性樹脂で被覆された上記
光ファイバ2は、これをつぎのグイス型コータ11内に
引き通し、ここで軟質硬化性樹脂(半硬化緩衝層3)の
外周に保護層4用とした未硬化(液状で未架橋)の硬質
硬化性樹脂を塗布した後、同状態のものを次段の硬化炉
12内でつぎのごと〈硬化処理する。
The optical fiber 2 coated with the soft hardening resin in a semi-hardened state is guided into the next Gouiss-type coater 11, where a protective layer is applied to the outer periphery of the soft hardening resin (semi-hardened buffer layer 3). After applying the uncured (liquid and uncrosslinked) hard curable resin used in 4, the resin in the same state is subjected to the following curing treatment in the curing furnace 12 of the next stage.

つfjll、この硬化炉内では所定の硬化エネルギを与
えて保護層4用の硬化性樹脂を完全に硬化(架橋)する
だけでなく、前記において半硬化状態にあった緩衝層3
用軟質硬化性樹脂の完全硬化(完全架橋)をも同時に行
なう。
In this curing furnace, a predetermined curing energy is applied to not only completely cure (crosslink) the curable resin for the protective layer 4, but also to completely cure (crosslink) the curable resin for the protective layer 4.
Complete curing (complete crosslinking) of the soft curable resin for use is also performed at the same time.

架橋密度に関する一般的事項として、第3図のごとく、
ある硬化エネルギEsまではそのエネルギの増加ととも
に架橋密度も増加するが、未反応基がすべて消費されて
しまうとEs以上の硬化エネルギでも架橋密度は増加せ
ず、一定値で飽和する。
As a general matter regarding crosslink density, as shown in Figure 3,
Up to a certain curing energy Es, the crosslinking density increases as the energy increases, but once all unreacted groups are consumed, the crosslinking density does not increase even at curing energies of Es or more and is saturated at a constant value.

前述した本発明では、緩衝層3用の軟質硬化性樹脂を架
橋するにおたり、Es よりも小さいEbの硬化エネル
ギによシ同樹脂を半架橋状態とし、さらにその上に保護
層4用の硬化性樹脂を塗布した後、適当な硬化エネルギ
によりこれら両樹脂を完全架橋するのであシ、かかる方
法によるとき、この際の硬化性樹脂反応がラジカル反応
となってその反応が官能基の異同を問わず進行するから
、上記緩衝用樹脂と保護層用樹脂との間でこれらを連結
する分子のリンクが生じ、これにより緩衝層3と保護層
4との密着力が高まる。
In the above-mentioned present invention, when crosslinking the soft curable resin for the buffer layer 3, the same resin is brought into a semi-crosslinked state by the curing energy of Eb, which is smaller than Es, and furthermore, the soft curable resin for the protective layer 4 is made into a semi-crosslinked state. After applying the curable resin, both resins are completely crosslinked using appropriate curing energy.When using this method, the curable resin reaction at this time becomes a radical reaction, and the reaction causes differences between the functional groups. As the reaction progresses regardless, a molecular link is generated between the buffer resin and the protective layer resin, thereby increasing the adhesion between the buffer layer 3 and the protective layer 4.

このようにして光ファイバ2の外周に緩衝層3、保護層
4が形成された後、これら両層3.4を有する光ファイ
バ2すなわち被覆光ファイバ1はキャプスタン13を経
てボビン14に巻きとられる。
After the buffer layer 3 and the protective layer 4 are formed around the outer periphery of the optical fiber 2 in this way, the optical fiber 2 having these layers 3.4, that is, the coated optical fiber 1, is wound around the bobbin 14 via the capstan 13. It will be done.

なお、緩衝層3を形成する軟質の硬化性樹脂、保護層4
を形成する硬質の硬化性樹脂に関しては熱硬化性のもの
でもよいが、熱硬化性のものは原子間結合力が強い場合
のラジカル反応時、高温を必要とするので、これら緩衝
層3用、保護層4用の樹脂としては紫外線照射などによ
り硬化する光硬化性樹脂を採用するのがよく、具体的に
はブタジェンアクリレート、7リコーンアクリレート、
ウレタンアクリレートなどが緩衝層3用として採用され
、エポキシアクリレートが保護層4用として採用される
Note that the soft curable resin forming the buffer layer 3 and the protective layer 4
The hard curable resin forming the buffer layer 3 may be thermosetting, but thermosetting resins require high temperatures during radical reactions when the bonding force between atoms is strong. As the resin for the protective layer 4, it is preferable to use a photocurable resin that is cured by ultraviolet irradiation, and specifically, butadiene acrylate, 7 silicone acrylate,
Urethane acrylate or the like is used for the buffer layer 3, and epoxy acrylate is used for the protective layer 4.

硬化後における緩衝層3の硬さはヤング率で1、0 K
g/mrl以下がよく、保護層4の硬さはヤング率で5
 Q I(q/’−以上がよい。
The hardness of the buffer layer 3 after curing is 1.0 K in terms of Young's modulus.
g/mrl or less, and the hardness of the protective layer 4 is Young's modulus of 5.
Q I (q/'- or more is better.

さらに上記両層3.4を形成する樹脂(光硬化性)を紫
外線照射型の硬化炉12によシ完全硬化するとき、その
硬化エネルギ(光エネルギ)は前記Esを上回ってよい
が、あまり大きな硬化エネルギを与えると樹脂の分解が
予測さ゛れ、したがってこの際の硬化エネルギはEsの
数倍程度に抑えておくのがよい。
Furthermore, when the resin (photocurable) forming the above-mentioned both layers 3.4 is completely cured in the ultraviolet ray irradiation type curing furnace 12, the curing energy (light energy) may exceed the above Es, but it is too large. It is predicted that the resin will decompose when curing energy is applied, so it is preferable to keep the curing energy at this time to about several times Es.

また、緩衝層3を硬化炉10により半硬化状態とした場
合、外観状態、硬さは硬化状態と比べてさほど低下せず
、したがって同層3の外周を保護層用樹脂て被覆すると
き、特に問題は生じない。
In addition, when the buffer layer 3 is semi-cured in the curing furnace 10, the appearance and hardness do not decrease much compared to the cured state. Therefore, when covering the outer periphery of the layer 3 with a protective layer resin, No problems arise.

つぎに本発明方法の具体例について説明すると、第2図
で述べた方法により前記実験例で述べたと同様の被覆光
ファイバ1をつくるとき、緩衝層3、保護層4をつぎの
ような仕様で形成した。
Next, a specific example of the method of the present invention will be described. When a coated optical fiber 1 similar to that described in the experimental example is manufactured by the method described in FIG. 2, the buffer layer 3 and the protective layer 4 are formed with the following specifications. Formed.

緩衝層3の場合 材質:ウレタンアクリレート(硬化特性第硬化前の粘度
:2500CP 硬化後のヤング率: 0. I Kg/myl半硬化時
のエネルギ:1.5ジユ一ル/crA保護層4の場合 拐質:エポキシアクリレート 硬化前の粘度:5500CP 硬化後のヤング率: 70 K9/crlこのような仕
様で製造された被覆光ファイバ1は張力巻きによる損失
増加が0.5 d B/Kmと小さく、1%のスクリー
ニングテストを施しても緩衝層3、保護層4相互の層間
剥離が生じなかった。
For buffer layer 3 Material: Urethane acrylate (curing characteristics Viscosity before curing: 2500 CP Young's modulus after curing: 0. I Kg/myl Energy during semi-curing: 1.5 units/crA For protective layer 4 Fiber material: Epoxy acrylate Viscosity before curing: 5500 CP Young's modulus after curing: 70 K9/crl The coated optical fiber 1 manufactured according to these specifications has a small increase in loss due to tension winding of 0.5 dB/Km. Even when a 1% screening test was performed, no delamination occurred between the buffer layer 3 and the protective layer 4.

さらに上記被覆光ファイバ1を6本、第5図に示すとと
く04調φのステンレス製テンンヨンメンバ16の周囲
に撚シ合わせ、その撚合物の外周ならびに隙間にシリコ
ーンアクリレートを施し、これを紫外線硬化させること
により1.3間φの充実層16を形成して光ケーブルユ
ニット17とした。
Further, six coated optical fibers 1 are twisted together around a stainless steel tension member 16 of 04 diameter diameter as shown in FIG. By curing with ultraviolet rays, a solid layer 16 having a diameter of 1.3 mm was formed to form an optical cable unit 17.

このユニット17は伝送損失に変化のない完全充填の液
密型となシ、充実層16のヤング率が前記保護層4のヤ
ング率よりも3桁以上率さいため、各心線ごとに分離す
るだめの端末処理が容易に行なえた。
This unit 17 is a completely filled liquid-tight type with no change in transmission loss, and since the Young's modulus of the solid layer 16 is three orders of magnitude higher than the Young's modulus of the protective layer 4, it is separated into each core. I was able to easily handle the useless terminals.

以上説明した通り、本発明は光フアイバの外周に緩衝層
と該緩衝層外周の保護層とを形成する被覆光ファイバの
製造方法において、上記緩衝層の材質は軟質硬化性樹脂
とし、上記保護層の材質は硬質硬化性樹脂とし、光ファ
イバの外周に未硬化の軟質硬化性樹脂を塗布するととも
に同樹脂に硬化エネルギを与えてこれを半硬化状態とし
、その後、半硬化状態の軟質硬化性樹脂外周に未硬化の
硬質硬化性樹脂を塗布し、これに硬化エネルギを与えて
該未硬化の硬質硬化性樹脂ならびに上記半硬化状態の軟
質硬化性樹脂を完全に硬化することを特徴としているか
ら、単に対側圧特性がよいだけでなく、緩衝層と保護層
との密着性にも優れる被覆光ファイバが製造できる。
As explained above, the present invention provides a method for manufacturing a coated optical fiber in which a buffer layer is formed on the outer periphery of the optical fiber and a protective layer around the outer periphery of the buffer layer, wherein the material of the buffer layer is a soft curable resin, and the material of the buffer layer is a soft hardening resin. The material of is a hard curable resin, an uncured soft curable resin is applied to the outer periphery of the optical fiber, and curing energy is applied to the resin to make it into a semi-hardened state, and then semi-hardened soft curable resin is applied. The method is characterized in that an uncured hard curable resin is applied to the outer periphery and curing energy is applied thereto to completely cure the uncured hard curable resin and the semi-cured soft curable resin. A coated optical fiber that not only has good contralateral pressure characteristics but also excellent adhesion between the buffer layer and the protective layer can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被覆光ファイバの断面図、第2図は架橋密度と
硬化エネルギとの関係を示した図、第3図は本発明方法
の1実施例を略示した図、第4図はウレタンアクリレー
トの硬化特性を示した図、第5図は本発明方法により製
造された被覆光ファイバで構成した光ケーブルユニット
の断面図である。 1・0・e被覆光ファイバ 2■・自・光ファイバ 3・0・・緩衝層 4・・・・・保護層 9.11 ・・魯・・ダイス型コータ 10.12・・・・−硬化炉 特許庁長官殿 年 1.事件の表示 特願昭58−2474872、発明の
名称 被覆光ファイバの製造方法3、補正をする者 事件との関係 特許出願人 古河電気工業株式会社 4、復式 理 人 午ic+。 明細jlfの「発明の詳細な説明」の欄7 補正の内容
FIG. 1 is a cross-sectional view of a coated optical fiber, FIG. 2 is a diagram showing the relationship between crosslinking density and curing energy, FIG. 3 is a diagram schematically showing an embodiment of the method of the present invention, and FIG. FIG. 5, which is a diagram showing the curing characteristics of acrylate, is a sectional view of an optical cable unit composed of coated optical fibers manufactured by the method of the present invention. 1, 0, e-coated optical fiber 2 ■, self-optical fiber 3, 0, buffer layer 4, protective layer 9,11, die coater 10,12, - hardening Dear Commissioner of the Reactor Patent Office, Year 1. Indication of the case: Japanese Patent Application No. 58-2474872, title of the invention: Method for manufacturing coated optical fiber 3, person making the amendment Relationship with the case: Patent applicant: Furukawa Electric Co., Ltd. Column 7 of “Detailed description of the invention” of specification jlf Contents of amendment

Claims (2)

【特許請求の範囲】[Claims] (1) 光ファイバの外周に緩衝層と該緩衝層外周の保
護層とを形成する被覆光ファイバの製造方法において、
上記緩衝層の材質は軟質硬化性樹脂とし、上記保護層の
材質は硬質硬化性樹脂とし、光ファイバの外周に未硬化
の軟質硬化性樹脂を塗布するとともに同樹脂に硬化エネ
ルギを力えてこれを半硬化状態とし、その後、半硬化状
態の軟質硬化性樹脂外周に未硬化の硬質硬化性樹脂を塗
布し、これに硬化エネルギを与えて該未硬化の硬質硬化
性樹脂ならびに上記半硬化状態の軟質硬化性樹脂を完全
に硬化させる被覆光ファイバの製造方法。
(1) A method for manufacturing a coated optical fiber in which a buffer layer is formed on the outer periphery of the optical fiber and a protective layer around the outer periphery of the buffer layer,
The material of the buffer layer is a soft curable resin, and the material of the protective layer is a hard curable resin.The uncured soft curable resin is applied to the outer periphery of the optical fiber, and the resin is applied with curing energy. After that, an uncured hard curable resin is applied to the outer periphery of the semi-cured soft curable resin, and curing energy is applied to the uncured hard curable resin and the semi-cured soft curable resin. A method for manufacturing a coated optical fiber that completely cures a curable resin.
(2)緩衝層用の軟質硬化性樹脂、保護層用の硬質硬化
性樹脂が光硬化性樹脂からなる特許請求の範囲第1項記
載の被覆光ファイバの製造方法。
(2) The method for manufacturing a coated optical fiber according to claim 1, wherein the soft curable resin for the buffer layer and the hard curable resin for the protective layer are made of a photocurable resin.
JP58247487A 1983-12-29 1983-12-29 Manufacture of covered optical fiber Granted JPS60171246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247487A JPS60171246A (en) 1983-12-29 1983-12-29 Manufacture of covered optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247487A JPS60171246A (en) 1983-12-29 1983-12-29 Manufacture of covered optical fiber

Publications (2)

Publication Number Publication Date
JPS60171246A true JPS60171246A (en) 1985-09-04
JPH0551545B2 JPH0551545B2 (en) 1993-08-02

Family

ID=17164193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247487A Granted JPS60171246A (en) 1983-12-29 1983-12-29 Manufacture of covered optical fiber

Country Status (1)

Country Link
JP (1) JPS60171246A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202842A (en) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> High-speed coating of optical fiber with ultraviolet curing resin
JPS63128309A (en) * 1986-11-18 1988-05-31 Mitsubishi Cable Ind Ltd Optical fiber
JPH01214808A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH01214809A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH01260406A (en) * 1988-04-12 1989-10-17 Furukawa Electric Co Ltd:The Coated optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202842A (en) * 1986-03-03 1987-09-07 Nippon Telegr & Teleph Corp <Ntt> High-speed coating of optical fiber with ultraviolet curing resin
JPH0723239B2 (en) * 1986-03-03 1995-03-15 日本電信電話株式会社 High-speed coating method for optical fiber coated with UV curable resin
JPS63128309A (en) * 1986-11-18 1988-05-31 Mitsubishi Cable Ind Ltd Optical fiber
JPH01214808A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH01214809A (en) * 1988-02-23 1989-08-29 Sumitomo Electric Ind Ltd Fiber for light transmission
JPH01260406A (en) * 1988-04-12 1989-10-17 Furukawa Electric Co Ltd:The Coated optical fiber

Also Published As

Publication number Publication date
JPH0551545B2 (en) 1993-08-02

Similar Documents

Publication Publication Date Title
US4725453A (en) Method of production of a reinforced optical fiber
JPH01133011A (en) Optical fiber with synthetic resin coating and manufacture thereof
KR20000070290A (en) Coated optical fiber and its manufacturing method
US4741597A (en) Method of manufacturing an optical fibre having a synthetic resin coating and optical fibre having a synthetic resin coating manufactured according to the method
US6004675A (en) Optical glass fiber
KR100324176B1 (en) Manufacturing method of optical fiber tape core wire
WO2018025896A1 (en) Optical fiber and method for producing optical fiber
JPS60171246A (en) Manufacture of covered optical fiber
JPS60262115A (en) Fiber for optical transmission
JPH0776118B2 (en) Manufacturing method of coated optical fiber
JPH09113773A (en) Coated optical fiber ribbon
JPS58211707A (en) Coated optical fiber
JP2928723B2 (en) Optical fiber manufacturing method
JP2583996B2 (en) Optical fiber coating equipment
JPH01167264A (en) Method for coating optical fiber
JPH05241052A (en) Coated optical fiber
JPS61249008A (en) Optical fiber
JP2547773B2 (en) Optical fiber manufacturing method
JPH03163505A (en) Coated optical fiber
JPS63168610A (en) Protective-coating article
JPS61155230A (en) Preparation of core of optical fiber
JPH095591A (en) Ultraviolet curing resin packing type optical fiber unit
JPH03192211A (en) Spacer for carrying optical fiber and production thereof
JPS6183651A (en) Production of fiber-reinforced optical fiber
JPH09138330A (en) High-strength optical fiber cord

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees