JP4279214B2 - Colored optical fiber - Google Patents

Colored optical fiber Download PDF

Info

Publication number
JP4279214B2
JP4279214B2 JP2004192035A JP2004192035A JP4279214B2 JP 4279214 B2 JP4279214 B2 JP 4279214B2 JP 2004192035 A JP2004192035 A JP 2004192035A JP 2004192035 A JP2004192035 A JP 2004192035A JP 4279214 B2 JP4279214 B2 JP 4279214B2
Authority
JP
Japan
Prior art keywords
optical fiber
layer
colored
colored layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004192035A
Other languages
Japanese (ja)
Other versions
JP2006011309A (en
Inventor
高義 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004192035A priority Critical patent/JP4279214B2/en
Publication of JP2006011309A publication Critical patent/JP2006011309A/en
Application granted granted Critical
Publication of JP4279214B2 publication Critical patent/JP4279214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

本発明は水中に長期浸漬しても光伝送損失が増加しない、耐水性に優れた着色光ファイバ素線に関する。   The present invention relates to a colored optical fiber excellent in water resistance in which optical transmission loss does not increase even when immersed in water for a long period of time.

着色光ファイバ素線は、一般的には、裸光ファイバ表面にソフト材と呼ばれる樹脂組成物からなる柔軟なプライマリ層と、その外側に、ハード材と呼ばれる樹脂組成物からなる剛性の高いセカンダリ層を有する光ファイバ素線の外周に、顔料を有する樹脂組成物からなる着色層を有する構造を持つ。
従来、着色光ファイバ素線は、水中に長期間浸漬されると、裸光ファイバとプライマリ層との界面が部分的に剥離し、該着色光ファイバ素線は長手方向に不均一なマイクロベンドを受け、光伝送損失が大きく増加するという問題があった。
これに関して、特許文献1では、裸光ファイバとプライマリ層界面の密着力を高く調整することにより改善が試みられているが十分ではない。
特開平9−5587号公報
A colored optical fiber is generally composed of a flexible primary layer made of a resin composition called a soft material on the surface of a bare optical fiber, and a highly rigid secondary layer made of a resin composition called a hard material on the outside thereof. It has the structure which has the colored layer which consists of a resin composition which has a pigment in the outer periphery of the optical fiber strand which has these.
Conventionally, when a colored optical fiber is immersed in water for a long period of time, the interface between the bare optical fiber and the primary layer is partially peeled off, and the colored optical fiber has a non-uniform microbend in the longitudinal direction. As a result, there has been a problem that the optical transmission loss greatly increases.
In this regard, although Patent Document 1 attempts to improve by adjusting the adhesion between the bare optical fiber and the primary layer to be high, it is not sufficient.
Japanese Patent Application Laid-Open No. 9-5587

本発明は、水中に長期浸漬しても裸光ファイバとプライマリ層との界面が部分的に剥離することがなく、光伝送損失が増加しない、耐水性に優れた着色光ファイバ素線を提供することを目的とする。   The present invention provides a colored optical fiber excellent in water resistance, in which the interface between the bare optical fiber and the primary layer does not partially peel even when immersed in water for a long period of time, and the optical transmission loss does not increase. For the purpose.

本発明者らは前記課題を解決するために鋭意検討を行った結果、水中浸漬された裸光ファイバとプライマリ層との界面が部分的に剥離する現象は、着色層を構成する紫外線硬化樹脂の硬化前の透過度平均値が関係しており、この透過度平均値をある範囲に限定することにより、前記の問題が解決し得ることを見出し、本発明に至った。
これは、光ファイバ素線の製造工程において、一度、紫外線硬化された紫外線硬化樹脂からなるプライマリ層が、後の着色工程において、着色層を透過した紫外線で再度硬化されるため、一度紫外線硬化されてある程度の架橋構造が完成したプライマリ層のマトリクスが、再度の紫外線照射により未反応の残留物が再度架橋することとなり、マトリクス内部により大きい歪が生じることが関与していると考えられる。
本発明の着色光ファイバ素線は、裸光ファイバの外周に少なくとも1つの被覆層を有する線引き後の光ファイバ素線の外周に着色層を被覆した着色光ファイバ素線であって、前記裸光ファイバに接する前記被覆層、前記着色層に接する前記被覆層、及び前記着色層が紫外線硬化樹脂からなり、前記着色層を構成する紫外線硬化樹脂の硬化前の波長300〜450nmの光に対する透過度平均値が0.05〜0.55であることを特徴とする。
As a result of intensive studies to solve the above problems, the present inventors have found that the phenomenon in which the interface between the bare optical fiber immersed in water and the primary layer is partially peeled off is the UV curable resin constituting the colored layer. The average transmittance before curing is related, and it has been found that the above problem can be solved by limiting the average transmittance to a certain range.
This is because the primary layer made of UV-cured resin that has been UV-cured once in the manufacturing process of the optical fiber is again cured with UV light that has passed through the colored layer in the subsequent coloring process, and therefore UV-cured once. Thus, it is considered that the matrix of the primary layer in which a certain degree of cross-linking structure has been completed involves the cross-linking of the unreacted residue again by the re-irradiation of ultraviolet rays, resulting in greater distortion inside the matrix.
The colored optical fiber of the present invention is a colored optical fiber in which a colored layer is coated on an outer periphery of a drawn optical fiber having at least one coating layer on the outer periphery of the bare optical fiber, The coating layer in contact with the fiber, the coating layer in contact with the colored layer, and the colored layer are made of an ultraviolet curable resin, and the transmittance average with respect to light having a wavelength of 300 to 450 nm before curing of the ultraviolet curable resin constituting the colored layer The value is 0.05 to 0.55.

本発明の着色光ファイバ素線は、着色層の硬化が十分で、水中に長期間浸漬されても裸光ファイバとプライマリ層との界面が部分的に剥離することがなく、長期信頼性の高い耐水特性を有するという優れた効果を奏する。   The colored optical fiber of the present invention has a long-term reliability because the colored layer is sufficiently cured and the interface between the bare optical fiber and the primary layer does not partially peel even when immersed in water for a long time. There is an excellent effect of having water resistance.

以下、本発明の好ましい一実施態様について、添付の図面に基づいて詳細に説明をする。
図1は、本発明の着色光ファイバ素線の好ましい一実施態様の横断面図である。本発明の着色光ファイバ素線20は、裸光ファイバ1の外周に、緩衝層である柔軟なプライマリ層2と、その外側に、強度保持層である剛性の高いセカンダリ層3を有する光ファイバ素線10の外周に、識別が可能な着色層4を有する構造である。
本発明に用いられる裸光ファイバ1は特に限定されないが、石英系シングルモード、石英系マルチモード、石英系ステップインデックス、石英系分散シフト、多成分系、プラスティック系、プラスティッククラッド系等を用いることができる。
本発明の光ファイバ素線におけるプライマリ層2には、紫外線硬化樹脂が用いられる。セカンダリ層3は特に限定されないが、主に紫外線硬化型の樹脂組成物(以下、単にUV樹脂という)が用いられ、硬化速度の観点からウレタン−アクリレート系やエポキシ−アクリレート系のオリゴマーを主成分としたものが好適である。
着色層4は特に限定されないが、顔料、隠蔽材(例えばチタンホワイト)が添加されたウレタン−アクリレート系やエポキシ−アクリレート系のオリゴマーを主成分としたUV樹脂が用いられる。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of a preferred embodiment of the colored optical fiber of the present invention. The colored optical fiber 20 of the present invention includes an optical fiber element having a flexible primary layer 2 that is a buffer layer on the outer periphery of a bare optical fiber 1 and a highly rigid secondary layer 3 that is a strength holding layer on the outside thereof. This is a structure having a color layer 4 that can be identified on the outer periphery of the line 10.
The bare optical fiber 1 used in the present invention is not particularly limited, and a quartz single mode, a quartz multimode, a quartz step index, a quartz dispersion shift, a multicomponent system, a plastic system, a plastic cladding system, or the like may be used. it can.
For the primary layer 2 in the optical fiber of the present invention, an ultraviolet curable resin is used. The secondary layer 3 is not particularly limited, but an ultraviolet curable resin composition (hereinafter simply referred to as UV resin) is mainly used, and a urethane-acrylate or epoxy-acrylate oligomer is the main component from the viewpoint of curing speed. That is suitable.
The colored layer 4 is not particularly limited, and a UV resin mainly composed of a urethane-acrylate or epoxy-acrylate oligomer to which a pigment or a masking material (for example, titanium white) is added is used.

本発明の光ファイバ素線は、任意の方法で作製することができる。例えば、気相軸付法(VAD)法や内付化学気相堆積法(MCVD法)等によって光ファイバ用母材を形成し
、光ファイバ母材を線引き炉によりその先端から加熱溶融して、所定の外径例えば、約100〜200μmの光ファイバの裸線に溶融紡糸する。この光ファイバは、ファイバ冷却装置により樹脂被覆に適する温度まで冷却された後、一次被覆用樹脂被覆装置を通り、一次被覆用UV樹脂を所定の厚さにその周囲に塗布され、次いで一次被覆用紫外線硬化装置に入り、紫外線照射ランプに照射され、塗布された前記UV樹脂が架橋・硬化される。続いて、一次被覆用外径測定器を通り、二次被覆用樹脂被覆装置で二次被覆用UV樹脂を塗布され、二次被覆用紫外線硬化装置に入り紫外線により塗布されたUV樹脂が架橋・硬化される。UV樹脂を被覆された光ファイバは、二次被覆用外径測定器を通り、キャプスタン又はプーリーを経て巻取り装置にてボビンに巻取られる。
一次被覆および二次被覆が施され、ボビンに巻きとられた光ファイバ素線は、別工程にて再度巻きほぐされ、着色層用樹脂被覆装置を通り、着色層用UV樹脂を所定の厚さにその周囲に塗布され、次いで着色層用紫外線硬化装置に入り、紫外線照射ランプに照射され、塗布された前記UV樹脂が架橋・硬化される(例えば特開2003−212605号公報参照)。
The optical fiber of the present invention can be produced by any method. For example, a preform for an optical fiber is formed by a vapor phase axis method (VAD) method or an internal chemical vapor deposition method (MCVD method), and the optical fiber preform is heated and melted from its tip by a drawing furnace, Melt spinning is performed on a bare wire of an optical fiber having a predetermined outer diameter, for example, about 100 to 200 μm. This optical fiber is cooled to a temperature suitable for resin coating by a fiber cooling device, then passes through a resin coating device for primary coating, a UV resin for primary coating is applied to the surroundings to a predetermined thickness, and then the primary coating is used. It enters an ultraviolet curing device, is irradiated with an ultraviolet irradiation lamp, and the applied UV resin is crosslinked and cured. Subsequently, the secondary coating UV resin is applied by the secondary coating resin coating device through the primary coating outer diameter measuring device, and then enters the secondary coating ultraviolet curing device, and the UV resin applied by ultraviolet rays is cross-linked. Cured. The optical fiber coated with the UV resin passes through the outer diameter measuring instrument for secondary coating, and is wound around a bobbin by a winding device via a capstan or a pulley.
The optical fiber strands that have been subjected to the primary coating and the secondary coating and wound on the bobbin are unwound again in a separate process, passed through the colored layer resin coating apparatus, and the colored layer UV resin is passed through a predetermined thickness. Then, it is applied to the surroundings, and then enters the ultraviolet curing device for the colored layer, irradiated with an ultraviolet irradiation lamp, and the applied UV resin is crosslinked and cured (see, for example, JP-A-2003-212605).

UV樹脂は、一般的に、不飽和基(例えばアクリロイル基)を含有するラジカル重合性オリゴマー、反応性希釈剤としての反応性モノマー、光エネルギーを吸収してラジカル等の活性種を発生する重合開始剤を基本的構成成分として含有しており、更に各種添加剤(顔料、着色剤、紫外線吸収剤、光安定剤、増感剤、連鎖移動剤、重合禁止剤、シランカップリング剤、レベリング剤、滑剤、酸化安定剤、老化防止剤、耐侯剤、保存安定剤、可塑剤、界面活性剤等)等が必要量配合されたものである。また、UV樹脂は主にラジカル重合性オリゴマーの種類、構造、分子量、及び反応性モノマー、重合開始剤の種類を選定することにより、及びラジカル重合性オリゴマー、反応性モノマー、重合開始剤の配合比を調整することによって、着色光ファイバ素線のプライマリ層用途、セカンダリ層用途、着色層用途として求められる各々の特性(透過度、硬化後のヤング率、硬化速度、吸水率等)のものが得られる。   In general, a UV resin is a radically polymerizable oligomer containing an unsaturated group (for example, acryloyl group), a reactive monomer as a reactive diluent, a polymerization initiator that absorbs light energy and generates active species such as radicals. In addition, it contains various additives (pigments, colorants, UV absorbers, light stabilizers, sensitizers, chain transfer agents, polymerization inhibitors, silane coupling agents, leveling agents, A necessary amount of a lubricant, an oxidation stabilizer, an anti-aging agent, an anti-mold agent, a storage stabilizer, a plasticizer, a surfactant, etc.) is blended. UV resin is mainly selected by selecting radical polymerization oligomer type, structure, molecular weight, and reactive monomer, polymerization initiator type, and the ratio of radical polymerizable oligomer, reactive monomer, polymerization initiator. By adjusting the above, it is possible to obtain each of the characteristics (transmissivity, Young's modulus after curing, curing rate, water absorption rate, etc.) required for the primary layer application, secondary layer application, and colored layer application of the colored optical fiber. It is done.

例えば、本発明に用いられるUV樹脂は、プライマリ層用途としては好ましくは硬化後のヤング率が2.5MPa以下、より好ましくは1.5MPa以下であり、セカンダリ層用途としては好ましくは硬化後のヤング率が100〜2000MPa、より好ましくは400〜1000MPaであり、着色層用途としては好ましくは硬化後のヤング率が100〜3000MPa、より好ましくは200〜2000MPaである。   For example, the UV resin used in the present invention preferably has a Young's modulus after curing of 2.5 MPa or less, more preferably 1.5 MPa or less as a primary layer application, and preferably 1.5 MPa or less as a secondary layer application. The rate is 100 to 2000 MPa, more preferably 400 to 1000 MPa, and for use in the colored layer, the Young's modulus after curing is preferably 100 to 3000 MPa, more preferably 200 to 2000 MPa.

本発明の着色光ファイバ素線において、着色層を構成するUV樹脂の硬化前の波長300〜450nmの光に対する透過度平均値は0.05〜0.55であり、好ましくは、0.1〜0.5である。該透過度平均値が0.05未満では、着色層とセカンダリ層との界面部分の硬化が不十分になり、着色層はセカンダリ層界面から容易に剥離、欠落してしまい、識別が不可能になる。一方、該透過度平均値が0.55を超えると、着色光ファイバ素線を水中に浸漬したとき、裸光ファイバとプライマリ層との界面で部分的な剥離が起こりやすく、伝送損失の増加が大きくなりやすい。   In the colored optical fiber of the present invention, the transmittance average value for light having a wavelength of 300 to 450 nm before curing of the UV resin constituting the colored layer is 0.05 to 0.55, preferably 0.1 to 0.15. 0.5. When the average transmittance is less than 0.05, the interface portion between the colored layer and the secondary layer is not sufficiently cured, and the colored layer is easily peeled off from the interface of the secondary layer and missing, making identification impossible. Become. On the other hand, when the average transmittance exceeds 0.55, when the colored optical fiber is immersed in water, partial peeling is likely to occur at the interface between the bare optical fiber and the primary layer, resulting in an increase in transmission loss. Easy to grow.

本発明における透過度は以下の式によって表される。
T=I/I0=1/10A=1/10εcl
式中、Tは透過度を表し、Iは透過光強度を表し、I0は入射光強度を表し、Aは吸光度を表し、εは分子吸光係数を表し、cは吸収物質の濃度を表し、lは光が透過する媒体の距離を表す。
The transmittance in the present invention is expressed by the following equation.
T = I / I 0 = 1/10 A = 1/10 εcl
Where T represents the transmission, I represents the transmitted light intensity, I 0 represents the incident light intensity, A represents the absorbance, ε represents the molecular extinction coefficient, c represents the concentration of the absorbing material, l represents the distance of the medium through which light passes.

着色層を構成するUV樹脂の硬化前の透過度は、例えば以下のようにして測定することができる。石英ガラス板(例えば40mm×30mm×2mm)上に、着色層用UV樹脂を1g滴下し、スピンコーターを用いて、石英ガラス板上に、着色層用UV樹脂の5μm厚さの均一な塗布層を形成させる。この石英ガラス板上に形成された着色層用UV樹脂塗布層について、分光光度計を用いて、吸光度Aを測定する。測定波長は300nmから450nmまでで、0.2nm間隔で行う。このようにして硬化前の液状の着色層用UV樹脂の各波長での吸光度Aを測定し、着色層厚さが5μmであった場合の各波長における透過度をT(5)算出する。従って、着色光ファイバ素線の着色層厚さがt(μm)の場合の透過度T(t)はT(t)={T(5)}t/5として算出できる。
本発明では、300nmから450nmまでの紫外線を0.2nm間隔で測定された透過度を単純に算術平均したものを透過度平均値とする。
図2に、上記方法により5μm厚の未硬化の着色層を測定した透過度特性、着色層の透過度平均値Tの一例を特性図として示す。図示した例では着色層の透過度平均値Tは0.38である。
The transmittance before curing of the UV resin constituting the colored layer can be measured, for example, as follows. 1 g of the colored layer UV resin is dropped on a quartz glass plate (for example, 40 mm × 30 mm × 2 mm), and a 5 μm thick uniform coating layer of the colored layer UV resin is applied on the quartz glass plate using a spin coater. To form. The absorbance A of the colored layer UV resin coating layer formed on the quartz glass plate is measured using a spectrophotometer. The measurement wavelength is 300 nm to 450 nm, and the measurement is performed at 0.2 nm intervals. In this way, the absorbance A at each wavelength of the liquid colored layer UV resin before curing is measured, and the transmittance at each wavelength when the colored layer thickness is 5 μm is calculated as T (5). Therefore, the transmittance T (t) when the colored layer thickness of the colored optical fiber is t (μm) can be calculated as T (t) = {T (5)} t / 5 .
In the present invention, the transmittance average value is obtained by simply arithmetically averaging the transmittance measured at intervals of 0.2 nm for ultraviolet rays from 300 nm to 450 nm.
FIG. 2 shows, as a characteristic diagram, an example of a transmittance characteristic obtained by measuring an uncured colored layer having a thickness of 5 μm by the above-described method, and an average transmittance value T of the colored layer. In the illustrated example, the average transmittance T of the colored layer is 0.38.

着色層の透過度平均値Tは前記着色層用UV樹脂の基本的構成成分であるラジカル重合性オリゴマーの種類、重合開始剤の種類及び添加量、並びに顔料、着色剤、隠蔽材の種類、添加量、着色層厚の影響を受ける。
また、UV樹脂は硬化後に透過度平均値Tが0.05程度大きくなるのが一般的であるため、この向上を想定して材料を選定することが好ましい。すなわち、本発明の着色光ファイバ素線としては、硬化後の着色層は波長300〜450nmの光における透過度平均値が0.1〜0.6であることが好ましい。
The average transmittance T of the colored layer is the kind of radical polymerizable oligomer, the kind and addition amount of the polymerization initiator, which are the basic constituent components of the UV resin for the colored layer, and the kind and addition of the pigment, the colorant and the masking material. It is affected by the amount and thickness of the colored layer.
In addition, since the UV resin generally has an average transmittance T of about 0.05 after curing, it is preferable to select a material in consideration of this improvement. That is, as the colored optical fiber of the present invention, the colored layer after curing preferably has an average transmittance of 0.1 to 0.6 in light having a wavelength of 300 to 450 nm.

本発明の着色光ファイバ素線おけるプライマリ層、セカンダリ層、及び着色層の厚み(硬化後)は特に制限されないが、プライマリ層とセカンダリ層は約10〜約50μm、着色層は約0.5〜約10μmが好ましい。例えば直径約125μmの裸光ファイバを使用する場合は、着色層の外径が240〜270μm程度となるように構成されることが一般的である。なお、上記の層の厚みは硬化中に1〜50%程度縮小する場合があるため、そのような場合は厚みの縮小を想定して硬化前の樹脂層の厚みを設定することが好ましい。   The thickness (after curing) of the primary layer, the secondary layer, and the colored layer in the colored optical fiber of the present invention is not particularly limited, but the primary layer and the secondary layer are about 10 to about 50 μm, and the colored layer is about 0.5 to About 10 μm is preferred. For example, when a bare optical fiber having a diameter of about 125 μm is used, the colored layer is generally configured so that the outer diameter of the colored layer is about 240 to 270 μm. In addition, since the thickness of said layer may reduce about 1 to 50% during hardening, in such a case, it is preferable to set the thickness of the resin layer before hardening supposing thickness reduction.

次に、本発明について実施例に基づきさらに詳細に説明する。
(着色光ファイバ素線の作製)
外径125μmの石英系シングルモード裸光ファイバ1上に、以下のプライマリ樹脂によりプライマリ層2を形成した(外径約195μm)。
[プライマリ樹脂] ポリプロピレングリコール500g(数平均分子量2000)、2,4−トリレンジイソシアネート60g、2−ヒドロキシエチルアクリレート30gから合成されたポリエーテル系ウレタンアクリレート(数平均分子量5000)を前記の重合性オリゴマー(I)とし、反応性モノマー(II)と反応させ、0.2mm厚の硬化シートとした時のヤング率が1.0MPaに調整された樹脂組成物。
Next, the present invention will be described in more detail based on examples.
(Production of colored optical fiber)
A primary layer 2 was formed of the following primary resin on a quartz single-mode bare optical fiber 1 having an outer diameter of 125 μm (outer diameter: about 195 μm).
[Primary Resin] Polypropylene glycol acrylate (number average molecular weight 5000) synthesized from 500 g of polypropylene glycol (number average molecular weight 2000), 60 g of 2,4-tolylene diisocyanate, and 30 g of 2-hydroxyethyl acrylate is used as the polymerizable oligomer. A resin composition having a Young's modulus adjusted to 1.0 MPa when (I) is reacted with the reactive monomer (II) to obtain a cured sheet having a thickness of 0.2 mm.

更にその上に、以下のセカンダリ樹脂によりセカンダリ層3を形成し、光ファイバ素線10を得た(外径約245μm)。
[セカンダリ樹脂] ポリテトラメチレングリコールとアジピン酸と1,6−ヘキサンジオールの共重合ポリエステルポリオール500g(数平均分子量850)、イソフォロンジイソシアネート246g、2−ヒドロキシエチルアクリレート137gから合成されたポリエステル系ウレタンアクリレート(数平均分子量1500)を重合性オリゴマーとし、反応性モノマー(II)と反応させ、0.2mm厚の硬化シートとした時のヤング率が600MPaに調整された樹脂組成物。
Furthermore, the secondary layer 3 was formed with the following secondary resin on it, and the optical fiber strand 10 was obtained (outside diameter about 245 micrometers).
[Secondary resin] Polyester methylene acrylate synthesized from polytetramethylene glycol, adipic acid and 1,6-hexanediol copolymer polyester polyol 500g (number average molecular weight 850), isophorone diisocyanate 246g, 2-hydroxyethyl acrylate 137g A resin composition having a Young's modulus adjusted to 600 MPa when (number average molecular weight 1500) is a polymerizable oligomer and reacted with a reactive monomer (II) to form a 0.2 mm thick cured sheet.

更に、セカンダリ層3上に、液状の着色層4用UV樹脂(下記表1記載)を塗布し、引き続き紫外線を照射して硬化させ、厚さ2.5〜10μmの着色層4を形成し、下記表2に示す実施例1〜9、比較例1〜4の着色光ファイバ素線20を得た(外径約250〜265μm)。
尚、光ファイバ素線、着色光ファイバ素線の線速は1500m/minであり、紫外線照射は、プライマリ層、セカンダリ層、着色層ともに酸素濃度3%以下、UV照度2000mW/cm2、UV照射量100mJ/cm2の条件で行った。また、硬化シートのヤング率は、大気中、UV照度200mW/cm2、UV照射量200mJ/cm2の条件で硬化させた0.2mm厚シートを別途作製し、これについて23℃、引張り速度1mm/minの条件で引張り試験を行い、2.5%歪時の引張り強さから算出した。
Further, on the secondary layer 3, a liquid UV resin for the colored layer 4 (described in Table 1 below) is applied and subsequently cured by irradiating with ultraviolet rays to form a colored layer 4 having a thickness of 2.5 to 10 μm. The colored optical fiber strands 20 of Examples 1 to 9 and Comparative Examples 1 to 4 shown in Table 2 below were obtained (outer diameter: about 250 to 265 μm).
The linear velocity of the optical fiber strand and the colored optical fiber strand is 1500 m / min, and the ultraviolet irradiation is performed for the primary layer, the secondary layer, and the colored layer with an oxygen concentration of 3% or less, a UV illuminance of 2000 mW / cm 2 , and UV irradiation. The amount was 100 mJ / cm 2 . The Young's modulus of the cured sheet was prepared by separately preparing a 0.2 mm thick sheet cured in the air under the conditions of UV illuminance of 200 mW / cm 2 and UV irradiation amount of 200 mJ / cm 2. The tensile test was performed under the condition of / min, and the tensile strength at 2.5% strain was calculated.

着色層4には、顔料、隠蔽材が未添加の状態で0.2mm硬化シートのヤング率が800MPa、及び1400MPaの二種類のウレタンアクリレート系UV樹脂に、顔料、隠蔽材(チタンホワイト)を添加したものを用い、顔料の添加量を調整して種々の透過度平均値とした着色層用UV樹脂を調製した。顔料としては、黒:カーボンブラック(東海カーボン社製、#8300、商品名)、赤:キナクリドン(CAS−No.980−26−7)、青:フタロシアニン(CAS−No.574−93−6)を用いた。各着色層用UV樹脂について表1に示す。   In the colored layer 4, the pigment and the masking material (titanium white) are added to two types of urethane acrylate UV resins having a Young's modulus of 800 MPa and 1400 MPa with no pigment and masking material added. The colored layer UV resin was prepared by adjusting the addition amount of the pigment to obtain various transmittance average values. As pigments, black: carbon black (manufactured by Tokai Carbon Co., Ltd., # 8300, trade name), red: quinacridone (CAS-No. 980-26-7), blue: phthalocyanine (CAS-No. 574-93-6) Was used. It shows in Table 1 about each UV resin for colored layers.

Figure 0004279214
Figure 0004279214

硬化前の着色層の波長領域300〜450nmにおける透過度平均値Tは、以下のようにして求めた。まず、着色光ファイバ素線の着色層用の硬化前の液状UV樹脂を石英ガラス板(40mm×30mm×2mm)上に1g滴下し、スピンコーターを用いて、石英ガラス板上に、着色層用UV樹脂の5μm厚さの均一な塗布層を形成させ、薄層UV樹脂試料を作製した。この石英ガラス板上に形成された着色層用UV樹脂塗布層について、分光光度計(HITACHI U−3410、商品名、日立計測器サービス(株)社製)を用いて吸光度Aを測定した。測定波長は300nmから450nmまでで、0.2nm間隔で行った。測定された各波長の吸光度Aの値から前記式より着色光ファイバ素線の着色層と同じ厚みである5μmの値に換算し、更に前記式により各波長の透過度を算出した。その際、300nmから450nmまで0.2nm間隔で測定された各波長の透過度を単純に算術平均したものを透過度平均値とした。   The transmittance average value T in the wavelength region of 300 to 450 nm of the colored layer before curing was determined as follows. First, 1 g of a liquid UV resin before curing for a colored layer of colored optical fiber strands is dropped on a quartz glass plate (40 mm × 30 mm × 2 mm), and the colored layer is applied on the quartz glass plate using a spin coater. A uniform coating layer of 5 μm thickness of UV resin was formed to prepare a thin layer UV resin sample. The absorbance A of the colored layer UV resin coating layer formed on the quartz glass plate was measured using a spectrophotometer (HITACHI U-3410, trade name, manufactured by Hitachi Instrument Service Co., Ltd.). The measurement wavelength was 300 nm to 450 nm, and the measurement was performed at 0.2 nm intervals. The measured value of absorbance A at each wavelength was converted to a value of 5 μm, which is the same thickness as the colored layer of the colored optical fiber, from the above equation, and the transmittance at each wavelength was calculated according to the above equation. At that time, the transmittance average value was obtained by simply arithmetically averaging the transmittance of each wavelength measured at intervals of 0.2 nm from 300 nm to 450 nm.

(着色光ファイバ素線の評価)
作製した着色光ファイバ素線20の温水浸漬後における裸光ファイバとプライマリ層間の剥離の有無、温水浸漬後のロス増について判定し、また、着色層のセカンダリ層との界面付近の硬化度の指標として、スポンジたわしで10回しごいた後の着色層の剥離の有無(着色層の硬化が不十分のとき着色層がセカンダリ層表面から剥離する)について判定した。結果を表2に示す。
(Evaluation of colored optical fiber)
Determination of presence or absence of peeling between the bare optical fiber and the primary layer after immersion of the produced colored optical fiber 20 in warm water and an increase in loss after immersion in warm water, and an index of the degree of cure near the interface between the colored layer and the secondary layer As a result, the presence or absence of peeling of the colored layer after squeezing with a sponge was determined (the colored layer peels from the secondary layer surface when the colored layer is not sufficiently cured). The results are shown in Table 2.

着色光ファイバ素線20の温水浸漬後における剥離の有無は、約1mの着色光ファイバ素線20を60℃のイオン交換水中に30日間浸漬後、光学顕微鏡を用いて透過光で100倍程度の倍率で裸光ファイバ1とプライマリ層2との界面を観察することによって判定した。剥離が全く無い場合を◎、極微小剥離(問題ないレベル)が存在する場合を○、剥離が有る場合を×として表2に示した。   The presence or absence of peeling after the colored optical fiber 20 is immersed in warm water is about 100 times the transmitted light using an optical microscope after the colored optical fiber 20 of about 1 m is immersed in ion exchange water at 60 ° C. for 30 days. The determination was made by observing the interface between the bare optical fiber 1 and the primary layer 2 at a magnification. Table 2 shows ◎ when there is no peeling at all, ○ when there is very little peeling (no problem level), and × when there is peeling.

着色光ファイバ素線20の温水浸漬後のロス増は、1km束取りした着色光ファイバ素線20を60℃のイオン交換水中に30日間浸漬させた後にOTDR(光時間領域反射測定器:Optical Time Domain Reflectometer)を用いて測定した。測定の際の波長は1550nmであった。ロス増は小さいほうが良く、0.05db/km以下が実用レベルである。   Loss increase of the colored optical fiber 20 after immersion in warm water is determined by OTDR (Optical Time Domain Reflectometer: Optical Time) after the colored optical fiber 20 bundled by 1 km is immersed in ion exchange water at 60 ° C. for 30 days. Measurement was performed using a Domain Reflectometer. The wavelength at the time of measurement was 1550 nm. The loss increase should be small, and 0.05 db / km or less is a practical level.

着色層4のセカンダリ層3との界面付近の硬化度の指標としての、着色光ファイバ素線20の着色層4の剥離の有無は、製造後の約30cmの着色光ファイバ素線20につき、スポンジたわしを用いて10回しごいた後、着色層4がセカンダリ層3表面から剥離したかどうか観察することによって判定した。剥離が全く無い場合を◎、微小剥離(問題ないレベル)が存在する場合を○、剥離が有る場合を×として表2に示した。   The presence or absence of peeling of the colored layer 4 of the colored optical fiber 20 as an index of the degree of cure in the vicinity of the interface between the colored layer 4 and the secondary layer 3 is determined by the sponge for the colored optical fiber 20 of about 30 cm after manufacture. After squeezing 10 times with a scrubber, it was determined by observing whether the colored layer 4 was peeled off from the surface of the secondary layer 3. Table 2 shows ◎ when there is no peeling, ○ when there is micro-peeling (no problem level), and x when there is peeling.

Figure 0004279214
Figure 0004279214

表2から明らかなように、着色層の硬化前の透過度平均値が0.55を超える比較例1及び2は、温水浸漬後に剥離があり、伝送損失の増加が大きかった。また、着色層の硬化前の透過度平均値が0.05未満の比較例3及び4は、着色層とセカンダリ層との界面部分の硬化が不十分で、着色層がセカンダリ層界面から剥離してしまった。これに対し、本発明の光ファイバ素線である実施例1〜9は着色層4がセカンダリ層3表面から剥離せず、着色層4の硬化が十分であり、60℃のイオン交換水中に30日間浸漬後でも、裸光ファイバ1とプライマリ層2との界面が部分的に剥離することがなく、ロス増が小さいことがわかった。   As is clear from Table 2, Comparative Examples 1 and 2 in which the average transmittance before curing of the colored layer exceeded 0.55 had peeling after immersion in hot water, and the increase in transmission loss was large. Further, in Comparative Examples 3 and 4 in which the average transparency before curing of the colored layer is less than 0.05, curing of the interface portion between the colored layer and the secondary layer is insufficient, and the colored layer peels off from the secondary layer interface. I have. On the other hand, in Examples 1 to 9, which are the optical fiber wires of the present invention, the colored layer 4 does not peel from the surface of the secondary layer 3, and the colored layer 4 is sufficiently cured. Even after immersion for a day, the interface between the bare optical fiber 1 and the primary layer 2 was not partially peeled, indicating that the loss increase was small.

本発明の着色光ファイバ素線の好ましい一実施態様の横断面図である。1 is a cross-sectional view of a preferred embodiment of a colored optical fiber according to the present invention. 透過度の一例を示す特性図である。It is a characteristic view which shows an example of the transmittance | permeability.

符号の説明Explanation of symbols

1 裸光ファイバ
2 プライマリ層
3 セカンダリ層
4 着色層
10 光ファイバ素線
20 着色光ファイバ素線
DESCRIPTION OF SYMBOLS 1 Bare optical fiber 2 Primary layer 3 Secondary layer 4 Colored layer 10 Optical fiber strand 20 Colored optical fiber strand

Claims (1)

裸光ファイバの外周に少なくとも1つの被覆層を有する線引き後の光ファイバ素線の外周に着色層を被覆した着色光ファイバ素線であって、前記裸光ファイバに接する前記被覆層、前記着色層に接する前記被覆層、及び前記着色層が紫外線硬化樹脂からなり、前記着色層を構成する紫外線硬化樹脂の硬化前の波長300〜450nmの光に対する透過度平均値が0.05〜0.55であることを特徴とする着色光ファイバ素線。 A colored optical fiber in which a colored layer is coated on the outer periphery of a drawn optical fiber having at least one coating layer on the outer periphery of the bare optical fiber, the coating layer being in contact with the bare optical fiber, the colored layer The coating layer in contact with the color layer and the colored layer are made of an ultraviolet curable resin, and the transmittance average value for light having a wavelength of 300 to 450 nm before curing of the ultraviolet curable resin constituting the colored layer is 0.05 to 0.55. A colored optical fiber, characterized in that there is.
JP2004192035A 2004-06-29 2004-06-29 Colored optical fiber Expired - Lifetime JP4279214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192035A JP4279214B2 (en) 2004-06-29 2004-06-29 Colored optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192035A JP4279214B2 (en) 2004-06-29 2004-06-29 Colored optical fiber

Publications (2)

Publication Number Publication Date
JP2006011309A JP2006011309A (en) 2006-01-12
JP4279214B2 true JP4279214B2 (en) 2009-06-17

Family

ID=35778613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192035A Expired - Lifetime JP4279214B2 (en) 2004-06-29 2004-06-29 Colored optical fiber

Country Status (1)

Country Link
JP (1) JP4279214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224744A (en) * 2007-03-08 2008-09-25 Furukawa Electric Co Ltd:The Optical fiber
JP5398409B2 (en) * 2009-08-07 2014-01-29 株式会社フジクラ Optical connector

Also Published As

Publication number Publication date
JP2006011309A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
TWI666471B (en) Optical fiber ribbon core and optical fiber cable
US11181687B2 (en) Small diameter low attenuation optical fiber
US6907175B2 (en) Coated optical fiber, optical fiber tape core using it and optical fiber unit
US11181686B2 (en) Small diameter low attenuation optical fiber
US7200310B2 (en) Optical fiber
US7729564B2 (en) Optical fiber provided with reliable coating layers
AU2007361213B2 (en) Process for manufacturing an optical fiber and an optical fiber so obtained
KR20200143497A (en) Low diameter optical fiber
BRPI0925072B1 (en) optical fiber
US20050226582A1 (en) Radiation curable coating composition for optical fiber with reduced attenuation loss
JP4279214B2 (en) Colored optical fiber
US10501370B2 (en) Method of applying an ink layer onto an optical fiber
JP2002221647A (en) Coated optical fiber tape and method for producing the same
JPH0695170B2 (en) UV curable resin coated tape type optical fiber
JP2006113448A (en) Coated optical fiber and its manufacturing method
JP2004198660A (en) Optical fiber and its manufacturing method
JPS62170920A (en) Optical fiber covered with ultraviolet cured resin
JPS63128308A (en) Quartz glass type optical fiber
JPS63128307A (en) Quartz glass type optical fiber
JP2002362946A (en) Colored and coated optical fiber and optical fiber unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4279214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350