JP2003001514A - Method for processing photo-transmitting surface of rod shape photo-transmitting body - Google Patents

Method for processing photo-transmitting surface of rod shape photo-transmitting body

Info

Publication number
JP2003001514A
JP2003001514A JP2001186657A JP2001186657A JP2003001514A JP 2003001514 A JP2003001514 A JP 2003001514A JP 2001186657 A JP2001186657 A JP 2001186657A JP 2001186657 A JP2001186657 A JP 2001186657A JP 2003001514 A JP2003001514 A JP 2003001514A
Authority
JP
Japan
Prior art keywords
optical transmission
cutting
rod
cutting blade
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001186657A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hoshiide
芳彦 星出
Norifumi Hirota
憲史 廣田
Takashi Saeki
敬 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001186657A priority Critical patent/JP2003001514A/en
Publication of JP2003001514A publication Critical patent/JP2003001514A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a rod shape photo-transmitting body having a smooth photo-transmitting surface and an excellent optical property at low cost and good productivity. SOLUTION: In such a processing method that ends of respective rod shape photo-transmitting bodies are cut by moving at least either a photo-transmitting body array, in which a plurality of rod shape photo-transmitting bodies are arranged in parallel with each other, or a cutting blade, so that the end of each rod shape photo-transmitting body of the photo-transmitting body array abuts against the tip of the cutting blade, the end of each rod shape photo- transmitting body is cut a plurality of times with the depth of cut smaller than 1 μm at one time of the abutment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、棒状光伝送体の光
伝送面の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an optical transmission surface of a rod-shaped optical transmission body.

【0002】[0002]

【従来の技術】従来、光ファイバーや棒状レンズ等の光
伝送体の光伝送面の鏡面加工は、切断等の一次加工の
後、(a)粗い研磨砥粒を用いた荒研磨から始めて順次
砥粒の細かい研磨材に代え仕上げ研磨を行う研磨処理
法、(b)荒研磨後の研磨面に透明樹脂をスプレー或い
はディッピングにより塗布し硬化処理を施すコーティン
グ法、(c)ダイヤモンド切削刃を取り付けた回転ヘッ
ドを用いるフライス方式で切削するダイヤモンドフライ
ス法(特開平9−152518号公報)、(d)ダイヤ
モンド切削刃と光伝送体とを相対的に移動させるカンナ
方式で切削するダイヤモンドカンナ法(特開平11−1
56628号公報)等により行われている。
2. Description of the Related Art Conventionally, mirror finishing of a light transmitting surface of a light transmitting body such as an optical fiber or a rod-shaped lens is carried out after primary processing such as cutting, followed by (a) rough polishing using coarse abrasive grains and sequentially Polishing method for performing final polishing instead of fine polishing material, (b) coating method for applying transparent resin to the polished surface after rough polishing by spraying or dipping, and hardening treatment, (c) rotation with diamond cutting blade attached Diamond milling method for cutting with a milling method using a head (Japanese Patent Laid-Open No. 9-152518), (d) Diamond planner method for cutting with a planer method in which a diamond cutting blade and an optical transmission body are relatively moved (Japanese Patent Laid-Open No. H11-11511). -1
56628) and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、研磨材
の砥粒を粗いものから順次細かいものに代えながら研磨
を行う研磨処理法(方法a)では、光学部品として使用
可能な光伝送面に仕上げるためには最終段階の仕上げ研
磨において粒度が0.5μm以下の非常に微細な砥粒を
用いる必要がある。しかも、前の研磨段階で用いた比較
的粒径の大きな研磨材が残留しやすく、その残留した砥
粒により仕上げ研磨中に光伝送面に傷が発生することが
ある。そのため、微細な砥粒を用いて研磨する際には、
前の研磨に用いた研磨材を完全に除去する必要があり、
結果、全体の加工処理や装置が複雑になり、生産性が低
くなるという問題点がある。
However, in the polishing method (method a) in which the abrasive grains of the abrasive material are sequentially changed from coarse ones to finer ones, the optical transmission surface usable as an optical component is finished. Therefore, it is necessary to use very fine abrasive grains having a grain size of 0.5 μm or less in the final stage final polishing. Moreover, the abrasive having a relatively large particle size used in the previous polishing step tends to remain, and the remaining abrasive particles may cause scratches on the optical transmission surface during the final polishing. Therefore, when polishing with fine abrasive grains,
It is necessary to completely remove the abrasive used for the previous polishing,
As a result, there is a problem that the whole processing and apparatus become complicated and the productivity becomes low.

【0004】一方、コーティング法(方法b)では、荒
研磨後に残っている傷をコーティング材により埋めるこ
とで光学部品として使用可能な面状態に仕上げることが
でき、その際、荒研磨は粒度が3μm程度の砥粒での研
磨でよく、上記の研磨処理法(方法a)に比べて生産性
が高い。しかしながら、光伝送体を構成する材料とコー
ティング材に屈折率差がある場合、傷の部分では光の屈
折や散乱が生じる。また、コーティング処理時のコーテ
ィング材への異物付着に起因した光伝送面の凸凹や、コ
ーティング前の光伝送面の凸凹、コーティング材の光伝
送面でのはじきによるコーティング材の付着不良等が発
生しやすく、上記研磨処理法(方法a)に比べて光学特
性が低下しやすいという問題点がある。
On the other hand, in the coating method (method b), scratches remaining after rough polishing can be filled with a coating material to finish the surface state usable as an optical component. At that time, the rough polishing has a grain size of 3 μm. Polishing with a certain degree of abrasive grains is sufficient, and the productivity is high as compared with the above polishing method (method a). However, when there is a difference in the refractive index between the material forming the optical transmission body and the coating material, light is refracted or scattered at the scratched portion. In addition, irregularities on the optical transmission surface due to foreign matter adhering to the coating material during coating processing, irregularities on the optical transmission surface before coating, and defective adhesion of the coating material due to repellency of the coating material on the optical transmission surface may occur. However, there is a problem in that the optical properties are likely to deteriorate as compared with the polishing method (method a).

【0005】ダイヤモンドフライス法(方法c)では、
光伝送面にナイフマークやうねりが発生しやすく、光伝
送体部品送り部のガタツキや回転軸の偏芯等に起因する
切削状態の変動が複合され、仕上げ面の品位が低下しや
すい。さらに、光伝送面のナイフマークを少なくするた
めには微少な送りで光伝送面を何度も重複切削しなけれ
ばならず、切削距離が光伝送面全長の数十倍から数百倍
に至り、そのため、刃先の磨耗が非常に速く進行し、ダ
イヤモンド切削刃の寿命が短くなりコストがかかるとい
った問題点がある。
In the diamond milling method (method c),
Knife marks and undulations are likely to occur on the optical transmission surface, and fluctuations in the cutting state due to rattling of the optical transmission component feed section, eccentricity of the rotating shaft, and the like are compounded, and the quality of the finished surface is likely to deteriorate. Furthermore, in order to reduce the number of knife marks on the optical transmission surface, it is necessary to repeatedly cut the optical transmission surface with a small amount of feed, and the cutting distance reaches several tens to several hundred times the total length of the optical transmission surface. Therefore, there is a problem that the wear of the cutting edge progresses very quickly, the life of the diamond cutting blade is shortened, and the cost is increased.

【0006】ダイヤモンドカンナ法(方法d)では、高
い生産性で、汎用用途の光伝送体の光伝送面を処理する
ことが可能であるが、切削時に微少なクラックが発生し
やすく、高性能用途の光伝送体の光伝送面の処理には適
用が困難であるという問題点がある。
With the diamond planner method (method d), it is possible to treat the optical transmission surface of a general-purpose optical transmission body with high productivity, but minute cracks are likely to occur during cutting, and high performance applications are possible. However, there is a problem in that it is difficult to apply to the processing of the optical transmission surface of the optical transmission body.

【0007】そこで本発明の目的は、平滑な光伝送面を
持ち優れた光学特性を有する棒状光伝送体を低コストで
生産性よく作製可能な光伝送面処理法を提供することに
ある。
Therefore, an object of the present invention is to provide an optical transmission surface treatment method capable of producing a rod-shaped optical transmission body having a smooth optical transmission surface and having excellent optical characteristics at low cost and with high productivity.

【0008】[0008]

【課題を解決するための手段】本発明は、切削刃の刃先
に対して、複数の棒状光伝送体が互いに平行配列された
光伝送体配列体の各棒状光伝送体の端部が当接するよう
に、前記光伝送体配列体と前記切削刃の少なくともいず
れか一方を移動させて前記の各棒状光伝送体の端部を切
削する棒状光伝送体の光伝送面処理方法において、前記
の各棒状光伝送体の一端に対して当接一回あたりの切り
込み量を1μm以下として複数回切削することを特徴と
する棒状光伝送体の光伝送面処理方法に関する。
According to the present invention, an end portion of each rod-shaped light transmission body of an optical transmission body array in which a plurality of rod-shaped light transmission bodies are arranged in parallel with each other is brought into contact with a cutting edge of a cutting blade. As described above, in the optical transmission surface treatment method for a rod-shaped optical transmission medium, which moves at least one of the optical transmission medium array and the cutting blade to cut the end of each rod-shaped optical transmission medium, The present invention relates to a method for treating an optical transmission surface of a rod-shaped optical transmission body, wherein the rod-shaped optical transmission body is cut a plurality of times with a cutting amount of 1 μm or less per contact with one end of the rod-shaped optical transmission body.

【0009】[0009]

【発明の実施の形態】本発明の処理方法は、棒状光伝送
体の端面、すなわち光伝送面(光伝送方向(棒状光伝送
体の長手方向)に垂直に切り出された面)の表面処理に
好適であり、特に複数の棒状光伝送体が2枚の基板間に
平行配列されてなる光伝送体配列体(以下適宜「レンズ
配列体」という)の光学端面(棒状光伝送体の光伝送面
を露出する端面)の仕上げ処理として好適である。棒状
光伝送体は、種々の透明材料から構成されるが、本発明
は特にプラスチック製の棒状光伝送体に対して優れた効
果を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The treatment method of the present invention is applied to a surface treatment of an end face of a rod-shaped light transmission body, that is, a light transmission plane (a surface cut out perpendicularly to the light transmission direction (longitudinal direction of the rod-shaped light transmission body)). It is preferable, in particular, an optical end face of an array of optical transmission bodies (hereinafter, appropriately referred to as “lens array”) in which a plurality of rod-shaped optical transmission bodies are arranged in parallel between two substrates (optical transmission surface of rod-shaped optical transmission body It is suitable as a finishing treatment for the exposed end surface). Although the rod-shaped light transmission body is made of various transparent materials, the present invention can obtain an excellent effect particularly on a plastic rod-shaped light transmission body.

【0010】以下、図面を参照しながら本発明を説明す
る。
The present invention will be described below with reference to the drawings.

【0011】図1は、レンズ配列体の光学端面の両方を
同時に処理する場合に好適な装置の一例を示す。図1
中、1はレンズ配列体、2はレンズ配列体固定ユニッ
ト、3は単結晶ダイヤモンド切削刃3aが設置された固
定台座(シャンク)、4は仕上げ用切削刃微小移動ユニ
ット、5は予備切削用切削刃移動ユニット、6は切削刃
昇降ユニット、7はレンズ配列体固定ユニット移動用ガ
イドを表す。
FIG. 1 shows an example of an apparatus suitable for simultaneously processing both optical end faces of a lens array. Figure 1
Inside, 1 is a lens array body, 2 is a lens array body fixing unit, 3 is a fixed pedestal (shank) on which the single crystal diamond cutting blade 3a is installed, 4 is a cutting blade micro-moving unit, and 5 is preliminary cutting. A blade moving unit, 6 is a cutting blade lifting unit, and 7 is a lens array fixing unit moving guide.

【0012】図2は、本発明の光伝送面処理方法により
処理されるレンズ配列体の一例を示す。図2中、21は
棒状光伝送体(レンズ)、22は基板、23は接着剤硬
化部を表す。レンズ配列体は、二枚の基板22間に複数
の棒状光伝送体21を互いに平行配列し接着剤で固定し
て形成することができる。例えば、フェノール樹脂、ア
クリル樹脂等の樹脂板や、銅、真鍮等の非鉄金属板など
の二枚の基板22間に棒状光伝送体を平行配列した後、
基板22と棒状光伝送体21の隙間に液状の接着剤を充
填し、これを硬化し、その後、必要により棒状光伝送体
の長手方向に垂直に切断して所定のサイズに形成するこ
とができる。
FIG. 2 shows an example of a lens array processed by the optical transmission surface processing method of the present invention. In FIG. 2, 21 is a rod-shaped light transmission body (lens), 22 is a substrate, and 23 is an adhesive curing portion. The lens array can be formed by arranging a plurality of rod-shaped light transmission bodies 21 in parallel with each other between two substrates 22 and fixing them with an adhesive. For example, after arranging the rod-shaped optical transmission elements in parallel between two substrates 22 such as a resin plate made of phenol resin or acrylic resin or a non-ferrous metal plate made of copper or brass,
A liquid adhesive may be filled in the gap between the substrate 22 and the rod-shaped light transmission body 21, the liquid adhesive may be cured, and then, if necessary, the rod-shaped light transmission body may be cut perpendicularly to the longitudinal direction to form a predetermined size. .

【0013】図3は、本発明の光伝送面処理方法に用い
る単結晶ダイヤモンド切削刃の一例を示す。図3中、3
1は切削刃固定台座(シャンク)、32及び33は直線
状の刃先を持つ単結晶ダイヤモンドチップ(切削刃)、
34は刃先を示す。図3においては、切削刃が二つの単
結晶ダイヤモンドチップで構成されているが、一の単結
晶ダイヤモンドチップで構成することも可能である。
FIG. 3 shows an example of a single crystal diamond cutting blade used in the optical transmission surface treatment method of the present invention. 3 in FIG.
1 is a cutting blade fixed pedestal (shank), 32 and 33 are single crystal diamond tips (cutting blades) having a linear cutting edge,
Reference numeral 34 indicates a cutting edge. In FIG. 3, the cutting blade is composed of two single crystal diamond chips, but it can be composed of one single crystal diamond chip.

【0014】図1に示される装置において、複数の棒状
伝送体が平行配列されてなるレンズ配列体1は、レンズ
配列体固定ユニット2のクランプにより固定される。こ
のように固定されたレンズ配列体1の光学端面側の端部
を、好ましくは予備切削した後、仕上げ用切削刃微小移
動ユニット4により切り込み位置が調整された単結晶ダ
イヤモンド切削刃3aを用いて切削(仕上げ切削)し、
この切削を複数回行う。
In the apparatus shown in FIG. 1, a lens array body 1 in which a plurality of rod-shaped transmission bodies are arranged in parallel is fixed by a clamp of a lens array body fixing unit 2. The end of the lens array 1 fixed in this way on the optical end face side is preferably precut, and then a single crystal diamond cutting blade 3a whose cutting position is adjusted by the fine cutting blade fine moving unit 4 is used. Cutting (finish cutting),
This cutting is performed multiple times.

【0015】この仕上げ切削においては、レンズ配列体
1をその光学端面がレンズ配列体固定ユニット2の側面
から突出するように固定し、このように固定されたレン
ズ配列体1の各棒状光伝送体の端部に単結晶ダイヤモン
ド切削刃3aの刃先が順次当接するように、単結晶ダイ
ヤモンド切削刃3aの切り込み位置を微少移動ユニット
4で調整する。その際、棒状光伝送体端面に対して刃先
ができるだけ垂直に当接するように切削刃を設置するこ
とが好ましい。また、切削刃微小移動ユニット4として
は、各棒状光伝送体の端部に対して切削刃の切り込み位
置を調整する切削刃移動駆動体としてピエゾ素子を備え
た切削刃可動ステージを用いることができる。このよう
な切削刃可動ステージを用いることにより、刃先位置を
高精度に制御することができ、また応答速度が速いため
迅速に刃先の位置決めをすることができる。このような
切削刃可動ステージとしては、例えば積層圧電アクチュ
エータ(ステージ駆動体)、変位センサー及び制御ユニ
ットを備えたものを用いることができる。積層圧電アク
チュエータは、電気エネルギーを機械的な変位エネルギ
ーに変換するものであり、圧電セラミック素子を積層す
ることでワイドレンジに対応し、また例えば静電容量型
変位センサーを駆動体に内蔵しクローズド・サーボルー
プ制御を行うことでnmオーダーの高精度な位置制御を
行うことができる。
In this finishing cutting, the lens array 1 is fixed so that its optical end face projects from the side surface of the lens array fixing unit 2, and each rod-shaped optical transmission member of the lens array 1 fixed in this way. The cutting position of the single crystal diamond cutting blade 3a is adjusted by the fine moving unit 4 so that the edge of the single crystal diamond cutting blade 3a sequentially contacts the end of the. At that time, it is preferable to install the cutting blade so that the blade edge comes into contact with the end surface of the rod-shaped light transmission body as perpendicularly as possible. Further, as the cutting blade minute moving unit 4, a cutting blade movable stage having a piezo element as a cutting blade moving driving body for adjusting the cutting position of the cutting blade with respect to the end portion of each rod-shaped light transmission body can be used. . By using such a cutting blade movable stage, the position of the cutting edge can be controlled with high accuracy, and since the response speed is fast, the positioning of the cutting edge can be performed quickly. As such a cutting blade movable stage, for example, a stage provided with a laminated piezoelectric actuator (stage driver), a displacement sensor and a control unit can be used. A laminated piezoelectric actuator converts electrical energy into mechanical displacement energy, and is compatible with a wide range by stacking piezoelectric ceramic elements.For example, a capacitive displacement sensor is built into the driver to provide a closed By performing the servo loop control, highly accurate position control on the order of nm can be performed.

【0016】次に、単結晶ダイヤモンド切削刃3aに対
して、固定ユニット2に固定されたレンズ配列体1を移
動用ガイド7に沿って移動させて、各棒状光伝送体の端
部を切削する。レンズ配列体1の各棒状伝送体が、単結
晶ダイヤモンド切削刃3aとの当接位置を完全に通過し
て切削が終了した後、単結晶ダイヤモンド切削刃3aを
レンズ配列体1の切削面に接触しないように後退させた
後、レンズ配列体1をガイド7に沿って移動して元の位
置に戻す。そして、次の切削のために単結晶ダイヤモン
ド切削刃3aの切り込み位置を調整した後、次の切削を
実施する。
Next, the lens array 1 fixed to the fixing unit 2 is moved along the moving guide 7 with respect to the single crystal diamond cutting blade 3a to cut the end portion of each rod-shaped optical transmission body. . After each rod-shaped transmitter of the lens array 1 has completely passed through the contact position with the single crystal diamond cutting blade 3a and the cutting is completed, the single crystal diamond cutting blade 3a is brought into contact with the cutting surface of the lens array 1. After retracting so as not to do so, the lens array 1 is moved along the guide 7 and returned to the original position. Then, after adjusting the cutting position of the single crystal diamond cutting blade 3a for the next cutting, the next cutting is performed.

【0017】上記の仕上げ切削の操作を複数回行って各
棒状光伝送体の端部を繰り返し切削することにより、各
棒状光伝送体の端面を平滑な鏡面状態に、例えばJIS
B0601に従って測定される表面粗さRaを0.1μ
m以下にすることができる。
By performing the above-mentioned finishing cutting operation a plurality of times to repeatedly cut the end portion of each rod-shaped light transmission body, the end surface of each rod-shaped light transmission body is made into a smooth mirror surface state, for example, JIS.
The surface roughness Ra measured according to B0601 is 0.1 μm.
It can be m or less.

【0018】図1に示すように、レンズ配列体1の通過
位置の両側に切削刃3aを設けた場合は、レンズ配列体
1が切削刃3a間を一度通過することでレンズ配列体1
の両側の端部を切削することができる。
As shown in FIG. 1, when the cutting blades 3a are provided on both sides of the passing position of the lens array body 1, the lens array body 1 is passed once between the cutting blades 3a so that the lens array body 1 is passed.
Both ends of the can be cut.

【0019】また、図1では切削刃3aを固定して光伝
送体配列体1を移動ガイド7に沿って移動させるが、光
伝送体配列体1を固定して切削刃3aを移動させてもよ
い。また、レンズ配列体1と切削刃3aの両方を対向す
るように移動させ、切削速度を向上させることもでき
る。
Further, in FIG. 1, the cutting blade 3a is fixed and the optical transmitter array 1 is moved along the moving guide 7. However, even if the optical transmitter array 1 is fixed and the cutting blade 3a is moved. Good. It is also possible to move both the lens array 1 and the cutting blade 3a so as to face each other to improve the cutting speed.

【0020】仕上げ切削を行うに際しての、切削刃3a
に対するレンズ配列体1の相対移動速度は、生産性およ
び十分な平面度の切削面を得る点から、100mm/秒
以上が好ましく、500mm/秒以上がより好ましく、
800mm/秒以上がさらに好ましい。切削刃3aに対
するレンズ配列体1の相対移動速度を高めることによ
り、生産性の向上とともに切削面の平面度を高めること
ができ、例えば相対移動速度を1000mm/秒以上と
することで、より一層優れた平面度を生産性よく形成す
ることができる。レンズ配列体や切削刃を高速で移動さ
せるための装置としては、レンズ配列体固定ユニットと
その移動用ガイドとの間(あるいは切削刃移動ユニット
とその移動用ガイドと間)に通常介在するベアリングや
ローラー等の回転部を持たない、極めて高い加減速が可
能なリニアモーター式アクチュエータを備えた移動装置
を用いることができる。
Cutting blade 3a for finishing cutting
The relative movement speed of the lens array 1 with respect to is preferably 100 mm / sec or more, more preferably 500 mm / sec or more, from the viewpoint of productivity and obtaining a cut surface with sufficient flatness.
800 mm / sec or more is more preferable. By increasing the relative movement speed of the lens array 1 with respect to the cutting blade 3a, productivity can be improved and the flatness of the cutting surface can be increased. For example, by setting the relative movement speed to 1000 mm / sec or more, it is more excellent. The flatness can be formed with high productivity. As a device for moving the lens array and the cutting blade at high speed, a bearing which is usually interposed between the lens array fixing unit and the moving guide (or between the cutting blade moving unit and the moving guide) is used. A moving device provided with a linear motor type actuator that does not have a rotating part such as a roller and can perform extremely high acceleration / deceleration can be used.

【0021】予備切削を行う場合は、図1に示すよう
に、別途に予備切削用の切削刃やユニット5等を設けて
予備切削を行うことができるが、上記の仕上げ切削に用
いた切削刃およびユニット4等を用いて切削刃の切り込
み位置を変えて行うこともできる。
When performing the pre-cutting, as shown in FIG. 1, a pre-cutting blade, a unit 5 or the like can be separately provided to perform the pre-cutting. It is also possible to change the cutting position of the cutting blade by using the unit 4 and the like.

【0022】また、図1には示していないが、移動ユニ
ット5と固定ユニット2の間に、仕上げ用切削刃微少移
動ユニットと予備切削用移動ユニットをもう一組、鏡対
称に配置して往復で切削を行えば、処理時間を低減する
ことも可能である。
Although not shown in FIG. 1, another set of a fine moving unit for finishing cutting blades and a moving unit for preliminary cutting are arranged between the moving unit 5 and the fixed unit 2 and arranged in mirror symmetry to reciprocate. It is possible to reduce the processing time by cutting with.

【0023】本発明の方法では、上記のように、直線状
の刃先を有する単結晶ダイヤモンド切削刃を用い、この
刃先と、レンズ配列体を構成する各棒状光伝送体の端部
とをその配列順にしたがって順次当接させて各棒状光伝
送体の端面の切削処理を行い、且つ、この切削処理を複
数回行う。その際、刃先と各棒状光伝送体端部との1回
の当接あたりの切り込み量、すなわち1回の切削により
切り取られる光伝送体の厚さは1μm以下とし、好まし
くは0.6μm以下、さらに好ましくは0.4μm以下
に設定する。この切り込み量が1μmを超えると、所望
の平面度を持つ光伝送面を得ることが困難となる。一
方、1回の当接あたりの切り込み量は0.05μm以上
であることが好ましく、0.1μm以上がより好まし
い。この切り込み量が小さすぎると、所望の平面度を得
るために切削処理回数を多くする必要が生じ、生産性が
低下する。また、1回の切削処理(一度の当接)では、
切削刃の切り込み位置の移動精度や切削前の端面の平面
度によっては、所望の平面度の光伝送面を得ることがで
きない。
In the method of the present invention, as described above, a single crystal diamond cutting blade having a linear cutting edge is used, and this cutting edge and the end portion of each rod-shaped optical transmission member forming the lens array are arranged. The end faces of the rod-shaped optical transmission members are cut by sequentially contacting each other in order, and this cutting process is performed a plurality of times. At that time, the cutting amount per contact between the blade edge and the end portion of each rod-shaped light transmission body, that is, the thickness of the light transmission body cut out by one cutting is 1 μm or less, preferably 0.6 μm or less, More preferably, it is set to 0.4 μm or less. If the cut amount exceeds 1 μm, it becomes difficult to obtain an optical transmission surface having a desired flatness. On the other hand, the depth of cut per contact is preferably 0.05 μm or more, more preferably 0.1 μm or more. If the cut amount is too small, it is necessary to increase the number of cutting processes in order to obtain the desired flatness, and the productivity is reduced. In addition, in one cutting process (once contact),
Depending on the accuracy of movement of the cutting position of the cutting blade and the flatness of the end surface before cutting, it is not possible to obtain an optical transmission surface having a desired flatness.

【0024】本発明の切削(仕上げ切削)前において、
棒状光伝送体の端面の平面度が低かったり、反りが激し
い場合は、仕上げ切削を行う前に、仕上げ切削用の切削
刃や装置を用いて或いは別途に設けた予備切削用の切削
刃や装置を用いて、当接1回あたりの切り込み量が10
μm〜100μm程度の予備切削処理を1回あるいは複
数回行ってもよい。あるいは、フライス、エンドミル等
の一般の切削工具を用いて予備切削処理を行ってもよ
い。
Before the cutting (finish cutting) of the present invention,
If the flatness of the end face of the rod-shaped light transmission body is low or the warp is severe, use a cutting blade or device for finish cutting or a separately provided cutting blade or device for preliminary cutting before performing finish cutting. The cutting amount per contact is 10
The preliminary cutting treatment of about 100 μm to 100 μm may be performed once or plural times. Alternatively, the pre-cutting process may be performed using a general cutting tool such as a milling cutter or an end mill.

【0025】仕上げ切削前の棒状光伝送体の端面の平面
度は、JISB0601に従って測定される表面粗さR
aとして2μm以下が好ましく、1.5μm以下がさら
に好ましい。予備切削処理を行い、棒状光伝送体の端面
の平面度を向上させた後、仕上げ切削処理を行うことに
より、仕上げ切削処理の回数を少なくすることができ
る。
The flatness of the end face of the rod-shaped optical transmission body before finish cutting is the surface roughness R measured according to JIS B0601.
The value of a is preferably 2 μm or less, more preferably 1.5 μm or less. The preliminary cutting process is performed to improve the flatness of the end surface of the rod-shaped light transmission body, and then the finishing cutting process is performed, whereby the number of finishing cutting processes can be reduced.

【0026】予備切削用切削刃は、各種の超硬性材料か
らなる切削刃を用いてもよいが、切削性、寿命、価格等
の点からコストパフォーマンスに優れた多結晶ダイヤモ
ンド製切削刃が好ましく、また、切削性および寿命の点
からは単結晶ダイヤモンド製切削刃が好ましい。また、
予備切削は、図1に示されるような固定式の切削刃を用
いるものに限られず、エンドミルのような回転式刃物を
用いてもよく、所望の平面度が得られる限り予備切削の
切削形態については特に限定はない。
As the cutting blade for pre-cutting, a cutting blade made of various superhard materials may be used, but a polycrystalline diamond cutting blade excellent in cost performance is preferable from the viewpoints of machinability, service life, price and the like. A single-crystal diamond cutting blade is preferable from the viewpoints of machinability and life. Also,
The pre-cutting is not limited to the one using the fixed cutting blade as shown in FIG. 1, but a rotary cutting tool such as an end mill may be used. Is not particularly limited.

【0027】図3に、仕上げ切削用切削刃の好ましい実
施形態の一例を示す。この仕上げ切削用切削刃は、直線
状の刃先34を持つ二つの単結晶体ダイヤモンドチップ
32、33が一の切削刃固定台座(シャンク)31に取
り付けられており、これらの刃先34は直線上に配置さ
れている。単結晶体ダイヤモンドチップ32,33の刃
先34を直線状に配列することにより、精度の高い研磨
が可能となる。直線状の刃先を持つ単結晶体ダイヤモン
ドチップは、刃先が直線上に配置されるように三つ以上
設けてもよい。未切削領域をできるだけ小さくするた
め、隣り合う切削刃(チップ)間の間隔はできるだけ小
さいことが好ましく、50μm以下とすることが好まし
く、20μm以下とすることがより好ましく、10μm
以下とすることが特に好ましい。
FIG. 3 shows an example of a preferred embodiment of the cutting blade for finish cutting. In this cutting blade for finish cutting, two single-crystal diamond tips 32, 33 having a linear cutting edge 34 are attached to one cutting blade fixing base (shank) 31, and these cutting edges 34 are arranged on a straight line. It is arranged. By arranging the cutting edges 34 of the single crystal diamond tips 32 and 33 in a straight line, highly accurate polishing becomes possible. Three or more single crystal diamond tips each having a linear cutting edge may be provided so that the cutting edges are arranged in a straight line. In order to make the uncut area as small as possible, the distance between adjacent cutting blades (tips) is preferably as small as possible, preferably 50 μm or less, more preferably 20 μm or less, and more preferably 10 μm.
The following is particularly preferable.

【0028】ダイヤモンドは大型になるほど指数関数的
に価格が高くなるので、通常、工業的に用いられている
ダイヤモンド切削刃の幅は11mm以下のものが用いら
れる。このような小さな単結晶ダイヤモンドチップ1個
からなる切削刃を用いた場合、一度に切削処理可能な光
伝送面の幅は、刃先の長さ以下であり、広い光伝送面を
処理するためには切削処理を多数回繰り返す必要が生じ
る。これに対して、一の切削刃固定台座に直線状の刃先
を持つ二つ以上のダイヤモンド切削刃(チップ)が設置
された切削刃を用いることにより、広い光伝送面を効率
的に切削することができる。
The larger the size of diamond, the more exponentially the price increases, so that the width of the diamond cutting blade which is industrially used is usually 11 mm or less. When a cutting blade composed of such a small single crystal diamond tip is used, the width of the light transmission surface that can be cut at one time is equal to or less than the length of the cutting edge, and in order to process a wide light transmission surface, It becomes necessary to repeat the cutting process many times. On the other hand, it is possible to efficiently cut a wide optical transmission surface by using a cutting blade in which two or more diamond cutting blades (tips) having a linear cutting edge are installed on one cutting blade fixing base. You can

【0029】複数のダイヤモンドチップから構成され、
刃先が直線上に配置された上記切削刃を用いて切削を行
う場合、隣り合うチップ間のつなぎ目の隙間(切削刃間
の間隔)による未切削個所が発生する場合がある。チッ
プ間に隙間が無いあるいは隙間が著しく小さい切削刃を
用いる場合は問題はないが、ある程度チップ間に隙間を
もつ切削刃を用いた場合は、一回目の切削後の未切削箇
所を切削するため、切削刃昇降ユニット6のような切削
刃移動装置を用いて、チップ間の隙間の大きさ以上に切
削刃を刃先の直線方向に移動し、切り込み位置を変える
ことなく一回目の切削と同様にして2回目の切削を行う
ことが好ましい。仕上げ用切削刃を構成するダイヤモン
ドチップが3つ以上であっても、2回目の仕上げ切削に
より、複数の未切削箇所を同時に切削することができ
る。
It is composed of a plurality of diamond tips,
When cutting is performed using the above-mentioned cutting blades whose cutting edges are arranged on a straight line, uncut portions may occur due to the gap (interval between cutting blades) at the joint between adjacent chips. There is no problem when using a cutting blade with no gap between chips or a very small gap, but when using a cutting blade with a gap between chips to some extent, it is necessary to cut the uncut portion after the first cutting. By using a cutting blade moving device such as the cutting blade lifting unit 6, the cutting blade is moved in the linear direction of the cutting edge beyond the size of the gap between the chips, and the cutting position is not changed in the same manner as the first cutting. It is preferable to perform the second cutting. Even if the number of diamond tips constituting the finishing cutting blade is three or more, a plurality of uncut portions can be simultaneously cut by the second finishing cutting.

【0030】なお、本実施形態においては、光伝送面の
平滑性を高め、好ましくは光伝送面をJISB0601
に従って測定される表面粗さRa0.1μm以下の平面
度を持った鏡面状態に形成することができる点で、最も
好ましい切削刃である単結晶ダイヤモンド切削刃を切削
刃3aとして用いた場合について説明してきたが、光伝
送面の平滑性の要求がそれほど高くない場合には、多結
晶ダイヤモンドなど他の材料からなる切削刃を用いるこ
とも可能である。
In this embodiment, the smoothness of the optical transmission surface is enhanced, and preferably the optical transmission surface is JIS B0601.
A single crystal diamond cutting blade, which is the most preferable cutting blade, is used as the cutting blade 3a in that it can be formed into a mirror surface state having a surface roughness Ra of 0.1 μm or less, which is measured according to. However, when the smoothness of the light transmission surface is not so high, it is possible to use a cutting blade made of another material such as polycrystalline diamond.

【0031】また、通常、棒状光伝送体の光伝送面は平
面状に形成するため、切削刃として直線状の刃先を有す
るものについて説明したが、所望される光伝送面の形状
に応じて他の形状の刃先を有する切削刃を使用すること
も可能である。
Further, since the light transmission surface of the rod-shaped light transmission body is usually formed in a flat shape, the one having a linear cutting edge has been described as the cutting blade. However, depending on the desired shape of the light transmission surface, other It is also possible to use a cutting blade having a cutting edge in the shape of.

【0032】以上のような方法により、棒状光伝送体の
光伝送面を、平滑に、好ましくはJISB0601に従
って測定される表面粗さRa0.1μm以下の平面度を
持った鏡面状態に形成することができ、平滑な光伝送
面、好ましくは研磨処理法と同等の光学特性を持つ光伝
送面を得ながら、研磨処理法やコーティング法に比べ処
理工程を大幅に簡略化できる。また、通常のダイヤモン
ドカンナ法では形成困難であった高性能用途へ適用可能
な棒状光伝送体およびレンズ配列体を作製できる。
By the method as described above, the light transmission surface of the rod-shaped light transmission body can be formed smoothly, preferably in a mirror-like state having a flatness of a surface roughness Ra of 0.1 μm or less measured according to JISB0601. It is possible to obtain a smooth optical transmission surface, preferably an optical transmission surface having optical characteristics equivalent to those of the polishing method, while significantly simplifying the processing steps as compared with the polishing method and the coating method. Further, it is possible to manufacture a rod-shaped optical transmission body and a lens array which can be applied to high-performance applications which were difficult to form by a normal diamond plane method.

【0033】[0033]

【実施例】以下、本発明を実施例により具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0034】[実施例1]まず、次のようにして光伝送
体配列体の原板(光伝送体配列原板)を作製した。基板
として黒色フェノール樹脂基板を用意し、光伝送体とし
てプラスチック製棒状レンズ(以下「棒状レンズ」又は
単に「レンズ」と略する)を用意した。この2枚の基板
間に複数の棒状レンズを平行配置し、続いて基板と棒状
レンズ間の隙間に接着剤を充填した。この接着剤として
は、反応型エポキシ系接着剤(商品名:エピフォーム、
ソマール社製)にカーボンブラックを2質量%混練した
もの用いた。次いで、充填した接着剤を硬化し、2枚の
基板間に複数の棒状レンズが平行配列された構造をもつ
光伝送体配列原板を得た。
Example 1 First, a master plate for an array of optical transmission elements (optical transmission element array original plate) was manufactured as follows. A black phenol resin substrate was prepared as a substrate, and a plastic rod-shaped lens (hereinafter abbreviated as "rod-shaped lens" or simply "lens") was prepared as an optical transmission body. A plurality of rod-shaped lenses were arranged in parallel between the two substrates, and subsequently, an adhesive was filled in the gap between the substrates and the rod-shaped lenses. As this adhesive, a reactive epoxy adhesive (trade name: Epiform,
2% by mass of carbon black was kneaded with (Somal). Next, the filled adhesive was cured to obtain an optical transmission element array original plate having a structure in which a plurality of rod lenses were arrayed in parallel between two substrates.

【0035】次に、この光伝送体配列原板をレンズの長
手方向(光伝送方向)に対して垂直に切断し、図2に示
すような、幅(レンズの長手方向の長さ)4.5mmの
短冊状のレンズ配列体を得た。
Next, the original plate for the optical transmission medium is cut perpendicularly to the longitudinal direction of the lens (optical transmission direction), and the width (length of the longitudinal direction of the lens) 4.5 mm as shown in FIG. A strip-shaped lens array was obtained.

【0036】次に、図1に示す装置にて、短冊状のレン
ズ配列体1をクランプにより固定した。その際、レンズ
配列体1の光学端面が両側においてそれぞれ固定ユニッ
ト2の側面から約0.5mm突き出すように固定した。
Next, in the apparatus shown in FIG. 1, the strip-shaped lens array 1 was fixed by a clamp. At that time, the lens array 1 was fixed so that the optical end faces of both sides protruded from the side faces of the fixed unit 2 by about 0.5 mm.

【0037】図1に示す装置の切削刃3aとしては、予
備切削用及び仕上げ切削用のいずれも前述の図3に示す
ように直線状の刃先を持つ二つの単結晶ダイヤモンドチ
ップを刃先が直線上に位置するように配置したものを用
いた。このとき隣り合うチップ間の間隔は10μmとし
た。
As the cutting blade 3a of the apparatus shown in FIG. 1, two single crystal diamond tips each having a linear cutting edge for both pre-cutting and finish cutting have straight cutting edges as shown in FIG. The one arranged so as to be located at was used. At this time, the distance between adjacent chips was set to 10 μm.

【0038】次に、片側100μmの切り込み量となる
ように、対向した予備切削用切削刃の位置をそれぞれ移
動ユニット5で調整した。その後、レンズ配列体固定ユ
ニット2を500mm/秒の移動速度で予備切削用切削
刃間を通過させた。
Next, the positions of the opposing cutting blades for pre-cutting were adjusted by the moving unit 5 so that the cutting depth was 100 μm on one side. Then, the lens array fixing unit 2 was passed between the cutting blades for preliminary cutting at a moving speed of 500 mm / sec.

【0039】切削刃を構成する二つのダイヤモンドチッ
プのつなぎ目による未切削個所を切削するため、切削刃
昇降ユニット6で切削刃位置を100μm上昇移動させ
た後、再びレンズ配列体固定ユニット2を同一速度50
0mm/秒で予備切削用切削刃間を通過させた。以上の
第1の予備切削により、レンズ配列体1の幅を4.3m
mとした。
In order to cut the uncut portion by the joint between the two diamond chips constituting the cutting blade, the cutting blade elevating unit 6 moves the cutting blade position upward by 100 μm, and then the lens array fixing unit 2 is again moved at the same speed. Fifty
It was passed between the cutting blades for preliminary cutting at 0 mm / sec. By the above first preliminary cutting, the width of the lens array 1 is 4.3 m.
m.

【0040】次に、片側48μmの切り込み量となるよ
うに、対向した予備切削用切削刃の位置をそれぞれ移動
ユニット5で調整した。その後、上記第1の予備切削と
同様にして第2の予備切削を行い、レンズ配列体の幅を
4.204mm、切削面の表面粗さRaを1.5μm以
下とした。
Next, the positions of the opposing cutting blades for the preliminary cutting were adjusted by the moving unit 5 so that the cutting depth was 48 μm on one side. After that, the second preliminary cutting was performed in the same manner as the first preliminary cutting, and the width of the lens array was 4.204 mm and the surface roughness Ra of the cut surface was 1.5 μm or less.

【0041】以上のようにして予備切削されたレンズ配
列体を、片側1.0μmの切り込み量となるように、対
向した仕上げ切削用切削刃の位置をそれぞれ微少移動ユ
ニット4で調整した。この微小移動ユニットは、ピエゾ
素子による駆動装置を有するものを用いた。その後、レ
ンズ配列体固定ユニット2を800mm/秒の移動速度
で仕上げ切削用切削刃間を通過させた。続いて、切削刃
昇降ユニット6で切削刃位置を100μm上昇移動させ
た後、再びレンズ配列体固定ユニット2を同一速度80
0mm/秒で仕上げ切削用切削刃間を通過させた。同様
な操作を4回繰り返し、初めの切削とその後に行う未切
削箇所の切削とを1回の切削処理として合計5回の仕上
げ切削処理を行った。
The positions of the opposing cutting blades for finish cutting of the lens array preliminarily cut as described above were adjusted by the fine moving unit 4 so that the cutting amount was 1.0 μm on each side. As the minute moving unit, one having a driving device using a piezo element was used. Then, the lens array fixing unit 2 was passed between the cutting blades for finish cutting at a moving speed of 800 mm / sec. Subsequently, the cutting blade elevation unit 6 moves the cutting blade position upward by 100 μm, and then the lens array fixing unit 2 is again moved at the same speed 80.
It was passed between the cutting blades for finish cutting at 0 mm / sec. The same operation was repeated four times, and the initial cutting and the subsequent cutting of the uncut portion were performed once as a single cutting treatment to perform a total of five finishing cutting treatments.

【0042】得られたレンズ配列体を構成する複数のレ
ンズのうち一つのレンズについて、光伝送面(切削面)
の表面粗さRa及び光学特性のMTF(12ラインペア
/mm)を測定した。測定結果を表1に示す。なお。M
TFは、Modulation Transfer F
unctionの略で、レンズの解像度を表す値として
一般に用いられている。
Regarding one of the plurality of lenses constituting the obtained lens array, a light transmission surface (cutting surface)
The surface roughness Ra and the MTF (12 line pairs / mm) of the optical characteristics were measured. The measurement results are shown in Table 1. Incidentally. M
TF stands for Modulation Transfer F
Abbreviation of unction, which is generally used as a value representing the resolution of a lens.

【0043】[実施例2]実施例1と同様にしてレンズ
配列体を作製し、仕上げ切削にて片側の切り込み量を
0.4μmとした以外は実施例1と同様にしてレンズ配
列体の光学端面の処理を行い、幅4.2mmのレンズ配
列体を得た。
[Embodiment 2] A lens array body was manufactured in the same manner as in Example 1, and the optics of the lens array body was manufactured in the same manner as in Example 1 except that the cut amount on one side was 0.4 μm by finish cutting. The end face was processed to obtain a lens array having a width of 4.2 mm.

【0044】得られたレンズ配列体を構成する複数のレ
ンズのうち一つのレンズについて、光伝送面(切削面)
の表面粗さRa及び光学特性のMTF(12ラインペア
/mm)を測定した。測定結果を表1に示す。本実施例
により得られたレンズ配列体のレンズは、実施例1で得
られたレンズより光学特性の向上が確認され、LEDプ
リンター等の高い光学特性が要求される光伝送体として
十分な性能を有していた。
Regarding one of the plurality of lenses constituting the obtained lens array, a light transmission surface (cutting surface)
The surface roughness Ra and the MTF (12 line pairs / mm) of the optical characteristics were measured. The measurement results are shown in Table 1. The lens of the lens array obtained in this example is confirmed to have improved optical characteristics as compared with the lens obtained in Example 1, and exhibits sufficient performance as an optical transmission body that requires high optical characteristics such as an LED printer. Had.

【0045】[実施例3]本実施例では、図1に示す装
置において、レンズ配列体固定ユニット移動用ガイド7
に沿ってレンズ配列体固定ユニット2を移動させる装置
として、レンズ配列体固定ユニット2とその移動用ガイ
ド7との間に回転部をもたず、極めて高い加減速が可能
なリニアモーター式アクチュエーターを備えた装置を用
い、仕上げ切削にてレンズ配列体固定ユニット2の移動
速度を1200mm/秒とした以外は、実施例2と同様
にしてレンズ配列体の光学端面の処理を行った。
[Embodiment 3] In this embodiment, in the apparatus shown in FIG. 1, the lens array fixing unit moving guide 7 is used.
As a device for moving the lens array fixing unit 2 along the line, a linear motor type actuator that does not have a rotating portion between the lens array fixing unit 2 and its moving guide 7 and is capable of extremely high acceleration / deceleration is used. Using the provided apparatus, the optical end face of the lens array body was treated in the same manner as in Example 2 except that the moving speed of the lens array body fixing unit 2 was 1200 mm / sec by finish cutting.

【0046】得られたレンズ配列体を構成する複数のレ
ンズのうち一つのレンズについて、光伝送面(切削面)
の表面粗さRa及び光学特性のMTF(12ラインペア
/mm)を測定した。測定結果を表1に示す。本実施例
により得られたレンズ配列体のレンズは、実施例2で得
られたレンズより光学特性の向上が確認され、LEDプ
リンター等の高い光学特性が要求される光伝送体として
十分な性能を有していた。
Regarding one of the plurality of lenses constituting the obtained lens array, a light transmission surface (cutting surface)
The surface roughness Ra and the MTF (12 line pairs / mm) of the optical characteristics were measured. The measurement results are shown in Table 1. The lens of the lens array obtained in this example is confirmed to have improved optical characteristics as compared with the lens obtained in Example 2, and has sufficient performance as an optical transmission body requiring high optical characteristics such as an LED printer. Had.

【0047】[比較例1]実施例1と同様にして、幅
4.5mmの短冊状レンズ配列体を作製し、この配列体
を図1に示す装置に固定した。
Comparative Example 1 In the same manner as in Example 1, a strip-shaped lens array having a width of 4.5 mm was produced, and this array was fixed to the apparatus shown in FIG.

【0048】次に片側147μmの切り込み量となるよ
うに、対向した予備切削用切削刃の位置をそれぞれ移動
ユニット5で調整した。その後、レンズ配列体固定ユニ
ット2を500mm/秒の移動速度で予備切削用切削刃
間を通過させた。切削刃を構成する二つのダイヤモンド
チップのつなぎ目による未切削個所を切削するため、切
削刃昇降ユニット6で切削刃位置を100μm上昇移動
させた後、再びレンズ配列体固定ユニット2を同一速度
500mm/秒で予備切削用切削刃間を通過させた。以
上の予備切削により、レンズ配列体1の幅を4.206
mmとした。
Next, the positions of the facing pre-cutting blades were adjusted by the moving unit 5 so that the cutting depth was 147 μm on each side. Then, the lens array fixing unit 2 was passed between the cutting blades for preliminary cutting at a moving speed of 500 mm / sec. In order to cut the uncut portion by the joint between the two diamond tips constituting the cutting blade, the cutting blade elevating unit 6 moves the cutting blade position upward by 100 μm, and then the lens array fixing unit 2 is again moved at the same speed of 500 mm / sec. Then, it was passed between the cutting blades for preliminary cutting. By the above preliminary cutting, the width of the lens array 1 is set to 4.206.
mm.

【0049】次に、片側の切り込み量を3.0μmと
し、仕上げ切削を1回とした以外は実施例1と同様にし
て仕上げ切削を行い、幅4.2mmのレンズ配列体を得
た。。
Next, final cutting was performed in the same manner as in Example 1 except that the depth of cut on one side was 3.0 μm and the final cutting was performed once to obtain a lens array having a width of 4.2 mm. .

【0050】得られたレンズ配列体を構成する複数のレ
ンズのうち一つのレンズについて、光伝送面(切削面)
の表面粗さRa及び光学特性のMTF(12ラインペア
/mm)を測定した。測定結果を表1に示す。
Regarding one lens of the plurality of lenses constituting the obtained lens array, a light transmission surface (cutting surface)
The surface roughness Ra and the MTF (12 line pairs / mm) of the optical characteristics were measured. The measurement results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明によれば、平滑な光伝送面を持ち
優れた光学特性を有する棒状光伝送体および光伝送体配
列体を、低コストで簡便な処理により作製することがで
きる。また、従来のダイヤモンドカンナ法では形成困難
であった高性能用途への適用が可能な棒状光伝送体およ
び光伝送体配列体を作製できる。さらに、切削刃に対す
る光伝送体配列体の相対移動速度をダイヤモンドフライ
ス法と同程度に速くできることから、生産性を大幅に向
上させることができる。
According to the present invention, a rod-shaped optical transmission medium and an optical transmission medium array having a smooth optical transmission surface and excellent optical characteristics can be manufactured at low cost by a simple process. Further, it is possible to manufacture a rod-shaped light transmission body and an array of light transmission bodies which can be applied to high-performance uses which were difficult to form by the conventional diamond plane method. Furthermore, since the relative moving speed of the array of light transmitters with respect to the cutting blade can be made as high as that of the diamond milling method, the productivity can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光伝送面処理方法に用いる装置の一例
を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used in the optical transmission surface treatment method of the present invention.

【図2】本発明の光伝送面処理方法により処理される棒
状光伝送体配列体の一例を示す図である。
FIG. 2 is a diagram showing an example of a rod-shaped optical transmission body array processed by the optical transmission surface processing method of the present invention.

【図3】本発明の光伝送面処理方法に用いる単結晶ダイ
ヤモンド切削刃の一例を示す図である。
FIG. 3 is a diagram showing an example of a single crystal diamond cutting blade used in the optical transmission surface treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1 レンズ配列体 2 レンズ配列体固定ユニット 3 切削刃固定台座(シャンク) 3a 単結晶ダイヤモンド切削刃 4 仕上げ用切削刃微少移動ユニット 5 予備切削用切削刃移動ユニット 6 切削刃昇降ユニット 7 レンズ配列体固定ユニット移動用ガイド 21 棒状光伝送体(レンズ) 22 基板 23 接着剤硬化部 31 シャンク 32、33 単結晶ダイヤモンドチップ(切削刃) 34 刃先 1 lens array 2 Lens array fixing unit 3 Cutting blade fixed base (shank) 3a Single crystal diamond cutting blade 4 Cutting blade fine movement unit for finishing 5 Cutting blade moving unit for preliminary cutting 6 Cutting blade lifting unit 7 Lens array fixing unit moving guide 21 Rod-shaped optical transmitter (lens) 22 Substrate 23 Adhesive curing part 31 shank 32, 33 Single crystal diamond tip (cutting blade) 34 cutting edge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐伯 敬 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 Fターム(参考) 2H038 CA22 3C050 AB01 AC02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kei Saeki             20-1 Miyuki-cho, Otake-shi, Hiroshima Mitsubishi Rayo             Central Technology Research Institute F-term (reference) 2H038 CA22                 3C050 AB01 AC02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 切削刃の刃先に対して、複数の棒状光伝
送体が互いに平行配列された光伝送体配列体の各棒状光
伝送体の端部が当接するように、前記光伝送体配列体と
前記切削刃の少なくともいずれか一方を移動させて前記
の各棒状光伝送体の端部を切削する棒状光伝送体の光伝
送面処理方法において、前記の各棒状光伝送体の一端に
対して当接一回あたりの切り込み量を1μm以下として
複数回切削することを特徴とする棒状光伝送体の光伝送
面処理方法。
1. An optical transmission medium array such that the ends of the rod-shaped optical transmission mediums of the optical transmission medium array in which a plurality of rod-shaped optical transmission mediums are arranged in parallel with each other are in contact with the cutting edge of the cutting blade. In the optical transmission surface treatment method of the rod-shaped light transmission body, which moves at least one of the body and the cutting blade to cut the end portion of each rod-shaped light transmission body, with respect to one end of each rod-shaped light transmission body. The method for treating an optical transmission surface of a rod-shaped optical transmission body is characterized in that cutting is performed a plurality of times with a cutting amount per contact of 1 μm or less.
【請求項2】 前記切削刃が直線状の刃先を有する単結
晶ダイヤモンド切削刃であることを特徴とする請求項1
に記載の棒状光伝送体の光伝送面処理方法。
2. The cutting edge is a single crystal diamond cutting edge having a linear cutting edge.
5. A method for treating an optical transmission surface of a rod-shaped optical transmission body according to.
【請求項3】 前記の各棒状光伝送体の一端に対する当
接一回あたりの切り込み量を0.05μm以上1μm以
下とする請求項1又は2記載の棒状光伝送体の光伝送面
処理方法。
3. The optical transmission surface treatment method for a rod-shaped optical transmission body according to claim 1, wherein a cutting amount per contact with one end of each rod-shaped optical transmission body is 0.05 μm or more and 1 μm or less.
【請求項4】 前記切削刃に対する前記光伝送体配列体
の相対移動速度を500mm/秒以上とする請求項1、
2又は3記載の棒状光伝送体の光伝送面処理方法。
4. The relative moving speed of the array of light transmitters with respect to the cutting blade is 500 mm / sec or more.
2. The method for treating an optical transmission surface of a rod-shaped optical transmission body according to 2 or 3.
【請求項5】 前記光伝送体配列体として、前記の各棒
状光伝送体の端部を予備切削した光伝送体配列体を用い
る請求項1〜4のいずれか1項に記載の棒状光伝送体の
光伝送面処理方法。
5. The rod-shaped optical transmission according to any one of claims 1 to 4, wherein an optical transmission element array in which an end portion of each rod-shaped optical transmission element is precut is used as the optical transmission element array. Optical transmission surface treatment method of body.
【請求項6】 前記光伝送体配列体として、前記の各棒
状光伝送体の端面の表面粗さが2μm以下である光伝送
体配列体を用いる請求項1〜4のいずれか1項に記載の
棒状光伝送体の光伝送面処理方法。
6. The optical transmission element array according to claim 1, wherein the optical transmission element array is an optical transmission element array in which the surface roughness of the end face of each rod-shaped optical transmission element is 2 μm or less. Of the optical transmission surface of the rod-shaped optical transmission body of.
【請求項7】 前記の各棒状光伝送体の端部に対する前
記切削刃の切り込み位置を調整するための切削刃移動駆
動体としてピエゾ素子を備えた切削刃可動ステージを用
いる請求項1〜6のいずれか1項に記載の棒状光伝送体
の光伝送面処理方法。
7. A cutting blade movable stage having a piezo element is used as a cutting blade moving driving body for adjusting a cutting position of the cutting blade with respect to an end portion of each rod-shaped light transmission body. The optical transmission surface treatment method for a rod-shaped optical transmission body according to any one of claims 1 to 5.
【請求項8】 前記切削刃として、一の切削刃固定台座
に直線状の刃先を持つ二以上の単結晶ダイヤモンド切削
刃が設置され、これら各切削刃の刃先が同一直線上に位
置するように各切削刃が配置された切削刃を用いる請求
項1〜7のいずれか1項に記載の棒状光伝送体の光伝送
面処理方法。
8. As the cutting blades, two or more single crystal diamond cutting blades having linear cutting edges are installed on one cutting blade fixing base, and the cutting edges of these cutting blades are positioned on the same straight line. The optical transmission surface treatment method for a rod-shaped optical transmission body according to any one of claims 1 to 7, wherein a cutting blade on which each cutting blade is arranged is used.
【請求項9】 一の切削刃固定台座に設置された隣り合
う切削刃間の間隔が50μm以下である請求項8記載の
棒状光伝送体の光伝送面処理方法。
9. The optical transmission surface treatment method for a rod-shaped optical transmission body according to claim 8, wherein the interval between adjacent cutting blades installed on one cutting blade fixing base is 50 μm or less.
JP2001186657A 2001-06-20 2001-06-20 Method for processing photo-transmitting surface of rod shape photo-transmitting body Pending JP2003001514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186657A JP2003001514A (en) 2001-06-20 2001-06-20 Method for processing photo-transmitting surface of rod shape photo-transmitting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186657A JP2003001514A (en) 2001-06-20 2001-06-20 Method for processing photo-transmitting surface of rod shape photo-transmitting body

Publications (1)

Publication Number Publication Date
JP2003001514A true JP2003001514A (en) 2003-01-08

Family

ID=19026071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186657A Pending JP2003001514A (en) 2001-06-20 2001-06-20 Method for processing photo-transmitting surface of rod shape photo-transmitting body

Country Status (1)

Country Link
JP (1) JP2003001514A (en)

Similar Documents

Publication Publication Date Title
KR102588457B1 (en) Rectangular substrate for imprint lithography and making method
TWI462170B (en) Silicon wafer wiping device and silicon wafer manufacturing method and by etching silicon wafer
KR20130050876A (en) Sheet glass having end edge portion polishing-finished by polishing tape, method and apparatus for polishing end edge portion of sheet glass
US6123608A (en) Crown forming apparatus for forming crown floating type magnetic head
WO2017022389A1 (en) Plate-glass processing apparatus and glass substrate
CN1846937A (en) Processing method of aspherical optical element of optical glass and silicon monocrystal
CN1434489A (en) Semicondoctor wafer with improved partial planeness and making method thereof
JP5064711B2 (en) Glass substrate cutting method and optical filter
JP6011627B2 (en) Glass substrate polishing method
JP2007030095A (en) Method for manufacturing diamond tool
JP2010142890A (en) Method of correcting outer circumferential shape of cutting member, dresser board, and cutting device
JP2003001514A (en) Method for processing photo-transmitting surface of rod shape photo-transmitting body
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
CN110757263A (en) Mechanical grinding method-based micro-opening control method for micro-arc-edge diamond cutter
JP2000042840A (en) Manufacture of conductive wafer and ceramics board for thin plate sintered body and thin film magnetic head and working of conductive wafer
JP5908367B2 (en) Manufacturing method of mold for optical member manufacturing
JPH11156628A (en) Optical transmission surface processing method for barlike optical transmission body
JP7087817B2 (en) How to cut the cover glass
CN1920960A (en) Method for manufacturing a magnetic head slider
EP1525947B1 (en) Method for finish-polishing
KR100998500B1 (en) Optical element, method of planarizing optical film and method of manufacturing the optical element
JP3847825B2 (en) Manufacturing method of optical transmitter array
WO2017085884A1 (en) Multi-stage batch grinding method for end surface of optical fiber connector, and grinding film
JP2964722B2 (en) Manufacturing method of floating type thin film magnetic head
JP4009287B2 (en) Manufacturing method of resin optical transmitter array