JPH11156628A - Optical transmission surface processing method for barlike optical transmission body - Google Patents

Optical transmission surface processing method for barlike optical transmission body

Info

Publication number
JPH11156628A
JPH11156628A JP34577097A JP34577097A JPH11156628A JP H11156628 A JPH11156628 A JP H11156628A JP 34577097 A JP34577097 A JP 34577097A JP 34577097 A JP34577097 A JP 34577097A JP H11156628 A JPH11156628 A JP H11156628A
Authority
JP
Japan
Prior art keywords
optical transmission
transmission body
single crystal
cutting
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34577097A
Other languages
Japanese (ja)
Inventor
Osamu Maehara
修 前原
Toshinori Sumi
敏則 隅
Yoshihiko Hoshiide
芳彦 星出
Kazunori Koike
和權 小池
Nobuhiko Toyoda
暢彦 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP34577097A priority Critical patent/JPH11156628A/en
Publication of JPH11156628A publication Critical patent/JPH11156628A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase productive and reduce production costs by moving an optical transmission body array and/or a single crystal cutter so as to sequentially bring the respective optical transmission body end parts of the optical transmission body array into contact with the cutting edge of the single crystal cutter having a linear cutting edge, and cutting the optical transmission surfaces of the optical transmission body end parts. SOLUTION: For cutting the optical transmission surface of an optical transmission body end surface to be smooth, preferably RMAX 2 μm or lower, and mirror finished, an optical transmission body array 1 constructed by arraying a plurality of optical transmission bodies fixed by a fixing unit 2 is moved along a moving guide 5 with respect to the linear cutting edge of a single crystal cutter 3 fixed to a cutter fixing part 4. This optical transmission body array 1 is made by exposing the optical transmission body end parts on a resin plate made of a phenol resin, an acrylic resin or the like, or a substrate made of a non ferrous-metal plate such as copper, brass or the like and fixing the same by an adhesive. The single crystal cutter 3 has a structure where a single crystal tip is attached to a shank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、棒状光伝送体の光
伝送面の処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an optical transmission surface of a rod-shaped optical transmission body.

【0002】[0002]

【従来の技術】通常、光ファイバ、棒状レンズ等の光伝
送体の光伝送面の鏡面加工は、切断等の一次加工の後、
研磨材の砥粒を粗いものから順次目の細かいものに換え
ながら荒研磨〜仕上げ研磨を行って仕上げる研磨処理
法、荒研磨後の表面に透明な樹脂をスプレー或いはディ
ッピングにより塗布し硬化処理を施して仕上げるコーテ
ィング法、ダイヤモンド切削刃を回転ヘッドに取り付
け、フライス方式で切削することで鏡面状態に仕上げる
ダイヤモンドフライス切削法(特開平9−152518
号公報)等によって行われている。
2. Description of the Related Art Usually, mirror processing of an optical transmission surface of an optical transmission body such as an optical fiber and a rod-shaped lens is performed after primary processing such as cutting.
A polishing treatment method in which rough polishing to finish polishing is performed while sequentially changing the abrasive grains of the abrasive material from coarse to fine, and a transparent resin is applied to the surface after rough polishing by spraying or dipping and subjected to a hardening treatment. Milling method, in which a diamond cutting blade is attached to a rotating head and cut by a milling method to obtain a mirror finish (Japanese Patent Laid-Open No. 9-152518).
Gazette).

【0003】しかしながら、研磨処理法では、研磨材の
砥粒を粗いものから順次目の細かいものに換えながら研
磨を進める必要があり、光学部品として使用可能な光伝
送面状態に仕上げる最終段階の研磨では、粒度が0.5
μm以下の砥粒を用いる必要がある。しかも前工程の研
磨で用いた研磨材が残留していた場合、その砥粒により
加工中の光伝送面に傷が生じ、生産性が著しく低下す
る。よって砥粒を細かくする際に前工程の研磨材を完全
に除去する必要があるが、結果的には全体の加工行程及
び装置は複雑となり、生産性が低いという問題点があ
る。
However, in the polishing method, it is necessary to carry out the polishing while changing the abrasive grains of the abrasive material from coarser to finer ones sequentially, and the final stage of polishing to finish the light transmitting surface usable as an optical component. Then, the particle size is 0.5
It is necessary to use abrasive grains of μm or less. In addition, if the abrasive used in the polishing in the previous step remains, the abrasive grains cause scratches on the light transmission surface during processing, and the productivity is significantly reduced. Therefore, it is necessary to completely remove the abrasive in the previous step when making the abrasive grains finer, but as a result, there is a problem that the entire processing steps and equipment become complicated and the productivity is low.

【0004】コーティング法では、荒研磨で残っている
傷をコーティング材により埋めることで光学部品として
使用可能な面状態に仕上げることができ、その際荒研磨
は粒度が3μm程度の砥粒での研磨でよく、研磨処理法
に比べ生産性が高いが、光伝送体材とコーティング材に
屈折率差がある場合、傷の部分では光の屈折・散乱が生
じる。またコーティング工程において、コーティング材
への異物付着に起因した光伝送面の凹凸化やコーティン
グ前の光伝送面の凹凸やコーティング材のはじきによる
コーティング材の付着不良等が発生し易く、研磨処理法
に比べ光学的な欠陥が発現し易いという問題点がある。
[0004] In the coating method, the surface remaining usable as an optical component can be finished by filling the remaining scratches in the rough polishing with a coating material. At this time, the rough polishing is performed by polishing with abrasive grains having a grain size of about 3 μm. Although the productivity is higher than that of the polishing treatment method, if there is a difference in the refractive index between the light transmitting material and the coating material, light is refracted and scattered at the scratched portion. Also, in the coating process, unevenness of the light transmission surface due to the adhesion of foreign matter to the coating material, unevenness of the light transmission surface before coating and poor adhesion of the coating material due to repelling of the coating material are likely to occur. There is a problem that an optical defect is more likely to occur.

【0005】また、ダイヤモンドフライス切削法では、
光伝送面にナイフマーク及びうねりが発生しやすく、ま
た光伝送体部品送り部のガタや回転軸の偏芯等が複合さ
れ、仕上げ面の品位が低下し易い。さらにナイフマーク
を少なくするためには微少な送りで光伝送面を何度も重
複切削しなければならず、そのため切削距離が光伝送面
全長の数十から数百倍となり、刃先の磨耗が非常に速
く、ダイヤモンド切削刃の寿命が短くなりコストがかか
るといった問題点がある。
[0005] In the diamond milling method,
Knife marks and undulations are likely to occur on the optical transmission surface, and play of the optical transmission component parts and eccentricity of the rotating shaft are combined, so that the quality of the finished surface is likely to deteriorate. In order to further reduce the number of knife marks, the light transmission surface must be repeatedly cut with a small amount of feed, and the cutting distance becomes several tens to several hundred times the entire length of the light transmission surface, and the wear of the cutting edge is extremely low. In addition, there is a problem that the life of the diamond cutting blade is shortened and the cost is increased.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、優れ
た光学特性を有し平滑な光伝送面を備える棒状光伝送体
を高い生産性及び低い生産コストで得る光伝送面処理法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical transmission surface processing method for obtaining a rod-shaped optical transmission body having excellent optical characteristics and a smooth optical transmission surface at high productivity and low production cost. Is to do.

【0007】[0007]

【課題を解決するための手段】本発明は、直線状の刃先
を有する単結晶体切削刃の刃先に対して、複数の光伝送
体を配列させた光伝送体配列体の各光伝送体端部が順次
当接するように光伝送体配列体及び又は単結晶体切削刃
を移動させて光伝送体端部の光伝送面を切削することを
特徴とする棒状光伝送体の光伝送面処理法、にある。
SUMMARY OF THE INVENTION The present invention provides an optical transmitter array having a plurality of optical transmitters arrayed with respect to a cutting edge of a single crystal cutting blade having a linear cutting edge. A light transmission surface of a rod-shaped light transmission body, wherein the light transmission surface at the end of the light transmission body is cut by moving the light transmission body array body and / or the single crystal body cutting blade so that the portions come into contact sequentially. ,It is in.

【0008】[0008]

【発明の実施の形態】本発明は、棒状光伝送体、特にプ
ラスチック製の棒状光伝送体に好ましく適用されるもの
であり、以下、本発明を図面に基づいて詳細に説明す
る。図1は、本発明の棒状光伝送体の光伝送面処理に用
いる装置の一例の斜視図である。図1中、1は光伝送体
配列体、2は光伝送体配列体固定ユニット、3は単結晶
体切削刃、4は切削刃固定部、5は光伝送体配列体固定
ユニット移動ガイド、6はエンドミル、7はエンドミル
駆動モータ、8は固定クランプを表す。図2は、本発明
での光伝送体配列体の一例の斜視図である。図2中、2
1は棒状光伝送体、22は基板、23は接着剤を表す。
図3は、本発明での単結晶体切削刃の一例の斜視図であ
る。図3中、31はシャンク、32は単結晶体チップ、
33は刃先を表す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is preferably applied to a rod-shaped optical transmission member, particularly a plastic rod-shaped optical transmission member. Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of an example of an apparatus used for processing an optical transmission surface of a rod-shaped optical transmission body according to the present invention. In FIG. 1, 1 is an optical transmission body array body, 2 is an optical transmission body array fixing unit, 3 is a single crystal cutting blade, 4 is a cutting blade fixing section, 5 is an optical transmission body array fixing unit moving guide, 6 Denotes an end mill, 7 denotes an end mill drive motor, and 8 denotes a fixed clamp. FIG. 2 is a perspective view of an example of the optical transmission body array according to the present invention. In FIG. 2, 2
1 is a rod-shaped optical transmission body, 22 is a substrate, and 23 is an adhesive.
FIG. 3 is a perspective view of an example of the single crystal cutting blade according to the present invention. In FIG. 3, 31 is a shank, 32 is a single crystal chip,
33 represents a cutting edge.

【0009】図1において、切削刃固定部4により固定
した直線状の刃先を有する単結晶体切削刃3の刃先に対
して、複数の光伝送体を配列させた各光伝送体端部が順
次当接するように、固定ユニット2で固定した光伝送体
配列体1を切削刃固定部4方向に移動させることによ
り、光伝送体端部の光伝送面を平滑に、好ましくはR
MAX2μm以下、かつ鏡面状態に切削することができ
る。図1においては、単結晶体切削刃3を固定し、光伝
送体配列体1側を移動ガイド5に沿って移動させるが、
光伝送体配列体1側を固定し、単結晶体切削刃3を移動
させてもよいし、光伝送体配列体1及び単結晶体切削刃
3を移動させることもできる。
In FIG. 1, the end of each light transmitting body in which a plurality of light transmitting bodies are arranged is sequentially arranged with respect to the cutting edge of a single crystal cutting blade 3 having a linear cutting edge fixed by a cutting blade fixing portion 4. By moving the optical transmission body array 1 fixed by the fixing unit 2 in the direction of the cutting blade fixing portion 4 so as to abut, the light transmission surface at the end of the optical transmission body is smooth, preferably R.
MAX 2 μm or less, and can be cut to a mirror surface. In FIG. 1, the single crystal body cutting blade 3 is fixed, and the optical transmission body array 1 side is moved along the movement guide 5.
The single crystal cutting blade 3 may be moved while the light transmitting body array 1 is fixed, or the light transmitting body array 1 and the single crystal cutting blade 3 may be moved.

【0010】光伝送体配列体1は、図2に示すように、
複数の棒状光伝送体21を配列させた状態でフェノール
樹脂、アクリル樹脂等の樹脂板や銅、真鍮等の非鉄金属
板等の基板22に光伝送体端部を露出させて接着剤23
で固定されてなる。また、単結晶体切削刃3は、図3に
示すように、シャンク31に単結晶体チップ32が取り
付けられており、切削刃固定部4で光伝送体配列体1の
光伝送体端部との当接位置が調整される。単結晶体チッ
プ32の刃先33は直線状になっている。
[0010] As shown in FIG.
In a state where a plurality of rod-shaped optical transmission bodies 21 are arranged, an end of the optical transmission body is exposed to a substrate 22 such as a resin plate such as phenol resin or acrylic resin or a non-ferrous metal plate such as copper or brass, and an adhesive 23 is formed.
It is fixed by. As shown in FIG. 3, the single crystal cutting blade 3 has a single crystal chip 32 attached to a shank 31, and the cutting blade fixing portion 4 is used to connect the light transmitting body end of the light transmitting body array 1 to the light transmitting body end. Is adjusted. The cutting edge 33 of the single crystal chip 32 is straight.

【0011】本発明において用いる単結晶体切削刃の単
結晶体としては、ダイヤモンド、サファイヤ、ルビー等
が挙げられ、その硬度によって切削寿命が大きく異なる
ため、硬度の点からは特にダイヤモンドを用いることが
好ましい。
The single crystal body of the single crystal body cutting blade used in the present invention includes diamond, sapphire, ruby and the like, and since the cutting life varies greatly depending on the hardness thereof, it is particularly preferable to use diamond from the viewpoint of hardness. preferable.

【0012】ダイヤモンドには、天然、人工品の2種類
があるが、両者とも用いることができる。これらは、共
に刃面の結晶方位によって切削寿命が大きく異なるの
で、長時間安定した光伝送面を得るためには適切な結晶
方位を選定することが望ましい。また天然ダイヤモンド
の切削刃を得る際、刃先の直線状部の幅が小さい場合に
は、結晶方位が適切な切削を得易いが、刃先の直線状部
の幅が大きな場合には、切削刃に加工するための母材自
体大きなものが必要なため、結晶方位が適切な切削刃を
得ることが困難となってくる。また天然ダイヤモンド
は、母材自体に不純物や傷等を内包する場合が多く、光
伝送面の仕上げ品位に悪影響を与える場合もあるので、
本発明の単結晶体切削刃の単結晶体としては、人工ダイ
ヤモンドを用いることがより好ましい。
There are two types of diamond, natural and artificial, and both can be used. Since the cutting life of each of these greatly differs depending on the crystal orientation of the blade surface, it is desirable to select an appropriate crystal orientation in order to obtain a stable light transmission surface for a long time. In addition, when obtaining a cutting edge made of natural diamond, if the width of the linear portion of the cutting edge is small, it is easy to obtain an appropriate crystal orientation when cutting, but if the width of the linear portion of the cutting edge is large, Since a large base material itself for processing is required, it becomes difficult to obtain a cutting blade having an appropriate crystal orientation. In addition, natural diamond often includes impurities and scratches in the base material itself, and may adversely affect the finish quality of the light transmission surface,
It is more preferable to use artificial diamond as the single crystal of the single crystal cutting blade of the present invention.

【0013】ダイヤモンド切削刃は、大型になるほど指
数的に価格が高くなるので、通常工業的に用いられてい
る刃の幅は11mm以下である。1個の単結晶ダイヤモ
ンド切削刃を用いた場合、一度に処理可能な光伝送面の
幅は、刃先の直線状部の幅以下であって広くはないが、
複数個の単結晶ダイヤモンド切削刃を、刃先の直線状部
がオーバーラップするよう並列配置することによって一
度に広い光伝送面幅を切削することもできる。
Since the size of a diamond cutting blade increases exponentially as it becomes larger, the width of a blade generally used industrially is 11 mm or less. When one single-crystal diamond cutting blade is used, the width of the light transmission surface that can be processed at one time is not wider than the width of the linear portion of the blade edge,
By arranging a plurality of single-crystal diamond cutting blades in parallel so that the linear portions of the cutting edges overlap, a wide light transmission surface width can be cut at a time.

【0014】光伝送体配列体の光伝送体端部の光伝送面
の切削は、単結晶体切削刃に光伝送体配列体の光伝送体
端部をその配列順序に従って順次当接させて行う。切り
込み量、即ち切削により切り取られる光伝送体の長さ
は、通常200μm以下、好ましくは100μm以下、
更に好ましくは50μm以下の範囲で設定する。切り込
み量が少ないほど単結晶体切削刃への負担が少なくな
り、切削寿命は長くなるが、光伝送面全面を鏡面状態に
切削するには、単結晶体切削刃による切削前の光伝送面
の平面度、装置移動部の平行移動精度等に応じて切り込
み量を設定することが好ましい。
The cutting of the light transmitting surface at the end of the light transmitting body of the light transmitting body array is performed by sequentially bringing the light transmitting body end of the light transmitting body array into contact with the single crystal cutting blade in accordance with the arrangement order. . The cut amount, that is, the length of the optical transmission body cut by cutting is usually 200 μm or less, preferably 100 μm or less,
More preferably, it is set within a range of 50 μm or less. The smaller the cutting depth, the less the load on the single crystal cutting blade and the longer the cutting life.However, to cut the entire light transmission surface into a mirror surface, the light transmission surface before cutting by the single crystal cutting blade is required. It is preferable to set the cut amount according to the flatness, the parallel movement accuracy of the apparatus moving unit, and the like.

【0015】光伝送面の凹凸や反りが激しい場合には、
単結晶体切削刃による切削の前段階において、例えば本
発明のような直線状の刃先を有する切削刃、若しくはフ
ライスやエンドミル等の切削工具を用いて予備切削処理
を行い、予め光伝送面の平面度を向上させ、単結晶体切
削刃による切削時の切り込み量を可能なかぎり小さくす
ることが望ましい。なお、予備切削処理における切削刃
は、単結晶体、多結晶体のいずれであってもよい。
If the optical transmission surface has severe irregularities and warpage,
In the pre-stage of cutting by the single crystal cutting blade, for example, a cutting blade having a linear cutting edge as in the present invention, or a preliminary cutting process using a cutting tool such as a milling cutter or an end mill, and a light transmitting surface in advance. It is desirable to improve the degree of cutting and to reduce the cutting depth during cutting by the single crystal cutting blade as much as possible. The cutting blade in the preliminary cutting process may be either a single crystal or a polycrystal.

【0016】以上のような方法により、光伝送体の光伝
送面を平滑に、好ましくはJISB0601で測定され
る表面粗さRMAX2μm以下、かつ鏡面状態に切削する
ことができ、研磨処理法とほぼ同等の光学特性の光伝送
面が得られ、かつ研磨処理法及びコーティング法に比べ
処理工程を大幅に簡略化できる。また、単結晶体切削刃
による切削長、即ち切削開始から終了までの間の切削刃
の相対的な移動量が光伝送面全長と同じとなることか
ら、ダイヤモンドフライス切削法に比べ、刃先の磨耗が
抑えられ、単結晶ダイヤモンド切削刃の寿命が延長さ
れ、光伝送体部品の生産コストを大幅に低減できる。更
に単結晶体切削刃と光伝送体部品との相対速度をダイヤ
モンドフライス切削法と同じ程度にできるため、光伝送
面の高速の切削処理が可能となり、光伝送体部品の生産
性を大幅に向上できる。
According to the above-mentioned method, the light transmission surface of the light transmission body can be cut into a smooth surface, preferably a surface roughness R MAX of 2 μm or less measured according to JIS B0601, and a mirror surface state. An optical transmission surface having substantially the same optical characteristics can be obtained, and the processing steps can be greatly simplified as compared with the polishing method and the coating method. In addition, since the cutting length of the single crystal cutting blade, that is, the relative movement of the cutting blade from the start to the end of cutting is the same as the entire length of the light transmission surface, the wear of the cutting edge is smaller than that of the diamond milling method. , The life of the single crystal diamond cutting blade is extended, and the production cost of the optical transmission component can be significantly reduced. Furthermore, since the relative speed between the single crystal cutting blade and the optical transmission component can be made the same level as that of the diamond milling method, high-speed cutting of the optical transmission surface becomes possible, and the productivity of the optical transmission component is greatly improved. it can.

【0017】[0017]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0018】(実施例1)基板として黒色樹脂板、光伝
送体としてプラスチック製棒状レンズを用い、基板と棒
状レンズ間にエピフォーム(ソマール社製、反応型エポ
キシ系接着剤)にカーボンブラックを2wt%混練した
ものを充填硬化させ、2枚の基板間に多数の棒状レンズ
が平行に配列された構造の光伝送体配列原板を作製し
た。この原板を配列したレンズ端部を露出させてレンズ
の長さ方向と直角に幅5mmの短冊状に切り出した。
(Embodiment 1) A black resin plate was used as a substrate, and a plastic rod-shaped lens was used as an optical transmission body. 2 wt.% Of carbon black was used between the substrate and the rod-shaped lens on an epiform (manufactured by Somar, reactive epoxy adhesive). % Kneaded, and the mixture was cured to prepare an optical transmission element array base plate having a structure in which a number of rod-shaped lenses were arranged in parallel between two substrates. The end of the lens on which the original plate was arranged was exposed and cut into a strip having a width of 5 mm perpendicular to the length direction of the lens.

【0019】図1に示す装置にて、切り出した短冊状の
レンズ配列体を、レンズ露出端面が治具から片側に約
0.5mm突き出すようにしてクランプし、4.26m
mの隙間で対向して配置されたエンドミル間を800m
m/分の移動速度で通過させることにより4.26mm
幅、平面度20μm以下に予備切削を行った。予備切削
が行われたレンズ配列体を、幅4.20mmの隙間で対
向し直線状部が平行に配置され、片側30μmの切り込
み量となるよう調整された刃幅が9mmの人工単結晶ダ
イヤモンド切削刃の間を10000mm/分の移動速度
で通過させ、レンズ配列体を幅が4.20mmになるよ
う切削を行った。得られたレンズ配列体中の一つのレン
ズについて光伝送面の表面粗さRMAX及び光学特性のM
TF(8ラインペア/mm、なお、MTFはModul
ation Transfer Functionの略
で、レンズの解像度を表す値として一般に用いられてい
る)を測定し、その結果を表1に示した。
The apparatus shown in FIG. 1 clamps the cut strip-shaped lens array so that the exposed end face of the lens projects about 0.5 mm from one side of the jig to 4.26 m.
800m between end mills arranged opposite to each other with a gap of m
4.26 mm by passing at a moving speed of m / min
Preliminary cutting was performed to a width and flatness of 20 μm or less. The preliminarily cut lens array is cut with an artificial single crystal diamond having a blade width of 9 mm, which is opposed to a gap of 4.20 mm in width, with straight portions arranged in parallel, and adjusted so as to have a cutting depth of 30 μm on one side. The lens array was cut to a width of 4.20 mm while passing between the blades at a moving speed of 10,000 mm / min. For one lens in the obtained lens array, the surface roughness R MAX of the light transmission surface and the M
TF (8 line pairs / mm, MTF is Modul
ation Transfer Function, which is generally used as a value representing the resolution of a lens), and the results are shown in Table 1.

【0020】(比較例1)実施例1と同じ原板から切り
出した幅5mmの短冊状のレンズ配列体を、レンズ露出
端面が治具から片側に約0.5mm突き出す形でクラン
プし、4.25mmの隙間で対向配置されたエンドミル
間を平行通過させることにより4.25mm幅、平面度
20μm以下に予備切削を行い、更にその端面をラッピ
ングペーパーを用いた研磨処理法により研磨材砥粒が粗
いものから順次目の細かいものに換えながら研磨を進
め、最終段階の研磨で砥粒粒度が0.3μmのもので
4.20mm幅に鏡面状態まで仕上げた。得られたレン
ズ配列体中の一つのレンズについて光伝送面表面粗さR
MAX及び光学特性MTFを測定し、その結果を表1に示
した。この研磨処理法によれば、RMAX及びMTFは実
施例1によるものと同等であったが、研磨処理作業に長
時間を要した。
(Comparative Example 1) A strip-shaped lens array having a width of 5 mm cut out from the same original plate as in Example 1 was clamped in such a manner that the exposed end face of the lens protruded from the jig by about 0.5 mm to one side, and 4.25 mm. Preliminary cutting to 4.25 mm width and flatness of 20 μm or less by passing in parallel between end mills that are arranged opposite to each other with a gap, and the end surfaces of which are roughened by abrasive treatment using lapping paper The polishing was proceeded while sequentially changing to finer ones, and the polishing in the final stage was finished to a mirror surface of 4.20 mm width with a grain size of 0.3 μm. For one lens in the obtained lens array, the light transmission surface surface roughness R
The MAX and the optical properties MTF were measured, and the results are shown in Table 1. According to this polishing method, R MAX and MTF were equivalent to those in Example 1, but the polishing operation required a long time.

【0021】(比較例2)実施例1と同じ原板から切り
出した幅5mmの短冊状のレンズ配列体を、レンズ露出
端面が治具から片側に約0.5mm突き出す形でクラン
プし、4.22mmの隙間で対向配置されたエンドミル
間を平行通過させることにより4.22mm幅、平面度
20μm以下に予備切削を行い、更にレンズ露出端面を
粒度3μmのラッピングフィルムで幅が約4.20mm
になるまで荒研磨し、その表面に光重合性透明樹脂をス
プレーして塗布・光重合硬化させた。得られたレンズ配
列体中の一つのレンズについて光伝送面表面粗さRMAX
及び光学特性MTFを測定し、その結果を表1に示し
た。このコーティング法によれば、RMAX及びMTFは
実施例1によるものより劣っていた。
(Comparative Example 2) A strip-shaped lens array having a width of 5 mm cut out from the same original plate as in Example 1 was clamped so that the exposed end face of the lens protruded from the jig by about 0.5 mm to one side, and was 4.22 mm. Preliminary cutting to a width of 4.22 mm and a flatness of 20 μm or less is performed by passing in parallel between end mills that are opposed to each other with a gap of.
The surface was roughly polished, and a photopolymerizable transparent resin was sprayed on the surface to apply and photopolymerize and cure. For one lens in the obtained lens array, the light transmission surface surface roughness R MAX
The optical properties MTF were measured, and the results are shown in Table 1. According to this coating method, R MAX and MTF were inferior to those according to Example 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明によれば、光伝送体に良好な光学
特性の光伝送面を、大幅に簡略な処理工程で得ることが
できる。また、単結晶体切削刃による切削長が光伝送面
全長と同じにし得ることから、ダイヤモンドフライス切
削法に比べ、刃先の磨耗が抑えられ、単結晶ダイヤモン
ド切削刃の寿命が延長され、光伝送体部品の生産コスト
を大幅に低減できる。更に単結晶体切削刃と光伝送体部
品との相対速度をダイヤモンドフライス切削法と同じ程
度にできることから、光伝送面の高速の切削処理が可能
となり、光伝送体部品の生産性を大幅に向上させること
ができる。
According to the present invention, a light transmitting surface having good optical characteristics can be obtained in a light transmitting body by a greatly simplified processing step. In addition, since the cutting length of the single crystal cutting blade can be made the same as the entire length of the light transmission surface, the wear of the cutting edge is suppressed as compared with the diamond milling method, the life of the single crystal diamond cutting blade is extended, and the The production cost of parts can be significantly reduced. Furthermore, since the relative speed between the single crystal cutting blade and the optical transmission component can be set to the same level as that of the diamond milling method, high-speed cutting of the optical transmission surface becomes possible, and the productivity of the optical transmission component is greatly improved. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の棒状光伝送体の光伝送面処理に用いる
装置の一例の斜視図である。
FIG. 1 is a perspective view of an example of an apparatus used for processing an optical transmission surface of a rod-shaped optical transmission body according to the present invention.

【図2】本発明での光伝送体配列体の一例の斜視図であ
る。
FIG. 2 is a perspective view of an example of an optical transmission body array according to the present invention.

【図3】本発明での単結晶体切削刃の一例の斜視図であ
る。
FIG. 3 is a perspective view of an example of a single crystal cutting blade according to the present invention.

【符号の説明】[Explanation of symbols]

1 光伝送体配列体 2 光伝送体配列体固定ユニット 3 単結晶体切削刃 4 切削刃固定部 5 光伝送体配列体固定ユニット移動ガイド 6 エンドミル 7 エンドミル駆動モータ 8 固定クランプ 21 棒状光伝送体 22 基板 23 接着剤 31 シャンク 32 単結晶体チップ 33 刃先 DESCRIPTION OF SYMBOLS 1 Optical transmission body array body 2 Optical transmission body array body fixing unit 3 Single crystal body cutting blade 4 Cutting blade fixing part 5 Optical transmission body array fixing unit moving guide 6 End mill 7 End mill drive motor 8 Fixed clamp 21 Rod-shaped optical transmission body 22 Substrate 23 Adhesive 31 Shank 32 Single crystal chip 33 Cutting edge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小池 和權 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社大竹事業所内 (72)発明者 豊田 暢彦 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社大竹事業所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuyoshi Koike 20-1 Miyukicho, Otake City, Hiroshima Prefecture Inside Mitsubishi Rayon Co., Ltd. Otake Works (72) Inventor Nobuhiko Toyota 201-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Otake Office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直線状の刃先を有する単結晶体切削刃の
刃先に対して、複数の光伝送体を配列させた光伝送体配
列体の各光伝送体端部が順次当接するように光伝送体配
列体及び又は単結晶体切削刃を移動させて光伝送体端部
の光伝送面を切削することを特徴とする棒状光伝送体の
光伝送面処理法。
1. An optical transmitter in which a plurality of optical transmitters are arranged so that the ends of the optical transmitters sequentially contact the cutting edge of a single crystal cutting blade having a linear cutting edge. An optical transmission surface treatment method for a rod-shaped optical transmission body, wherein a light transmission surface at an end of the optical transmission body is cut by moving a transmission body array and / or a single crystal body cutting blade.
【請求項2】 単結晶体としてダイヤモンドを用いる請
求項1記載の棒状光伝送体の光伝送面処理法。
2. The method according to claim 1, wherein diamond is used as the single crystal body.
【請求項3】 光伝送体配列体として、光伝送体端部を
予備切削した光伝送体配列体を用いる請求項1又は請求
項2記載の棒状光伝送体の光伝送面処理法。
3. The optical transmission surface treatment method for a rod-shaped optical transmission body according to claim 1, wherein the optical transmission body array is an optical transmission body array in which an end of the optical transmission body is preliminarily cut.
JP34577097A 1997-12-02 1997-12-02 Optical transmission surface processing method for barlike optical transmission body Pending JPH11156628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34577097A JPH11156628A (en) 1997-12-02 1997-12-02 Optical transmission surface processing method for barlike optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34577097A JPH11156628A (en) 1997-12-02 1997-12-02 Optical transmission surface processing method for barlike optical transmission body

Publications (1)

Publication Number Publication Date
JPH11156628A true JPH11156628A (en) 1999-06-15

Family

ID=18378864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34577097A Pending JPH11156628A (en) 1997-12-02 1997-12-02 Optical transmission surface processing method for barlike optical transmission body

Country Status (1)

Country Link
JP (1) JPH11156628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064248A (en) * 2003-01-29 2010-03-25 Mitsubishi Rayon Co Ltd Gripping device and gripping tool
JP2010110861A (en) * 2008-11-06 2010-05-20 Fanuc Ltd Straight line grooving method and straight line grooving device
TWI380888B (en) * 2010-03-30 2013-01-01 Fanuc Ltd Straight groove processing method and straight groove processing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064248A (en) * 2003-01-29 2010-03-25 Mitsubishi Rayon Co Ltd Gripping device and gripping tool
JP2010110861A (en) * 2008-11-06 2010-05-20 Fanuc Ltd Straight line grooving method and straight line grooving device
JP4554701B2 (en) * 2008-11-06 2010-09-29 ファナック株式会社 Straight groove processing method and straight groove processing apparatus
TWI380888B (en) * 2010-03-30 2013-01-01 Fanuc Ltd Straight groove processing method and straight groove processing device

Similar Documents

Publication Publication Date Title
US5683290A (en) Apparatus for forming a convex tip on a workpiece
US5480344A (en) Polishing process for optical connector assembly with optical fiber and polishing apparatus
JPH11194233A (en) Production of optical fiber connector plug
JP4466956B2 (en) Diamond tool manufacturing method
JP2010142890A (en) Method of correcting outer circumferential shape of cutting member, dresser board, and cutting device
JPH11156628A (en) Optical transmission surface processing method for barlike optical transmission body
JP3544601B2 (en) Ultra-precision cutting method for crystalline materials
JP3847825B2 (en) Manufacturing method of optical transmitter array
US6951508B1 (en) Optical fiber polishing device
JP2002126986A (en) Lens machining method
US6238800B1 (en) Lens and an optical apparatus with the lens
CN108602170B (en) Method for multi-stage collective polishing of end faces of workpieces and polishing film
JP4009287B2 (en) Manufacturing method of resin optical transmitter array
JP3911468B2 (en) Optical fiber processing method
JP3167675B2 (en) How to Adjust a Polymer Light Guide with Plug Pins
JP2000308950A (en) Polishing method
JP2640194B2 (en) Optical element manufacturing method
JP3094919B2 (en) Spherical machining device and machining method
JP2003001514A (en) Method for processing photo-transmitting surface of rod shape photo-transmitting body
JP2833617B2 (en) Surface processing method and apparatus
JPH0319768A (en) Superprecision mirror surface processing method
JPH11317384A (en) Method for shaping end face on integrated circuit
JPH09323247A (en) Process of wafer-thin optical member and parts thereof
JP3081333B2 (en) Manufacturing method of optical fiber array
JP3187480B2 (en) Polishing apparatus and method for polishing a combined body of optical fiber and optical connector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425