JP2007030095A - Method for manufacturing diamond tool - Google Patents

Method for manufacturing diamond tool Download PDF

Info

Publication number
JP2007030095A
JP2007030095A JP2005216597A JP2005216597A JP2007030095A JP 2007030095 A JP2007030095 A JP 2007030095A JP 2005216597 A JP2005216597 A JP 2005216597A JP 2005216597 A JP2005216597 A JP 2005216597A JP 2007030095 A JP2007030095 A JP 2007030095A
Authority
JP
Japan
Prior art keywords
flank
diamond
cutting edge
face
diamond tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005216597A
Other languages
Japanese (ja)
Other versions
JP4466956B2 (en
Inventor
Atsushi Kobayashi
篤史 小林
Shuichi Kawano
収一 川野
Yuhei Fujimoto
雄平 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2005216597A priority Critical patent/JP4466956B2/en
Publication of JP2007030095A publication Critical patent/JP2007030095A/en
Application granted granted Critical
Publication of JP4466956B2 publication Critical patent/JP4466956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily manufacturing at a low cost, even a highly accurate diamond cutting edge for ultra-precision machining, in particular, of a diamond tool having a diamond tip formed with a cutting edge. <P>SOLUTION: The cutting edge is formed by forming cutting face and second flank in diamond, and the method includes: polishing the cutting face and second flank to mirror surfaces; machining an intersecting ridge of the cutting face and the second flank and the surrounding by focused ion beam; and forming a first flank. The machining is facilitated by making the polished cutting face as a plane and making the polished second flank by combining a plurality of planes. The polishing is performed so that a PV value is 3 to 300 nm in at least the surrounding of the cutting edge of the cutting face. The polishing is performed so that a PV value of a partial plane of the second flank constituted of a plurality of planes is 3 to 500 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ダイヤモンドチップに切刃が形成されたダイヤモンド工具の製造方法に関するものであり、特にテレビ画面や携帯電話などの表示器用光学シートや導光板などの光学素子成形用の金型などの超精密加工を行うためのダイヤモンド工具の製造方法に関する。   The present invention relates to a method of manufacturing a diamond tool having a cutting edge formed on a diamond tip, and more particularly to an optical sheet for a display device such as a television screen or a mobile phone, or a mold for forming an optical element such as a light guide plate. The present invention relates to a method for manufacturing a diamond tool for precision machining.

従来、光ディスク用ピックアップ対物レンズや光学シートなど光学素子の成形用金型の光学面加工には、先端に円弧状切刃を有する単結晶ダイヤモンドのRバイトが用いられており、超精密加工機を使用して切削加工のみにより高精度な光学面を得るために、その円弧の半径が0.05μm〜2.5μm程度のものが用いられている。このRバイトの具体例として、円弧部分の幅が0.8μm、頂角は30°で、第1逃げ面の逃げ角が11°、第2逃げ面の逃げ角が45°の切刃を有するダイヤモンドバイトがあげられている(例えば、特許文献1参照)。
また、切刃が複雑な形状を有する総形形状の切刃を有するダイヤモンドバイトとして、その切刃の加工に紫外線域のレーザを用いて加工を行ったダイヤモンドバイトがある。このダイヤモンドバイトは、切刃稜線が直線や曲線の組み合わせからなる複雑な形状の切刃であっても、波長が紫外線域のレーザを用いることにより、高精度に加工された切刃が得られるものである(例えば、特許文献2参照)。
これらのダイヤモンドバイトは、高精度な加工を行うことができる先端切刃が要求されるものであるが、そのようなダイヤモンドバイトの製造方法に関するものとして、逃げ面を研磨方向とは異なる方向に送りをかけながら研磨痕のない状態に研磨し、すくい面を研磨方向と異なる方向に送りをかけない状態で研磨して刃付けすることにより、逃げ面とすくい面の境界線の切刃稜部の切削方向に投影した形状はうねりがなく、切削方向と直角方向に投影した形状はうねりを有する切削稜を有するダイヤモンドバイトを製造する方法がある(例えば、特許文献3参照)。
さらに、集束イオンビームを用いてダイヤモンドに3次元の微細形状を高精度に加工する方法も提案されている(例えば、特許文献4参照)。
特開2003−62707号公報(段落番号0055、第3図) 特開2003−25118号公報(段落番号0019、第1−3図) 特開平5−192805号公報 特開2005−14028号公報
Conventionally, for the optical surface processing of molds for optical elements such as optical disk pickup objective lenses and optical sheets, single-crystal diamond R cutting tools having an arcuate cutting edge at the tip are used. In order to obtain a high-precision optical surface only by cutting, a circular arc having a radius of about 0.05 μm to 2.5 μm is used. As a specific example of this R bite, there is a cutting edge whose arc part width is 0.8 μm, apex angle is 30 °, relief angle of the first flank is 11 °, and relief angle of the second flank is 45 °. A diamond tool is mentioned (for example, refer to Patent Document 1).
In addition, as a diamond cutting tool having a general shape cutting blade with a complicated cutting edge, there is a diamond cutting tool processed using a laser in the ultraviolet region for processing the cutting blade. This diamond tool is capable of obtaining a highly accurate cutting edge by using a laser whose wavelength is in the ultraviolet range, even if the cutting edge ridge is a complex shape consisting of a combination of straight lines and curves. (For example, see Patent Document 2).
These diamond tools require a cutting edge that can be machined with high precision, but as a method for manufacturing such diamond tools, the flank face is fed in a direction different from the polishing direction. By polishing the rake face in a state where the rake face is not fed in a direction different from the polishing direction and applying a blade, the edge of the cutting edge of the boundary line between the flank face and the rake face is applied. There is a method for producing a diamond tool having a cutting edge having a waviness in a shape projected in the cutting direction without a waviness and a shape projected in a direction perpendicular to the cutting direction (for example, see Patent Document 3).
Furthermore, a method of processing a three-dimensional fine shape in diamond with high accuracy using a focused ion beam has been proposed (see, for example, Patent Document 4).
JP 2003-62707 A (paragraph number 0055, FIG. 3) Japanese Patent Laid-Open No. 2003-25118 (paragraph number 0019, FIG. 1-3) JP-A-5-192805 JP-A-2005-14028

しかしながら、特許文献3に記載の方法により刃付けを行っても、切刃先端の大きさが微細になると加工中に欠けが発生しやすく、また高精度な加工ができる切刃とするのは容易ではないという問題がある。また、特許文献4に記載の集束イオンビームを用いた加工方法では、無負荷加工であるため微細な切刃を形成する加工は可能であるが、集束イオンビームを用いた加工は加工に長時間を要するため、生産性やコスト面で現実的でないという問題がある。このようなことから、本発明は超精密切削加工の可能な高精度のダイヤモンド切刃を容易に低コストで形成できるダイヤモンド工具の製造方法を提供するものである。   However, even when cutting is performed by the method described in Patent Document 3, chipping is likely to occur during processing when the size of the tip of the cutting blade becomes fine, and it is easy to obtain a cutting blade that can perform high-precision processing. There is a problem that is not. Further, in the processing method using the focused ion beam described in Patent Document 4, since it is no-load processing, processing that forms a fine cutting edge is possible, but processing using the focused ion beam requires a long time for processing. Therefore, there is a problem that it is not realistic in terms of productivity and cost. In view of the above, the present invention provides a method for manufacturing a diamond tool that can easily form a high-precision diamond cutting edge capable of ultra-precise cutting at low cost.

本発明のダイヤモンド工具の製造方法は、予め切刃の概略形状を研削および研磨により形成し、切刃周辺を形成するすくい面および逃げ面を鏡面に加工した上で、切刃の形成を集束イオンビームにより行うものである。   The method for producing a diamond tool according to the present invention is such that the rough shape of the cutting edge is formed in advance by grinding and polishing, the rake face and flank face forming the periphery of the cutting edge are processed into a mirror surface, and then the formation of the cutting edge is focused ion. This is done with a beam.

本発明のダイヤモンド工具の製造方法の第1の特徴は、ダイヤモンドチップに切刃が形成されたダイヤモンド工具の製造方法であって、
ダイヤモンドにすくい面と第2の逃げ面を形成する工程と、
前記すくい面および第2の逃げ面を鏡面に研磨加工する工程と、
前記すくい面と第2の逃げ面との交差稜およびその周辺を集束イオンビームにより加工を行い、第1の逃げ面を形成する工程とを含むことである。
A first feature of the diamond tool manufacturing method of the present invention is a diamond tool manufacturing method in which a cutting edge is formed on a diamond tip,
Forming a rake face and a second flank face on the diamond;
Polishing the rake face and the second flank face into a mirror surface;
Forming a first flank by processing the ridge and the flank of the rake face and the periphery thereof with a focused ion beam.

本発明のダイヤモンド工具の製造方法では、まず初めにダイヤモンドチップにすくい面および第2の逃げ面を形成することにより、切刃周辺の形状を作る。第2の逃げ面は単一の面に限らず、複数の平面や曲面を組み合わせたものも含み、これらの面とすくい面とで切刃周辺の形状が形成される。すくい面および第2の逃げ面は鏡面に研磨加工がなされ、すくい面と第2の逃げ面とが交わる交差稜およびその周辺を集束イオンビームにより除去加工を行うことで第1の逃げ面が形成される。集束イオンビームによる加工では、ダイヤモンドの結晶方位にほとんど左右されずにどの方向であってもほぼ同じように加工ができ、超精密加工用工具として使用するには問題のないレベルの精度に加工することができる。従って、すくい面と第2の逃げ面とを研磨が容易な方向に設定し、切刃を耐摩耗性の高い方向に設定することも可能である。   In the method for manufacturing a diamond tool according to the present invention, first, a rake face and a second flank face are formed on a diamond tip to form a shape around the cutting edge. The second flank is not limited to a single surface, but includes a combination of a plurality of flat surfaces and curved surfaces, and these surfaces and the rake surface form a shape around the cutting edge. The rake face and the second flank face are polished to a mirror surface, and the first flank face is formed by removing the crossed ridge where the rake face and the second flank face intersect with each other by a focused ion beam. Is done. Processing with a focused ion beam can be processed in almost the same way regardless of the crystal orientation of the diamond, and can be processed to a level of accuracy that is not problematic for use as a tool for ultra-precision processing. be able to. Therefore, it is possible to set the rake face and the second flank face in a direction in which polishing is easy, and to set the cutting edge in a direction with high wear resistance.

第2の特徴は、前記研磨加工されたすくい面は平面であり、前記研磨加工された第2の逃げ面は複数の平面を組み合わせた面であることである。   The second feature is that the polished rake face is a flat surface, and the polished second flank face is a surface obtained by combining a plurality of flat surfaces.

すくい面および第2の逃げ面は上記のように鏡面に研磨加工がなされるが、加工の容易さの点からすくい面は平面で、第2の逃げ面は複数の平面を組み合わせた面とするのが好ましい。   The rake face and the second flank are polished on the mirror surface as described above, but the rake face is a plane from the viewpoint of ease of processing, and the second flank is a plane combining a plurality of planes. Is preferred.

第3の特徴は、前記研磨加工されたすくい面のうち、少なくとも前記切刃周辺のPV値は3〜300nmであることである。   A third feature is that, of the polished rake face, at least the PV value around the cutting edge is 3 to 300 nm.

第4の特徴は、前記研磨加工された第2の逃げ面は、前記複数の平面のうち少なくとも一部の面のPV値が3〜500nmであることである。   The fourth feature is that the polished second flank has a PV value of 3 to 500 nm on at least a part of the plurality of planes.

上記のようにして形成したすくい面と第2の逃げ面との交差稜およびその周辺を集束イオンビームにより加工し、新たに第1の逃げ面を形成するので、すくい面と第1の逃げ面との交差稜が切刃となる。従って、第2の逃げ面は切刃を形成する面とはならないが、すくい面も含めて少なくとも切刃周辺の面は鏡面に仕上げておく必要がある。これは、集束イオンビームによる加工をできるだけ少なくし短時間で切刃を形成するために必要なものである。研磨加工により加工される面の精度は、すくい面のうち、少なくとも切刃周辺の部分、より好ましくは切刃から0.5mm以内の領域はPV値で3〜300nm、第2の逃げ面は複数の平面のうち少なくとも一部の面のPV値が3〜500nmとなるように研磨する。複数の平面からなる第2の逃げ面のうち、このような面精度にする面は、集束イオンビームにより第1の逃げ面を形成し切刃を設ける部分に必要となる。   Since the intersection ridge between the rake face and the second flank formed as described above and the periphery thereof are processed by a focused ion beam, a first flank is newly formed. Therefore, the rake face and the first flank are formed. The crossing ridge with is the cutting edge. Therefore, the second flank does not become a surface that forms the cutting edge, but it is necessary to finish at least the surface around the cutting edge including the rake face as a mirror surface. This is necessary for forming the cutting edge in a short time while minimizing the processing by the focused ion beam. The accuracy of the surface processed by the polishing process is such that at least a portion around the cutting edge, more preferably a region within 0.5 mm from the cutting edge, has a PV value of 3 to 300 nm and a plurality of second flank surfaces are included in the rake face. Polishing is performed so that the PV value of at least some of the planes is 3 to 500 nm. Of the second flank surfaces composed of a plurality of planes, a surface having such surface accuracy is necessary for a portion where the first flank surface is formed by the focused ion beam and the cutting blade is provided.

第5の特徴は、前記集束イオンビームの照射角度は、前記研磨加工されたすくい面とは交差し、前記研磨加工された第2の逃げ面の逃げ角よりも小さい角度で照射することである。   A fifth feature is that the focused ion beam is irradiated at an angle that intersects the polished rake face and is smaller than the clearance angle of the polished second flank face. .

集束イオンビームを照射する角度は、すくい面とは交差する方向に照射し、上記の研磨加工された第2の逃げ面の逃げ角よりも小さい角度で照射して行う。このようにすることで、第1の逃げ面の逃げ角は第2の逃げ面の逃げ角よりも小さくすることができ、第1の逃げ面を形成するための集束イオンビームによる加工量は少なくて済む。なお、集束イオンビームの照射方向は、第2の逃げ面側からすくい面側に向かって照射するのが好ましい。このようにすれば、切刃部分のダレが発生せず、非常に鋭利な切刃が形成される。   The angle of irradiation of the focused ion beam is performed in such a direction that it intersects with the rake face and is smaller than the relief angle of the polished second flank. By doing so, the clearance angle of the first flank can be made smaller than the clearance angle of the second flank, and the amount of processing by the focused ion beam for forming the first flank is small. I'll do it. The focused ion beam is preferably irradiated from the second flank side toward the rake face side. In this way, the cutting edge portion does not sag and a very sharp cutting edge is formed.

第6の特徴は、前記第1の逃げ面の幅は60μm以下であることである。   A sixth feature is that the width of the first flank is 60 μm or less.

上記のようにして形成した第1の逃げ面の幅は60μm以下とする。この幅が大きくなれば大きくなるほど集束イオンビームでの加工時間が長くなる。しかも、超精密加工用工具では微細な加工のためバニッシング作用による被加工物の弾性回復現象も無視できず、この幅が大きくなると被加工物と接触して切削抵抗が増大する恐れも生じるので、60μm以下とするのが好ましい。   The width of the first flank formed as described above is set to 60 μm or less. The larger this width, the longer the processing time with the focused ion beam. Moreover, because the ultra-precision machining tool is finely processed, the elastic recovery phenomenon of the workpiece due to the burnishing action cannot be ignored, and if this width increases, the cutting resistance may increase due to contact with the workpiece. The thickness is preferably 60 μm or less.

本発明のダイヤモンド工具の製造方法では、すくい面および逃げ面の大部分を予め研削および研磨加工により形成した上で、切刃周辺部のみを集束イオンビームにより加工するので、高精度の切刃が得られるとともに、集束イオンビームで加工する量が非常に少なくなり、短時間で製造することが可能になる。また、集束イオンビームの加工は結晶方位に左右されないため、研磨する面と切刃部分の結晶方位のみを考慮して工具の設計ができるため、工具の設計の自由度が向上し、寿命を向上させた工具とすることが可能になる。   In the diamond tool manufacturing method of the present invention, the rake face and the flank face are formed in advance by grinding and polishing, and only the periphery of the cutting edge is processed by the focused ion beam. In addition to being obtained, the amount of processing with the focused ion beam becomes very small, and it becomes possible to manufacture in a short time. In addition, since the processing of the focused ion beam does not depend on the crystal orientation, the tool can be designed taking into account only the crystal orientation of the surface to be polished and the cutting edge, thereby improving the freedom of tool design and improving the service life. It becomes possible to make it a tool.

本発明のダイヤモンド工具の製造方法を図面に基づいて説明する。図1(a)〜(d)は本発明のダイヤモンド工具の製造工程を説明するための概要図であり、(b)と(d)は切刃先端部の部分拡大図である。ダイヤモンドチップ2はダイヤモンドの原石を研削により板状に加工し、シャンク3にろう付けなどにより接合する。シャンク3は超硬合金などからなり、先端部にはダイヤモンドチップ2を接合するために切欠が設けられている。ダイヤモンドチップ2は、シャンク3に接合した後、図1(a)に示すように研削により所定の形状に加工する。この加工により、刃先の形状は図1(b)に示すようにすくい面4と第2の逃げ面6a、6bが設けられた形状となっており、次にこれらの面をラップ加工し、すくい面4のうち少なくとも切刃周辺はPV値が3〜300nmになるように研磨し、第2の逃げ面6a、6bはPV値が3〜500nmになるように研磨する。この研磨が終わった後、集束イオンビーム装置にダイヤモンド工具1を取り付け、切刃の先端部に集束イオンビーム8を照射する。集束イオンビーム8はすくい面4とは交差する方向に照射し、第2の逃げ面6の逃げ角よりも小さい角度で照射する。このようにしてすくい面4と第2の逃げ面6a、6bとの交差稜およびその周辺を除去する。この加工を行うことで、図1(d)に示すように、第1の逃げ面5が形成され、すくい面4と第1の逃げ面5との交差する部分にR形状の切刃7が形成される。   The manufacturing method of the diamond tool of this invention is demonstrated based on drawing. FIGS. 1A to 1D are schematic views for explaining a manufacturing process of a diamond tool of the present invention, and FIGS. 1B and 1D are partially enlarged views of a cutting edge tip. The diamond tip 2 is formed by grinding a rough diamond into a plate shape and joined to the shank 3 by brazing or the like. The shank 3 is made of cemented carbide or the like, and a notch is provided at the tip for joining the diamond tip 2. The diamond tip 2 is bonded to the shank 3 and then processed into a predetermined shape by grinding as shown in FIG. As a result of this processing, the shape of the cutting edge becomes a shape provided with a rake face 4 and second flank faces 6a and 6b as shown in FIG. 1 (b). Next, these faces are lapped and raked. At least the periphery of the cutting edge of the surface 4 is polished so that the PV value is 3 to 300 nm, and the second flank surfaces 6a and 6b are polished so that the PV value is 3 to 500 nm. After the polishing is completed, the diamond tool 1 is attached to the focused ion beam apparatus, and the focused ion beam 8 is irradiated to the tip of the cutting edge. The focused ion beam 8 is irradiated in a direction intersecting with the rake face 4 and irradiated at an angle smaller than the clearance angle of the second flank 6. In this way, the intersection ridge between the rake face 4 and the second flank faces 6a and 6b and its periphery are removed. By performing this processing, as shown in FIG. 1 (d), a first flank 5 is formed, and an R-shaped cutting edge 7 is formed at the intersection of the rake face 4 and the first flank 5. It is formed.

上記の製造方法に従い、ダイヤモンド工具を製作し、切削加工試験を行った。大きさが約3mmの単結晶ダイヤモンドの原石を準備し、結晶方位を定めた後、すくい面4になる上面およびシャンク3との接合面になる下面を研削加工により平面に加工し、板状のダイヤモンドチップ2にした。この板状に加工したダイヤモンドチップ2を、予め用意した超硬合金製のシャンク3の先端部にろう付けにより接合した。このシャンク3の先端部には切欠が設けられており、この切欠にダイヤモンドチップ2を接合した。このあと、ダイヤモンドチップ2の上面をラップ加工し、PV値が10nmになるように仕上げた。次に、ダイヤモンドチップ2に第2の逃げ面6を形成するために研削により平面からなる第2の逃げ面6aおよび6bを形成し、ラップ加工を行って第2の逃げ面6aはPV値が20nm、第2の逃げ面6bはPV値が50nmに仕上げた。第2の逃げ面6aの逃げ角は18°、第2の逃げ面6bの逃げ角は24°になってる。この加工により、ダイヤモンドチップ2の先端側は、すくい面4と第2の逃げ面6aおよび6bの3つの平面で形成された状態になっており、この状態でダイヤモンド工具1を集束イオンビーム装置に取り付け、集束イオンビームを照射してすくい面4と第2の逃げ面6との交差稜およびその周辺に第1の逃げ面5を形成し、切刃7を形成した。集束イオンビームの照射方向は、すくい面4に対しほぼ垂直方向であり、第1の逃げ面5の逃げ角が7°になるようにビームの角度を調整した。この加工により、第1の逃げ面5はPV値が10nmになっており、すくい面4に対してほぼ垂直方向の研磨痕を有している。   According to the above manufacturing method, a diamond tool was manufactured and a cutting test was performed. After preparing a single crystal diamond ore having a size of about 3 mm and determining the crystal orientation, the upper surface that becomes the rake face 4 and the lower surface that becomes the joint surface with the shank 3 are machined into a flat surface by grinding. Diamond tip 2 was obtained. The diamond chip 2 processed into a plate shape was joined to the tip of a cemented carbide shank 3 prepared in advance by brazing. A notch is provided at the tip of the shank 3, and the diamond tip 2 is joined to the notch. Thereafter, the upper surface of the diamond tip 2 was lapped to finish the PV value to 10 nm. Next, in order to form the second flank 6 on the diamond tip 2, the second flank 6 a and 6 b are formed by grinding and lapping is performed, and the second flank 6 a has a PV value. 20 nm and the 2nd flank 6b finished PV value to 50 nm. The clearance angle of the second flank 6a is 18 °, and the clearance angle of the second flank 6b is 24 °. By this processing, the tip side of the diamond tip 2 is formed by three planes of the rake face 4 and the second flank faces 6a and 6b. In this state, the diamond tool 1 is used as a focused ion beam apparatus. The first flank 5 was formed on and around the intersection ridge between the rake face 4 and the second flank 6 by attaching and irradiating a focused ion beam, and the cutting edge 7 was formed. The irradiation direction of the focused ion beam was substantially perpendicular to the rake face 4, and the beam angle was adjusted so that the relief angle of the first relief face 5 was 7 °. By this processing, the first flank 5 has a PV value of 10 nm and has polishing marks in a direction substantially perpendicular to the rake face 4.

上記のようにして製作したダイヤモンド工具1を使用して、無酸素銅の切削加工を行った。加工は、フライカットにより10μmの深さの溝を形成するものであり、切削条件は、切削速度565m/min、工具切り込み5μm、送り40mm/minである。   Using the diamond tool 1 manufactured as described above, cutting of oxygen-free copper was performed. The machining is to form a groove having a depth of 10 μm by fly cutting, and the cutting conditions are a cutting speed of 565 m / min, a tool cutting of 5 μm, and a feed of 40 mm / min.

以上の条件で切削加工試験を行った結果、本発明のダイヤモンド工具は100nmの良好な形状転写が認められ、本発明のダイヤモンド工具は高精度な加工ができることがわかった。また、刃先の強度が高くなってチッピングが起こりにくいため寿命が向上し、被加工物との干渉も発生しなかった。   As a result of conducting a cutting test under the above conditions, it was found that the diamond tool of the present invention had a good shape transfer of 100 nm, and that the diamond tool of the present invention can perform high-precision processing. In addition, since the strength of the blade edge was increased and chipping was less likely to occur, the life was improved, and interference with the workpiece did not occur.

本発明のダイヤモンド工具の製造方法は、均一な直線あるいは曲線形状の切刃を有するダイヤモンド工具の他、複雑な形状の切刃を有するダイヤモンド工具の製造に用いることができる。   The method for manufacturing a diamond tool of the present invention can be used for manufacturing a diamond tool having a cutting blade having a complicated shape in addition to a diamond tool having a uniform cutting edge having a straight or curved shape.

本発明のダイヤモンド工具の製造方法を説明するための概要を示す図である。It is a figure which shows the outline | summary for demonstrating the manufacturing method of the diamond tool of this invention.

符号の説明Explanation of symbols

1 ダイヤモンド工具
2 ダイヤモンドチップ
3 シャンク
4 すくい面
5 第1の逃げ面
6 第2の逃げ面
7 切刃
8 集束イオンビーム
DESCRIPTION OF SYMBOLS 1 Diamond tool 2 Diamond tip 3 Shank 4 Rake face 5 First flank 6 Second flank 7 Cutting edge 8 Focused ion beam

Claims (6)

ダイヤモンドチップに切刃が形成されたダイヤモンド工具の製造方法であって、
ダイヤモンドにすくい面と第2の逃げ面を形成する工程と、
前記すくい面および第2の逃げ面を鏡面に研磨加工する工程と、
前記すくい面と第2の逃げ面との交差稜およびその周辺を集束イオンビームにより加工を行い、第1の逃げ面を形成する工程とを含むダイヤモンド工具の製造方法。
A diamond tool manufacturing method in which a cutting edge is formed on a diamond tip,
Forming a rake face and a second flank face on the diamond;
Polishing the rake face and the second flank face into a mirror surface;
A method of manufacturing a diamond tool, including a step of forming a first flank by processing a ridge surface and a second flank at an intersection ridge and its periphery with a focused ion beam.
前記研磨加工されたすくい面は平面であり、前記研磨加工された第2の逃げ面は複数の平面を組み合わせた面である請求項1に記載のダイヤモンド工具の製造方法。   The diamond tool manufacturing method according to claim 1, wherein the polished rake face is a flat surface, and the polished second flank face is a surface obtained by combining a plurality of flat surfaces. 前記研磨加工されたすくい面のうち、少なくとも前記切刃周辺のPV値は3〜300nmである請求項1または2に記載のダイヤモンド工具の製造方法。   3. The method for manufacturing a diamond tool according to claim 1, wherein at least the PV value around the cutting edge of the polished rake face is 3 to 300 nm. 前記研磨加工された第2の逃げ面は、前記複数の平面のうち少なくとも一部の面のPV値が3〜500nmである請求項2に記載のダイヤモンド工具の製造方法。   3. The method for manufacturing a diamond tool according to claim 2, wherein the polished second flank has a PV value of at least a part of the plurality of planes of 3 to 500 nm. 前記集束イオンビームの照射角度は、前記研磨加工されたすくい面とは交差し、前記研磨加工された第2の逃げ面の逃げ角よりも小さい角度で照射する請求項1〜4のいずれかに記載のダイヤモンド工具の製造方法。   The irradiation angle of the focused ion beam is irradiated at an angle that intersects with the polished rake face and is smaller than the relief angle of the polished second flank face. The manufacturing method of the diamond tool of description. 前記第1の逃げ面の幅は60μm以下である請求項1〜5のいずれかに記載のダイヤモンド工具の製造方法。   The method for manufacturing a diamond tool according to any one of claims 1 to 5, wherein a width of the first flank is 60 m or less.
JP2005216597A 2005-07-27 2005-07-27 Diamond tool manufacturing method Active JP4466956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216597A JP4466956B2 (en) 2005-07-27 2005-07-27 Diamond tool manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216597A JP4466956B2 (en) 2005-07-27 2005-07-27 Diamond tool manufacturing method

Publications (2)

Publication Number Publication Date
JP2007030095A true JP2007030095A (en) 2007-02-08
JP4466956B2 JP4466956B2 (en) 2010-05-26

Family

ID=37789963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216597A Active JP4466956B2 (en) 2005-07-27 2005-07-27 Diamond tool manufacturing method

Country Status (1)

Country Link
JP (1) JP4466956B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083052A (en) * 2007-09-28 2009-04-23 Nippon Zeon Co Ltd Manufacturing method of machining tool and manufacturing method of optical element
JP2011161587A (en) * 2010-02-12 2011-08-25 Mitsubishi Rayon Co Ltd Grinding device of cutting member
US8213082B2 (en) 2007-12-21 2012-07-03 3M Innovative Properties Company Light control film
JP2012223825A (en) * 2011-04-15 2012-11-15 Seiko Instruments Inc Single crystal diamond cutting tool, method for manufacturing the same, and method for manufacturing diffraction grating for x-ray talbot interferometer
US9063284B2 (en) 2009-06-18 2015-06-23 3M Innovative Properties Company Light control film
US9335449B2 (en) 2007-10-16 2016-05-10 3M Innovative Properties Company Higher transmission light control film
US9403215B2 (en) 2011-04-11 2016-08-02 Sumitomo Electric Industries, Ltd. Cutting tool and method for producing same
CN106425349A (en) * 2016-08-07 2017-02-22 张春辉 Micro-display etch cutting tool manufacture method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083052A (en) * 2007-09-28 2009-04-23 Nippon Zeon Co Ltd Manufacturing method of machining tool and manufacturing method of optical element
US9335449B2 (en) 2007-10-16 2016-05-10 3M Innovative Properties Company Higher transmission light control film
US9804311B2 (en) 2007-10-16 2017-10-31 3M Innovative Properties Company Higher transmission light control film comprising a transmissive region and an absorptive region each having a different index of refraction
US8213082B2 (en) 2007-12-21 2012-07-03 3M Innovative Properties Company Light control film
US9063284B2 (en) 2009-06-18 2015-06-23 3M Innovative Properties Company Light control film
JP2011161587A (en) * 2010-02-12 2011-08-25 Mitsubishi Rayon Co Ltd Grinding device of cutting member
US9403215B2 (en) 2011-04-11 2016-08-02 Sumitomo Electric Industries, Ltd. Cutting tool and method for producing same
DE112012001643B4 (en) 2011-04-11 2022-09-01 Sumitomo Electric Industries, Ltd. Cutting tool and method of making the same
JP2012223825A (en) * 2011-04-15 2012-11-15 Seiko Instruments Inc Single crystal diamond cutting tool, method for manufacturing the same, and method for manufacturing diffraction grating for x-ray talbot interferometer
CN106425349A (en) * 2016-08-07 2017-02-22 张春辉 Micro-display etch cutting tool manufacture method

Also Published As

Publication number Publication date
JP4466956B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4466956B2 (en) Diamond tool manufacturing method
KR20170021731A (en) Processing method of wafer
JP2004111606A (en) Method of processing wafer
US20080110869A1 (en) Method of machining mold surface using laser
US20080253849A1 (en) Mono Crystalline Diamond Cutting Tool for Ultra Precision Machining
CN102294507B (en) End mill and manufacturing method of same
WO2013039012A1 (en) Laser machining method and laser machining device
TW200809018A (en) Semiconductor wafers with highly precise edge profile and method for producing them
CN110248765A (en) Related device for processing the method for cutting tip and for processing cutting tip
KR20140117271A (en) Scribing wheel, scribing apparatus, and method for manufacturing scribing wheel
JP4878517B2 (en) Diamond tools
JP2003025118A (en) Diamond tool for cutting
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
JP3544601B2 (en) Ultra-precision cutting method for crystalline materials
JP5894754B2 (en) Laser processing method
JP4818317B2 (en) Diamond cutting tools
JP4746339B2 (en) Cutting tool manufacturing method
JP2010005723A (en) Single-crystal diamond cutware
KR101680716B1 (en) Hybridmachining method using a turning and a laser machining
JP7087817B2 (en) How to cut the cover glass
JP2007313590A (en) Thread cutting tip, and its manufacturing method
JP2004181548A (en) Monocrystal diamond cutting tool and its manufacturing method
JP6771207B2 (en) Multipoint diamond tool and its manufacturing method
JP4670249B2 (en) Processing apparatus, processing method, and diamond tool
WO2023106018A1 (en) Wafer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

R150 Certificate of patent or registration of utility model

Ref document number: 4466956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250