JP2002373683A - Exhaust heat utilization method and device for fuel cell power generation system - Google Patents

Exhaust heat utilization method and device for fuel cell power generation system

Info

Publication number
JP2002373683A
JP2002373683A JP2001179795A JP2001179795A JP2002373683A JP 2002373683 A JP2002373683 A JP 2002373683A JP 2001179795 A JP2001179795 A JP 2001179795A JP 2001179795 A JP2001179795 A JP 2001179795A JP 2002373683 A JP2002373683 A JP 2002373683A
Authority
JP
Japan
Prior art keywords
water
cooling water
fuel cell
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001179795A
Other languages
Japanese (ja)
Other versions
JP4453226B2 (en
Inventor
Masakazu Hasegawa
雅一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001179795A priority Critical patent/JP4453226B2/en
Publication of JP2002373683A publication Critical patent/JP2002373683A/en
Application granted granted Critical
Publication of JP4453226B2 publication Critical patent/JP4453226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat utilization method and a device for a fuel cell power generation system, that save energy in a heat source for preventing freeze up of makeup water and/or a heat source for heating cooling water for a hot-water-fired absorption chiller/heater. SOLUTION: The exhaust heat utilization method, which is for a fuel cell power generation system, comprising a fuel cell 1, a fuel reformer for generating hydrogen-rich reformate gas by a reforming reaction of hydrocarbon and steam, exhaust heat processing equipment 65 for subjecting exhaust heat from the fuel cell and the fuel reformer to heat exchange, with the cooling water of different temperature levels and delivering the exhaust, and makeup water supply piping 69 for water for the reforming reaction and water for the cooling water, utilizes lower temperature level cooling water in the cooling water of the different temperature levels in heating the makeup water supply piping 69 in a cold environment, in order to prevent freezing of the makeup water. The lower temperature level cooling water is utilized in heating the cooling water 63 for the hot-water fired absorption chiller/heater 66.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池発電装
置の排熱利用方法および排熱利用装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for utilizing exhaust heat of a fuel cell power generator.

【0002】[0002]

【従来の技術】周知のとおり、リン酸型燃料電池,固体
高分子電解質型燃料電池,溶融炭酸塩型燃料電池など
は、反応ガスとしての燃料ガスおよび酸化剤ガスを電極
触媒層を備えた燃料電極および酸化剤電極に連続的に供
給して、燃料のもつエネルギーを電気化学的に電気エネ
ルギーに変換するものである。
2. Description of the Related Art As is well known, phosphoric acid type fuel cells, solid polymer electrolyte type fuel cells, molten carbonate type fuel cells, and the like use a fuel gas as a reaction gas and an oxidizing gas as a fuel provided with an electrode catalyst layer. The energy is continuously supplied to the electrode and the oxidant electrode, and the energy of the fuel is electrochemically converted into electric energy.

【0003】これらの燃料電池においては、その電解質
の性質から、二酸化炭素を含んだ燃料ガスや酸化剤ガス
を使用することが可能である。そこで通常、これらの燃
料電池においては、空気を酸化剤ガスとし、メタノール
や天然ガス等の炭化水素系原燃料を燃料改質器により水
蒸気改質して得られる水素リッチな改質ガスを燃料ガス
として用いている。
[0003] In these fuel cells, it is possible to use fuel gas or oxidizing gas containing carbon dioxide due to the nature of the electrolyte. Therefore, in these fuel cells, usually, air is used as an oxidizing gas, and a hydrogen-rich reformed gas obtained by steam reforming a hydrocarbon raw fuel such as methanol or natural gas by a fuel reformer is used as a fuel gas. Used as

【0004】図6は、従来のリン酸型燃料電池発電装置
の概略システム構成の一例を示す。
FIG. 6 shows an example of a schematic system configuration of a conventional phosphoric acid fuel cell power generator.

【0005】図6において、燃料電池1は、模式的に示
され、図示しないリン酸電解質層を挟持する燃料極2と
空気極3と、これらからなる単位セルの複数個を重ねる
毎に配設される冷却管を有する冷却板4とから構成され
る。
[0006] In FIG. 6, a fuel cell 1 is schematically shown, and is provided with a fuel electrode 2 and an air electrode 3 sandwiching a phosphoric acid electrolyte layer (not shown), and each time a plurality of unit cells composed of these are stacked. And a cooling plate 4 having cooling pipes.

【0006】一方、燃料改質器7は、原燃料供給系9を
経て供給される天然ガス等の原燃料を、水蒸気分離器2
1で分離されて水蒸気供給系22を経て供給される水蒸
気とともに、改質触媒下にて、バーナでの後述するオフ
ガスの燃焼による燃焼熱により加熱して、水素に富むガ
スに改質して改質ガスを生成する。
On the other hand, the fuel reformer 7 converts a raw fuel such as natural gas supplied through a raw fuel supply system 9 into a steam separator 2.
Along with the steam separated in step 1 and supplied through the steam supply system 22, it is heated under the reforming catalyst by the combustion heat of the below-described off-gas combustion in the burner, reformed into a hydrogen-rich gas, and reformed. Generates quality gas.

【0007】燃料改質器7で生成された上記改質ガス
は、CO変成器8を有する改質ガス供給系11を経由し
て燃料電池1の燃料極2に供給され、一方、燃料極2か
ら電池反応に寄与しない水素を含むオフガスが、オフガ
ス供給系12を経て燃料改質器7のバーナに燃料として
供給される。
[0007] The reformed gas generated by the fuel reformer 7 is supplied to the fuel electrode 2 of the fuel cell 1 via a reformed gas supply system 11 having a CO converter 8, while the fuel electrode 2 The off gas containing hydrogen that does not contribute to the cell reaction is supplied to the burner of the fuel reformer 7 through the off gas supply system 12 as fuel.

【0008】また、燃料改質器7のバーナへは、燃焼空
気供給用のブロア13が接続されており、燃料改質器7
から出た燃焼排ガスは、燃焼排ガス系15により水回収
用凝縮器41へと送られ、水回収後、排出される。
A blower 13 for supplying combustion air is connected to the burner of the fuel reformer 7.
Is discharged to the water recovery condenser 41 by the flue gas system 15 and discharged after water recovery.

【0009】また、燃料電池1には、空気極3に空気を
供給する反応空気ブロア16を備えた空気供給系17
と、電池反応後の空気を前記水回収用凝縮器41へ供給
する空気排出系18とが接続されている。
The fuel cell 1 has an air supply system 17 having a reaction air blower 16 for supplying air to the air electrode 3.
And an air discharge system 18 that supplies air after the battery reaction to the water recovery condenser 41.

【0010】燃料電池1の冷却板4の冷却管には、燃料
電池1の発電時に冷却水を循環するため、水蒸気分離器
21、冷却水循環ポンプ24および燃料電池冷却水廃熱
回収用熱交換器23を備えた冷却水循環系20が、接続
されている。冷却水循環系20は、冷却水調節弁25を
備え、必要に応じて廃熱回収用熱交換器23への冷却水
の流通を調節できるようにしている。
A steam separator 21, a cooling water circulation pump 24, and a heat exchanger for recovering fuel cell cooling water waste heat are provided in the cooling pipe of the cooling plate 4 of the fuel cell 1 in order to circulate the cooling water during power generation of the fuel cell 1. A cooling water circulation system 20 provided with 23 is connected. The cooling water circulation system 20 includes a cooling water control valve 25 so that the flow of the cooling water to the waste heat recovery heat exchanger 23 can be adjusted as needed.

【0011】前記水蒸気分離器21では、燃料電池1の
冷却管から排出された水と蒸気との二相流となった冷却
水を、水蒸気と冷却水とに分離する。ここで分離された
水蒸気は、前記燃料改質器7に向かう原燃料と混入する
ように、前記水蒸気供給系22を経て、送出される。そ
の際、元圧の低い原燃料との混合を行うために、エジェ
クタ6を使用している。このエジェクタ6は、蒸気を駆
動流体とするとともに、原燃料を被駆動流体とする。原
燃料供給系9は、一般に、脱硫器5を備える。
The steam separator 21 separates the cooling water discharged from the cooling pipe of the fuel cell 1 into a two-phase flow of water and steam into steam and cooling water. The steam separated here is sent out through the steam supply system 22 so as to be mixed with the raw fuel toward the fuel reformer 7. At that time, the ejector 6 is used for mixing with the raw fuel having a low original pressure. The ejector 6 uses steam as a driving fluid and raw fuel as a driven fluid. The raw fuel supply system 9 generally includes a desulfurizer 5.

【0012】前記水回収用凝縮器41には、前述のよう
に、燃焼排ガス系15,空気排出系18が接続され、こ
の水回収用凝縮器41には、生成水等回収タンク44を
有する凝集水回収系42が接続されている。
As described above, the flue gas system 15 and the air discharge system 18 are connected to the water recovery condenser 41, and the water recovery condenser 41 has a coagulation tank 44 having a recovery tank 44 such as generated water. A water recovery system 42 is connected.

【0013】前記回収水は、脱炭酸塔43で空気接触さ
せて脱炭酸処理をした後に、補給水ポンプ46によっ
て、イオン交換式水処理装置47に導入して、純水化し
た後に、給水ポンプ49により水蒸気分離器21へ還流
供給され、原燃料の水蒸気改質に必要な水として利用さ
れる。
The recovered water is brought into contact with air in a decarbonation tower 43 to perform decarbonation treatment, and then introduced into an ion-exchange type water treatment device 47 by a makeup water pump 46 to be purified and purified. The steam is fed back to the steam separator 21 by 49 and is used as water required for steam reforming of the raw fuel.

【0014】水処理装置47は吸着速度の関係から、通
水速度は一定量が必要であり、そのため、水処理装置に
水が循環して流れる閉回路を設けて、常時一定流量を水
処理装置に通水可能として、所定のSV値(空間速度1
/h)を維持するのが一般的である。この場合、図6に
示すように、水処理装置47は処理水の再循環用配管4
8を備え、水処理された水の内、一部は給水ポンプ49
によって水蒸気分離器21に供給され、残りの純水は、
再循環用配管48を経由して再び水処理装置47に戻さ
れる。
The water treatment device 47 requires a constant amount of water flow rate because of the adsorption speed. Therefore, a closed circuit in which water circulates is provided in the water treatment device, and the water treatment device 47 constantly supplies a constant flow rate. To a predetermined SV value (space velocity 1
/ H) is generally maintained. In this case, as shown in FIG. 6, the water treatment device 47
8, and a part of the treated water is partially supplied with a water supply pump 49.
Is supplied to the steam separator 21, and the remaining pure water is
The water is returned to the water treatment device 47 again via the recirculation pipe 48.

【0015】なお、固体高分子電解質型燃料電池発電装
置の場合には、通常、前記CO変成器から導出した改質
ガスを、CO変成器の後段に設けたCO除去器に導入
し、COを酸化して、改質ガス中のCO濃度を10pp
m程度まで低減する。
In the case of a solid polymer electrolyte fuel cell power generator, normally, the reformed gas derived from the CO converter is introduced into a CO remover provided at the subsequent stage of the CO converter, and CO is removed. Oxidizes to reduce the CO concentration in the reformed gas to 10 pp
m.

【0016】図6は、標準的なシステム構成例を示した
が、システム構成はニーズに応じて種々の形態があり、
燃料電池発電装置の排熱利用方法に限定した場合におい
ても、種々の形態が存在する。例えば、図7は、燃料電
池の排熱を有効に利用し、かつ水回収装置から排出され
る排ガスの白煙化の防止を図るために、同一出願人によ
って提案され、特願2000−285796号に記載さ
れた構成例を示す。
FIG. 6 shows an example of a standard system configuration. The system configuration has various forms according to needs.
Even when the method is limited to the method of using exhaust heat of the fuel cell power generator, various modes exist. For example, FIG. 7 is proposed by the same applicant in order to effectively use the exhaust heat of the fuel cell and to prevent the exhaust gas discharged from the water recovery device from becoming white smoke, and Japanese Patent Application No. 2000-285796. 2 shows a configuration example described in FIG.

【0017】図7においては、図6における水処理装置
等の一部の構成部材は省略して示し、また、図6と同一
構成部材には同一番号を付して説明を省略する。
In FIG. 7, some components such as the water treatment apparatus in FIG. 6 are omitted, and the same components as those in FIG.

【0018】図7において、水回収装置52は、水回収
用の排ガス冷却器53の上方に、水回収された排空気お
よび燃焼排ガスを加熱するための排気ガス加熱用熱交換
器52を備える。また、水蒸気分離器21から導出した
冷却水を、排熱利用熱交換装置54に通流して冷却した
後、排気ガス加熱用熱交換器52に通流してさらに冷却
し、この冷却された水を、水蒸気分離器21から導出し
た水と合流する冷却水循環回路55を備える。
In FIG. 7, the water recovery device 52 is provided with an exhaust gas heating heat exchanger 52 for heating the exhaust air and the combustion exhaust gas whose water has been recovered, above an exhaust gas cooler 53 for water recovery. Further, the cooling water derived from the steam separator 21 flows through the exhaust heat utilizing heat exchange device 54 to be cooled, and then flows through the exhaust gas heating heat exchanger 52 for further cooling. , A cooling water circulation circuit 55 that merges with water derived from the steam separator 21.

【0019】水蒸気分離器21は圧力計32を備え、ま
た、冷却水循環回路55は、前記圧力計32の計測値に
基づいて水蒸気分離器21内の圧力を一定に制御する流
量調節弁33を備える。30は電池冷却水循環用ポン
プ、31は補給水ポンプを示す。
The steam separator 21 has a pressure gauge 32, and the cooling water circulation circuit 55 has a flow rate control valve 33 for controlling the pressure in the steam separator 21 to be constant based on the measurement value of the pressure gauge 32. . Reference numeral 30 denotes a battery cooling water circulation pump, and reference numeral 31 denotes a makeup water pump.

【0020】上記構成において、電池冷却水の一部が分
岐され、排熱利用熱交換装置54に通流して冷却した
後、前記排気ガス加熱用熱交換器52に通流してさらに
冷却することにより、燃料電池における発熱量と熱除去
量のバランスをとることができる。ちなみに、図7にT
1〜T10で示す各部の温度を例示すると、下記のとお
りである。下記温度において、括弧内に示す数値は、代
表温度である。
In the above configuration, a part of the battery cooling water is branched, flows through the exhaust heat utilizing heat exchange device 54 to be cooled, and then flows through the exhaust gas heating heat exchanger 52 for further cooling. In addition, the amount of heat generated and the amount of heat removed in the fuel cell can be balanced. Incidentally, FIG. 7 shows T
The temperature of each part shown by 1 to T10 is exemplified as follows. At the following temperatures, numerical values shown in parentheses are representative temperatures.

【0021】 T1:160〜170℃(160℃),T2:140〜170℃(145℃) T3: 85〜 95℃( 95℃),T4: 50〜 90℃( 60℃) T5: 70〜 85℃( 85℃),T6: 80〜 95℃( 90℃) T7: 30〜 40℃( 40℃),T8: 40〜 60℃( 50℃) T9: 40〜 45℃( 45℃),T10: 45〜 55℃( 50℃) 上記のように、水回収装置51において冷却され、水回
収された排ガスの温度T9は40〜45℃であるが、こ
の排ガスを、排気ガス加熱用熱交換器52により冷却水
の余剰熱によって加熱し、その温度T10を、45〜55
℃とすることにより、排ガス中の水蒸気が外気にさらさ
れても直ちに、水蒸気の白煙が生成することがなくな
り、排ガスの白煙化が防止できる。
T1: 160 to 170 ° C. (160 ° C.), T2: 140 to 170 ° C. (145 ° C.) T3: 85 to 95 ° C. (95 ° C.), T4: 50 to 90 ° C. (60 ° C.) T5: 70 to 85 ° C (85 ° C), T6: 80 to 95 ° C (90 ° C) T7: 30 to 40 ° C (40 ° C), T8: 40 to 60 ° C (50 ° C) T9: 40 to 45 ° C (45 ° C), T10: 45 to 55 ° C. (50 ° C.) As described above, the temperature T9 of the exhaust gas cooled and recovered in the water recovery device 51 is 40 to 45 ° C., and the exhaust gas is supplied to the exhaust gas heating heat exchanger 52. And the temperature T10 is increased by 45-55.
By setting the temperature to ° C., even if the water vapor in the exhaust gas is exposed to the outside air, the white smoke of the water vapor is not immediately generated, and the white smoke of the exhaust gas can be prevented.

【0022】ところで、上記図6および図7に示すよう
に、一般に、燃料電池発電装置においては、燃料電池
と、炭化水素と水蒸気との改質反応により水素リッチな
改質ガスを生成する燃料改質器と、前記燃料電池および
燃料改質器から排出される熱を、温度レベルの異なる冷
却水により熱交換して排出するもしくは排熱を有効利用
する低温水用熱交換器と高温水用熱交換器とを備え、空
冷式冷却器により最終的な排熱処理が行なわれる。
By the way, as shown in FIGS. 6 and 7, in general, in a fuel cell power generation apparatus, a fuel cell and a fuel reformer that generates a hydrogen-rich reformed gas by a reforming reaction between hydrocarbons and steam. Heat from the fuel cell and the fuel reformer, and heat is exchanged with cooling water having different temperature levels to be discharged, or the heat exchanger for low-temperature water and the heat for high-temperature water are used to effectively use the exhaust heat. And an air-cooled cooler for final exhaust heat treatment.

【0023】前記図7に示すシステムにおいて、排ガス
冷却器53が低温水用熱交換器に該当し、排熱利用熱交
換装置54が高温水用熱交換器に該当する。図6に示す
システムにおいては、水回収用凝縮器41および燃料電
池冷却水廃熱回収用熱交換器23が、それぞれ低温水用
熱交換器および高温水用熱交換器に該当する。図6にお
いても、代表温度は、図7における低温水用熱交換器お
よび高温水用熱交換器と同等レベルの温度であり、燃料
電池排熱用の冷却水の異なる温度レベルとしては、低温
水は概略50℃、高温水は概略90℃といえる。
In the system shown in FIG. 7, the exhaust gas cooler 53 corresponds to a low-temperature water heat exchanger, and the exhaust heat utilizing heat exchanger 54 corresponds to a high-temperature water heat exchanger. In the system shown in FIG. 6, the water recovery condenser 41 and the fuel cell cooling water waste heat recovery heat exchanger 23 correspond to a low-temperature water heat exchanger and a high-temperature water heat exchanger, respectively. In FIG. 6 as well, the representative temperature is the same temperature as the low-temperature water heat exchanger and the high-temperature water heat exchanger in FIG. 7. Is about 50 ° C., and high-temperature water is about 90 ° C.

【0024】ところで、上記90℃レベルの高温排水
は、一般に、給湯設備や温水焚き吸収式冷温水機の加熱
源として有効利用され、夏は冷房、冬は暖房に供され
る。これに対して、上記50℃レベルの低温排水は、温
度が低いためにその有効利用の対象が少なく、殆んど、
空冷式冷却器からなる排熱処理設備によって放出されて
いる。
The high-temperature wastewater at a temperature of 90 ° C. is generally effectively used as a heating source for hot water supply equipment and a hot water absorption absorption chiller / heater, and is used for cooling in summer and for heating in winter. On the other hand, the low-temperature drainage at the 50 ° C. level has a low temperature, and therefore has few targets for its effective use.
It is released by an exhaust heat treatment facility consisting of an air-cooled cooler.

【0025】一方、燃料電池発電装置とその排熱処理設
備においては、装置運転前の水張り時の他に、運転中も
運転状態により外部から補給水を供給する必要がある。
燃料電池は水を反応により生成するが、高負荷運転時は
生成水が多く、外部から水を補給する必要はない。しか
しながら、負荷が低下した際や、何らかの理由により水
を系外へ排出した際には補給が必要となる。排熱処理設
備の高温水系においても、閉ループのため装置運転前の
水張り時の他に何らかの理由により水を系外へ排出した
際には補給が必要となる。
On the other hand, in the fuel cell power generator and the exhaust heat treatment equipment, it is necessary to supply replenishing water from the outside depending on the operation state during the operation, in addition to the water filling before the operation of the apparatus.
The fuel cell generates water by reaction, but generates a large amount of water during high-load operation, and it is not necessary to supply water from the outside. However, when the load is reduced or when water is discharged out of the system for some reason, replenishment is required. Even in the high-temperature water system of the waste heat treatment facility, replenishment is required when water is discharged out of the system for some reason in addition to water filling before operation of the device due to a closed loop.

【0026】このため、常時補給が可能な様に補給水供
給配管をつないでおく必要がある。しかしながら、前記
のごとく常時補給水が流れているのではなく、補給が必
要になった時のみのため、補給水系の水は流れがほとん
ど無く、屋外に設置された場合、寒冷時には、凍結する
恐れがある。従来はこのため、補給水供給配管には、電
気ヒータを巻き付けるか、もしくは温水通流配管(いわ
ゆるトレース配管)内に温水を通流して凍結防止を行な
っている。
For this reason, it is necessary to connect a supply water supply pipe so that replenishment can always be performed. However, as described above, the replenishing water does not always flow, but only when replenishment is required.Therefore, the water in the replenishing water system hardly flows, and when installed outdoors, it may freeze in cold weather. There is. Conventionally, therefore, an electric heater is wound around the supply water supply pipe or hot water is passed through a hot water flow pipe (so-called trace pipe) to prevent freezing.

【0027】前記温水焚き吸収式冷温水機や補給水供給
配管などを有する従来の排熱利用システムの構成に関
し、本発明の説明の便宜上、簡略化したシステム系統図
を図5に示す。図5において、図6または図7に示すシ
ステムの構成部材と同一機能を有する部材には、同一番
号を付して説明を省略する。
FIG. 5 shows a simplified system diagram of the configuration of the conventional exhaust heat utilization system having the hot water absorption absorption chiller / heater and make-up water supply pipe for convenience of the description of the present invention. In FIG. 5, members having the same functions as those of the components of the system shown in FIG. 6 or FIG.

【0028】図5と図6または図7との主な相違点は、
図5においては、61〜70によって示した温水焚き吸
収式冷温水機や補給水供給配管などの系統とその関連部
材を備える点である。図5において、61は、排熱用冷
却水の内の低温度レベルの冷却水ライン、62は高温度
レベルの冷却水ラインを示し、61における冷却水の排
熱は、65の空冷式の排熱処理設備により放出される。
The main differences between FIG. 5 and FIG. 6 or FIG.
In FIG. 5, a system such as a hot water-fired absorption chiller / heater or makeup water supply pipe indicated by reference numerals 61 to 70 and its related members are provided. In FIG. 5, reference numeral 61 denotes a low-temperature level cooling water line of the exhaust heat cooling water, 62 denotes a high-temperature level cooling water line, and the cooling water exhaustion in 61 is air-cooled exhaust water in 65. Released by heat treatment equipment.

【0029】62の高温度レベルの冷却水は、温水焚き
吸収式冷温水機66に通流された後、前記排熱処理設備
65に通流されて熱放出する。67は、前記温水焚き吸
収式冷温水機66において発生する冷水または温水が通
流される空調機である。63は、温水焚き吸収式冷温水
機66における冷却用水であり、68は、冷却用水を冷
却するための冷却塔である。
The high-temperature cooling water 62 flows through a hot-water-absorbing absorption-type hot / cold water heater 66 and then flows through the waste heat treatment facility 65 to release heat. Reference numeral 67 denotes an air conditioner through which cold water or hot water generated in the hot water-fired absorption type cold / hot water machine 66 flows. 63 is a cooling water in the hot water-fired absorption chiller / heater 66, and 68 is a cooling tower for cooling the cooling water.

【0030】69は、補給水供給配管を示し、70は、
補給水供給配管が備える凍結防止用のヒータ敷設部もし
くはトレース配管を示す。
Reference numeral 69 denotes a makeup water supply pipe, and reference numeral 70 denotes
Fig. 4 shows a heater laying portion or a trace pipe for preventing freezing provided in a makeup water supply pipe.

【0031】[0031]

【発明が解決しようとする課題】ところで、前述の図5
に示すような従来の燃料電池発電装置の排熱利用方法お
よび装置においては、下記のような問題があった。
The above-mentioned FIG.
However, the conventional method and apparatus for utilizing exhaust heat of a fuel cell power generation apparatus as described above have the following problems.

【0032】補給水の凍結防止を行なうためにヒータに
通電する場合、その電力消費量は、燃料電池の発電効率
を実質的に低下させることとなり、省エネルギーの観点
から基本的に問題がある。トレース配管に凍結防止用の
温水を通流する場合も同様である。
When the heater is energized to prevent the make-up water from freezing, the amount of power consumption substantially reduces the power generation efficiency of the fuel cell, and there is basically a problem from the viewpoint of energy saving. The same applies to the case where hot water for preventing freezing flows through the trace pipe.

【0033】また、近年では、電算室やOA機器密度の
高いオフィス等においては、冬季においても冷房運転の
ニーズが高まっており、前記温水焚き吸収式冷温水機に
よって冷房運転を行なう場合には、温水焚き吸収式冷温
水機における冷却用水を、常時加温する必要がある。そ
の理由は、温水焚き吸収式冷温水機の場合、効率のよい
運転を行なうためにはその運転中、冷却用水の冷温水機
入口温度を約24℃に維持する必要があるからである。
温水焚き吸収式冷温水機の冷房運転の立ち上がり時に
は、少なくとも20℃とすることが要請される。
In recent years, in computer rooms and offices with a high density of OA equipment, the need for cooling operation has been increasing even in winter, and when performing cooling operation using the hot-water-absorption absorption chiller / heater, It is necessary to constantly heat the cooling water in the hot water-fired absorption chiller / heater. The reason for this is that in the case of a hot water-fired absorption chiller / heater, it is necessary to maintain the cooling water chiller / heater inlet temperature at about 24 ° C. during the operation for efficient operation.
At the start of the cooling operation of the hot water-fired absorption chiller / heater, it is required that the temperature be at least 20 ° C.

【0034】従って冬季に限らず、地域によっては寒冷
時に、冷却用水を常時加温する必要があり、この加熱源
の調達とその省エネルギー化が望まれている。
Therefore, it is necessary to constantly heat the cooling water not only in winter but also in some areas in cold weather, and it is desired to procure this heating source and save energy.

【0035】この発明は、上記の点に鑑みてなされたも
ので、この発明の課題は、補給水の凍結防止用熱源およ
び温水焚き吸収式冷温水機における冷却用水の加温熱源
の省エネルギー化を図った燃料電池発電装置の排熱利用
方法および装置を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to reduce the energy consumption of a heat source for preventing make-up water from freezing and a heating heat source for cooling water in a hot water absorption absorption chiller / heater. It is an object of the present invention to provide a method and an apparatus for utilizing exhaust heat of a fuel cell power generator.

【0036】[0036]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明は、燃料電池と、炭化水素と水蒸気との
改質反応により水素リッチな改質ガスを生成する燃料改
質器と、前記燃料電池および燃料改質器から排出される
熱を、温度レベルの異なる冷却水により熱交換して排出
する排熱処理設備と、前記改質反応用の水および冷却水
用の水の補給水供給配管とを備えた燃料電池発電装置の
排熱利用方法において、前記温度レベルの異なる冷却水
の内の低温度レベルの冷却水を、寒冷時に、前記補給水
の凍結防止を図るために、前記補給水供給配管の加温に
利用することとする(請求項1の発明)。
In order to solve the above-mentioned problems, the present invention provides a fuel cell and a fuel reformer for producing a hydrogen-rich reformed gas by a reforming reaction between hydrocarbon and steam. A waste heat treatment facility for exchanging heat discharged from the fuel cell and the fuel reformer with cooling water having different temperature levels and discharging the same, and a makeup water for the reforming reaction water and a cooling water. In the method of utilizing exhaust heat of a fuel cell power generator including a supply pipe, the cooling water having a low temperature level among the cooling water having the different temperature levels may be cooled, in order to prevent the makeup water from freezing, It is used for heating the makeup water supply pipe (the invention of claim 1).

【0037】また、前記請求項1に記載の排熱利用方法
において、前記補給水供給配管の加温に利用する水を、
前記低温度レベルの冷却水に代えて、前記温度レベルの
異なる冷却水の内の高温度レベルの冷却水とする(請求
項2の発明)。さらに、前記請求項2に記載の排熱利用
方法において、前記高温度レベルの冷却水を補給水供給
配管の加温に利用することに代えて、前記高温度レベル
の冷却水の一部を、前記補給水供給配管内に導入する
(請求項3の発明)。
In the method for utilizing exhaust heat according to claim 1, the water used for heating the makeup water supply pipe is
Instead of the low-temperature-level cooling water, high-temperature-level cooling water of the different-temperature-level cooling water is used (the invention of claim 2). Furthermore, in the method of utilizing exhaust heat according to claim 2, instead of using the high-temperature level cooling water for heating the makeup water supply pipe, a part of the high-temperature level cooling water is used, It is introduced into the makeup water supply pipe (the invention of claim 3).

【0038】前記請求項1ないし3の発明によれば、補
給水の凍結防止のために、燃料電池発電装置の排熱が有
効に利用され、従来に比較して省エネルギー化が図れ
る。
According to the first to third aspects of the present invention, the exhaust heat of the fuel cell power generation device is effectively used to prevent the make-up water from freezing, and energy saving can be achieved as compared with the related art.

【0039】また、燃料電池と、炭化水素と水蒸気との
改質反応により水素リッチな改質ガスを生成する燃料改
質器と、前記燃料電池および燃料改質器から排出される
熱を、温度レベルの異なる冷却水により熱交換して排出
する排熱処理設備と、前記温度レベルの異なる冷却水の
内の高温度レベルの冷却水を加熱源とする温水焚き吸収
式冷温水機とを備えた燃料電池発電装置の排熱利用方法
において、前記温度レベルの異なる冷却水の内の低温度
レベルの冷却水を、前記温水焚き吸収式冷温水機におけ
る冷却用水の加温に利用する(請求項4の発明)。
Further, a fuel cell, a fuel reformer for producing a hydrogen-rich reformed gas by a reforming reaction of hydrocarbons and steam, and a heat exhausted from the fuel cell and the fuel reformer, A fuel comprising: a waste heat treatment facility for exchanging heat with cooling water having different levels to discharge the same; and a hot water-fired absorption chiller / heater using a high-temperature cooling water as a heating source among the cooling water having different temperature levels. In the method for utilizing exhaust heat of a battery power generator, cooling water having a low temperature level among the cooling waters having different temperature levels is used for heating cooling water in the hot water-fired absorption chiller / heater. invention).

【0040】前記請求項4の発明によれば、温水焚き吸
収式冷温水機における冷却用水の加温のために、燃料電
池発電装置の排熱が有効に利用され、従来に比較して省
エネルギー化が図れる。
According to the fourth aspect of the present invention, the exhaust heat of the fuel cell power generation device is effectively used for heating the cooling water in the hot water absorption type chiller / heater. Can be achieved.

【0041】さらに、上記請求項1または4の発明を実
施するための好ましい燃料電池発電装置の排熱利用装置
としては、下記請求項5の発明が好ましい。即ち、請求
項1または4に記載の排熱利用方法を実施するための装
置であって、燃料電池と、炭化水素と水蒸気との改質反
応により水素リッチな改質ガスを生成する燃料改質器
と、前記燃料電池および燃料改質器から排出される熱
を、温度レベルの異なる冷却水により熱交換して排出す
る排熱処理設備と、前記改質反応用の水および冷却水用
の水の補給水供給配管と、前記温度レベルの異なる冷却
水の内の高温度レベルの冷却水を加熱源とする温水焚き
吸収式冷温水機とを備え、さらに、前記温度レベルの異
なる冷却水の内の低温度レベルの冷却水により、前記補
給水供給配管を加温する手段、および/または、前記低
温度レベルの冷却水により、前記温水焚き吸収式冷温水
機における冷却用水を加温する手段を備えるものとす
る。
Further, as a preferred exhaust heat utilization device of the fuel cell power generator for carrying out the invention of claim 1 or 4, the following invention of claim 5 is preferable. That is, an apparatus for performing the exhaust heat utilization method according to claim 1 or 4, wherein the fuel cell and a reforming reaction between hydrocarbon and steam generate a hydrogen-rich reformed gas. A heat treatment facility for exchanging heat discharged from the fuel cell and the fuel reformer with cooling water having different temperature levels and discharging the same, and water for the reforming reaction and water for cooling water. A makeup water supply pipe, and a hot-water-absorption absorption chiller / heater using a high-temperature cooling water as a heating source among the cooling waters having different temperature levels, and further, A means for heating the makeup water supply pipe with low-temperature cooling water and / or a means for heating cooling water in the hot-water-absorption absorption chiller / heater with the low-temperature cooling water; Shall be.

【0042】[0042]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下にのべる。
Embodiments of the present invention will be described below with reference to the drawings.

【0043】図1は、この発明の実施例を示す図であ
り、図5と同じ機能部材には同一の番号を付して説明を
省略する。
FIG. 1 is a view showing an embodiment of the present invention. The same functional members as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0044】図1と図5とのシステム構成上の基本的な
相違は、図1においては、低温度レベルの冷却水分岐ラ
イン80と補給水加温ライン81とを備える点である。
The basic difference in the system configuration between FIG. 1 and FIG. 5 is that in FIG. 1, a cooling water branch line 80 and a make-up water heating line 81 at a low temperature level are provided.

【0045】前記分岐ライン80は、低温度レベルの冷
却水ライン61から分岐し、前記補給水加温ライン81
に接続される。前記補給水加温ライン81は、図5にお
けるヒータ敷設部もしくはトレース配管70に代えて設
けられる。補給水を加熱後の水は、低温度レベルの冷却
水ライン61に図示しない戻りラインを経由して戻され
る。なお、前記請求項2の発明を実施する場合には、図
1において、前記分岐ライン80を、低温度レベルの冷
却水ライン61に代えて、高温度レベルの冷却水ライン
62から分岐する。
The branch line 80 branches from the cooling water line 61 at a low temperature level.
Connected to. The makeup water heating line 81 is provided instead of the heater laying portion or the trace pipe 70 in FIG. The water after heating the make-up water is returned to the low temperature level cooling water line 61 via a return line (not shown). In practicing the second aspect of the present invention, in FIG. 1, the branch line 80 branches from a high temperature level cooling water line 62 instead of the low temperature level cooling water line 61.

【0046】次に、図2および図3に示す実施例につい
て説明する。図2および図3の実施例は、両者共に、請
求項3の発明に係る実施例であり、システム系統図は、
説明の便宜上、高温度レベルの冷却水ラインと補給水供
給ラインに着目し、他は、簡略化して示す。図2および
図3においても、図5と同じ機能部材には同一の番号を
付して説明を省略する。図2および図3は、排熱利用の
観点からは実質的に同一であり、相違点は、図2は膨張
タンク90を有する密閉系、図3はシスターンタンク9
4aを有する開放系を構成している点のみである。従っ
て、図2をベースに、この実施例の説明を以下に行な
う。
Next, the embodiment shown in FIGS. 2 and 3 will be described. The embodiments of FIGS. 2 and 3 are both embodiments according to the third aspect of the present invention.
For convenience of explanation, attention is focused on a cooling water line and a makeup water supply line at a high temperature level, and the others are shown in a simplified manner. 2 and 3, the same functional members as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. 2 and 3 are substantially the same from the viewpoint of utilization of exhaust heat. The difference is that FIG. 2 shows a closed system having an expansion tank 90, and FIG.
The only difference is that an open system having 4a is configured. Therefore, this embodiment will be described below with reference to FIG.

【0047】図2において、燃料電池発電装置本体10
0は、低温度レベル熱交換器100aと高温度レベル熱
交換器100bとを有し、高温度レベルの冷却水ライン
62は、排熱利用設備90と高温水ポンプ91と排熱処
理設備65と膨張タンク94とを有する。また、補給水
供給配管69には、前記高温度レベルの冷却水分岐ライ
ン92が、凍結防止のために接続される。7aは、高温
度レベルの冷却水ライン62への補給水供給ラインを示
し、補給水は、樹脂筒93において純化した後、供給さ
れる。
In FIG. 2, the fuel cell power generator main body 10
0 has a low temperature level heat exchanger 100a and a high temperature level heat exchanger 100b, and the high temperature level cooling water line 62 is expanded with the exhaust heat utilization equipment 90, the high temperature water pump 91, the exhaust heat treatment equipment 65, And a tank 94. Further, the cooling water branch line 92 of the high temperature level is connected to the makeup water supply pipe 69 to prevent freezing. Reference numeral 7a denotes a supply water supply line to the high temperature level cooling water line 62. The supply water is supplied after being purified in the resin cylinder 93.

【0048】次に、図4の実施例について説明する。図
4と図5とのシステム構成上の基本的な相違は、図4に
おいては、低温度レベルの冷却水ライン61から分岐し
た前記温水焚き吸収式冷温水機における冷却用水を加温
するための冷却用水用加温ライン85を備える点であ
る。
Next, the embodiment shown in FIG. 4 will be described. The basic difference in the system configuration between FIG. 4 and FIG. 5 is that, in FIG. 4, the system for heating cooling water in the hot-water-absorption absorption chiller / heater branched from the low-temperature-level cooling water line 61. The point is that a heating line 85 for cooling water is provided.

【0049】上記実施例により、前述のように燃料電池
発電装置の排熱が有効に利用され、従来に比較して省エ
ネルギー化が図れる。なお、図1および図4は、それぞ
れ前記請求項1および4の発明に対応した実施例を示し
たが、図5に対して、図1と図4に追加した系統の両者
を備える構成とすることもできる。
According to the above embodiment, as described above, the exhaust heat of the fuel cell power generation device is effectively used, and energy saving can be achieved as compared with the related art. FIGS. 1 and 4 show embodiments corresponding to the first and fourth aspects of the present invention. However, FIG. 1 is different from FIG. 5 in that both of the systems added to FIGS. 1 and 4 are provided. You can also.

【0050】[0050]

【発明の効果】上記のとおり、この発明によれば、燃料
電池発電装置において従来有効活用され難かった排熱用
冷却水の内の低温水を、補給水の凍結防止および/また
は温水焚き吸収式冷温水機の冷却用水の加温に有効に利
用することにより、凍結防止用電気ヒータ電力や冷却用
水の加温熱源用エネルギーが不要となり、省エネルギー
化が図れる。また、補給水の凍結防止用として、排熱用
冷却水の内の高温水の一部を、前述のように有効利用す
ることにより、同様に省エネルギー化が図れる。
As described above, according to the present invention, the low-temperature water in the cooling water for exhaust heat, which has conventionally been difficult to use effectively in the fuel cell power generator, is used to prevent the freezing water from freezing and / or to absorb hot water. By effectively utilizing the cooling water of the chiller / heater for heating the cooling water, the electric power for the anti-freezing electric heater and the energy for the heating heat source for the cooling water are not required, and the energy can be saved. In addition, by effectively utilizing a part of the high-temperature water in the cooling water for exhaust heat as described above to prevent the make-up water from freezing, energy can be saved similarly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の燃料電池発電装置の排熱処理装置の
実施例を示す図
FIG. 1 is a diagram showing an embodiment of an exhaust heat treatment apparatus for a fuel cell power generator according to the present invention.

【図2】この発明の図1とは異なる実施例を示す図FIG. 2 is a diagram showing another embodiment of the present invention which is different from FIG. 1;

【図3】この発明の図2とは異なる実施例を示す図FIG. 3 is a diagram showing an embodiment different from FIG. 2 of the present invention;

【図4】この発明の図1とはさらに異なる実施例を示す
FIG. 4 is a diagram showing an embodiment of the present invention which is further different from FIG. 1;

【図5】従来の燃料電池発電装置の排熱利用装置の概略
構成の一例を示す図
FIG. 5 is a diagram showing an example of a schematic configuration of a conventional exhaust heat utilization device of a fuel cell power generator.

【図6】従来のリン酸型燃料電池発電装置の概略システ
ム構成の一例を示す図
FIG. 6 is a diagram showing an example of a schematic system configuration of a conventional phosphoric acid fuel cell power generator.

【図7】図6とは異なる従来の燃料電池発電装置の概略
システム構成を示す図
FIG. 7 is a diagram showing a schematic system configuration of a conventional fuel cell power generator different from FIG. 6;

【符号の説明】[Explanation of symbols]

1:燃料電池、23:廃熱回収用熱交換器、41:水回
収用凝縮器、53:水回収用の排ガス冷却器、61:低
温度レベルの冷却水ライン、62:高温度レベルの冷却
水ライン、63:冷却用水、65:排熱処理設備、6
6:温水焚き吸収式冷温水機、67:空調機、68:冷
却塔、69:補給水供給配管、81:補給水加温ライ
ン、80:低温度レベルの冷却水分岐ライン、85:冷
却用水加温ライン、92:高温度レベルの冷却水分岐ラ
イン。
1: fuel cell, 23: heat exchanger for waste heat recovery, 41: condenser for water recovery, 53: exhaust gas cooler for water recovery, 61: cooling water line at low temperature level, 62: cooling at high temperature level Water line, 63: cooling water, 65: waste heat treatment equipment, 6
6: hot water-fired absorption chiller / heater, 67: air conditioner, 68: cooling tower, 69: makeup water supply pipe, 81: makeup water heating line, 80: low temperature cooling water branch line, 85: cooling water Heating line, 92: high temperature level cooling water branch line.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池と、炭化水素と水蒸気との改質
反応により水素リッチな改質ガスを生成する燃料改質器
と、前記燃料電池および燃料改質器から排出される熱
を、温度レベルの異なる冷却水により熱交換して排出す
る排熱処理設備と、前記改質反応用の水および冷却水用
の水の補給水供給配管とを備えた燃料電池発電装置の排
熱利用方法において、 前記温度レベルの異なる冷却水の内の低温度レベルの冷
却水を、寒冷時に、前記補給水の凍結防止を図るため
に、前記補給水供給配管の加温に利用することを特徴と
する燃料電池発電装置の排熱利用方法。
1. A fuel cell, a fuel reformer that generates a hydrogen-rich reformed gas by a reforming reaction between hydrocarbons and steam, and heat discharged from the fuel cell and the fuel reformer, In a method for utilizing exhaust heat of a fuel cell power generator, comprising: a waste heat treatment facility for exchanging heat with different levels of cooling water and discharging the same; and a supply water supply pipe for the reforming reaction water and cooling water. A fuel cell characterized in that low-temperature-level cooling water among the cooling waters having different temperature levels is used for heating the makeup water supply pipe in order to prevent the makeup water from freezing in cold weather. How to use the waste heat of the power generator.
【請求項2】 請求項1に記載の排熱利用方法におい
て、前記補給水供給配管の加温に利用する水を、前記低
温度レベルの冷却水に代えて、前記温度レベルの異なる
冷却水の内の高温度レベルの冷却水とすることを特徴と
する燃料電池発電装置の排熱利用方法。
2. The method according to claim 1, wherein the water used for heating the makeup water supply pipe is replaced with the low-temperature cooling water, and the cooling water having the different temperature level is used. A method for utilizing exhaust heat of a fuel cell power generator, wherein the cooling water is at a high temperature level in the inside.
【請求項3】 請求項2に記載の排熱利用方法におい
て、前記高温度レベルの冷却水を補給水供給配管の加温
に利用することに代えて、前記高温度レベルの冷却水の
一部を、前記補給水供給配管内に導入することを特徴と
する燃料電池発電装置の排熱利用方法。
3. The method according to claim 2, wherein the high-temperature level cooling water is partially used instead of using the high-temperature level cooling water for heating the makeup water supply pipe. Is introduced into the make-up water supply pipe.
【請求項4】 燃料電池と、炭化水素と水蒸気との改質
反応により水素リッチな改質ガスを生成する燃料改質器
と、前記燃料電池および燃料改質器から排出される熱
を、温度レベルの異なる冷却水により熱交換して排出す
る排熱処理設備と、前記温度レベルの異なる冷却水の内
の高温度レベルの冷却水を加熱源とする温水焚き吸収式
冷温水機とを備えた燃料電池発電装置の排熱利用方法に
おいて、 前記温度レベルの異なる冷却水の内の低温度レベルの冷
却水を、前記温水焚き吸収式冷温水機における冷却用水
の加温に利用することを特徴とする燃料電池発電装置の
排熱利用方法。
4. A fuel cell, a fuel reformer that generates a hydrogen-rich reformed gas by a reforming reaction between hydrocarbons and steam, and heat discharged from the fuel cell and the fuel reformer is converted into a temperature. A fuel comprising: a waste heat treatment facility for exchanging heat with cooling water having different levels to discharge the same; and a hot water-fired absorption chiller / heater using a high-temperature cooling water as a heating source among the cooling water having different temperature levels. In the method of using exhaust heat of a battery power generation device, the method further comprises using low-temperature-level cooling water in the cooling water having different temperature levels for heating cooling water in the hot-water-fired absorption-type chiller / heater. A method for utilizing exhaust heat of a fuel cell power generator.
【請求項5】請求項1または4に記載の排熱利用方法を
実施するための装置であって、燃料電池と、炭化水素と
水蒸気との改質反応により水素リッチな改質ガスを生成
する燃料改質器と、前記燃料電池および燃料改質器から
排出される熱を、温度レベルの異なる冷却水により熱交
換して排出する排熱処理設備と、前記改質反応用の水お
よび冷却水用の水の補給水供給配管と、前記温度レベル
の異なる冷却水の内の高温度レベルの冷却水を加熱源と
する温水焚き吸収式冷温水機とを備え、 さらに、前記温度レベルの異なる冷却水の内の低温度レ
ベルの冷却水により、前記補給水供給配管を加温する手
段、および/または、前記低温度レベルの冷却水によ
り、前記温水焚き吸収式冷温水機における冷却用水を加
温する手段を備えることを特徴とする燃料電池発電装置
の排熱利用装置。
5. An apparatus for carrying out the method of utilizing exhaust heat according to claim 1, wherein a hydrogen-rich reformed gas is produced by a reforming reaction between a fuel cell and hydrocarbons and steam. A fuel reformer, a waste heat treatment facility for exchanging heat discharged from the fuel cell and the fuel reformer with cooling water having different temperature levels and discharging the same, and a water and a cooling water for the reforming reaction. Supply water supply pipe, and a hot water-fired absorption chiller / heater using a high-temperature level cooling water among the cooling waters having different temperature levels as a heating source. Means for heating the makeup water supply pipe with low-temperature cooling water, and / or heating the cooling water in the hot-water-absorption absorption chiller / heater with the low-temperature cooling water. Characterized by having means Waste heat utilization device of a fuel cell power generator.
JP2001179795A 2001-06-14 2001-06-14 Waste heat utilization method and apparatus for fuel cell power generator Expired - Lifetime JP4453226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179795A JP4453226B2 (en) 2001-06-14 2001-06-14 Waste heat utilization method and apparatus for fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179795A JP4453226B2 (en) 2001-06-14 2001-06-14 Waste heat utilization method and apparatus for fuel cell power generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008324289A Division JP5083195B2 (en) 2008-12-19 2008-12-19 Waste heat utilization method and apparatus for fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2002373683A true JP2002373683A (en) 2002-12-26
JP4453226B2 JP4453226B2 (en) 2010-04-21

Family

ID=19020312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179795A Expired - Lifetime JP4453226B2 (en) 2001-06-14 2001-06-14 Waste heat utilization method and apparatus for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4453226B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038608A1 (en) * 2004-03-17 2008-02-14 Toyota Jidosha Kabushiki Kaisha Fuel Cell System And Method For Controlling Same
JP2010198920A (en) * 2009-02-25 2010-09-09 Fuji Electric Systems Co Ltd Fuel cell power generation system
CN110416572A (en) * 2019-07-26 2019-11-05 北京青木子科技发展有限公司 A kind of heating system and method using fuel cell waste-heat formic acid reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038608A1 (en) * 2004-03-17 2008-02-14 Toyota Jidosha Kabushiki Kaisha Fuel Cell System And Method For Controlling Same
US8771886B2 (en) * 2004-03-17 2014-07-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling same
JP2010198920A (en) * 2009-02-25 2010-09-09 Fuji Electric Systems Co Ltd Fuel cell power generation system
CN110416572A (en) * 2019-07-26 2019-11-05 北京青木子科技发展有限公司 A kind of heating system and method using fuel cell waste-heat formic acid reactor

Also Published As

Publication number Publication date
JP4453226B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
KR100525538B1 (en) Solid high polymer type fuel cell power generating device
KR100482709B1 (en) Solid polymer fuel cell
JPH11233129A (en) Solid electrolyte fuel cell generating system
JP3416653B2 (en) Polymer electrolyte fuel cell power generator
US7560181B2 (en) Fuel cell system and method of operating the same
JP2009036473A (en) Fuel cell system
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP2002373683A (en) Exhaust heat utilization method and device for fuel cell power generation system
JP4453211B2 (en) Waste heat treatment method and apparatus for fuel cell power generator
JP2003007319A (en) Fuel cell system
JP2006127861A (en) Fuel cell system
JP2002100382A (en) Fuel cell power generator
JP2000090948A (en) Fuel cell power generation device
JPH0945350A (en) Fuel cell power generation plant
JP5083195B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP2004293816A (en) Processing device accompanied by hot-water supply together
JP2004296265A (en) Fuel cell system
JP2006179346A (en) Fuel cell power generation system and its operation method
JP2004296266A (en) Fuel cell system
JPH0554903A (en) Fuel cell power generation system
JP2003282105A (en) Fuel cell power generating system
JP2807635B2 (en) Temperature control method for fuel cell power generation equipment
JP2001210340A (en) Exhaust heat recovery system of solid polymer type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4453226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term