JP2002372367A - Air separator for gas product and its cold heat utilizing method - Google Patents

Air separator for gas product and its cold heat utilizing method

Info

Publication number
JP2002372367A
JP2002372367A JP2001179475A JP2001179475A JP2002372367A JP 2002372367 A JP2002372367 A JP 2002372367A JP 2001179475 A JP2001179475 A JP 2001179475A JP 2001179475 A JP2001179475 A JP 2001179475A JP 2002372367 A JP2002372367 A JP 2002372367A
Authority
JP
Japan
Prior art keywords
heat exchanger
lng
gas
nitrogen gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001179475A
Other languages
Japanese (ja)
Other versions
JP3474180B2 (en
Inventor
Junya Suenaga
純也 末長
Tetsuo Senchi
哲夫 泉地
Atsushi Miyamoto
篤 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2001179475A priority Critical patent/JP3474180B2/en
Publication of JP2002372367A publication Critical patent/JP2002372367A/en
Application granted granted Critical
Publication of JP3474180B2 publication Critical patent/JP3474180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • F25J3/04272The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Abstract

PROBLEM TO BE SOLVED: To provide an air separator for a gas product in which cold heat of LNG can be utilized effectively. SOLUTION: In an air separator comprising a means for supplying material air, a main heat exchanger, a rectifying column for separating the components and an LNG heat exchanger, and in its cold heat utilizing method, a gas product taken out from the rectifying column is heated by the main heat exchanger, nitrogen gas in the gas product is passed through the LNG heat exchanger in order to recover cold head and then passed again through the main heat exchanger in order to exchange heat thus producing a gas product. High purity nitrogen gas or nitrogen gas having a low content of oxygen is passed through the LNG heat exchanger and the pressure thereof is preferably higher than that of LNG.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にガス製品を製
造する空気分離装置およびその冷熱利用方法に関し、さ
らに詳しくは、液化天然ガス(以下、LNGという)の
冷熱を利用して原料空気から窒素および酸素等のガス製
品を製造する空気分離装置およびその装置を用いて寒冷
損失を補填する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air separation apparatus for mainly producing gas products and a method for utilizing the cold energy thereof, and more particularly, to a method for producing a gas product from raw air by utilizing the cold energy of liquefied natural gas (hereinafter, LNG). The present invention relates to an air separation apparatus for producing gas products such as nitrogen and oxygen, and a method for compensating for refrigeration loss using the apparatus.

【0002】[0002]

【従来の技術】従来からガス製品の製造用として稼働し
ている空気分離装置では、膨張タービンを用いて熱交換
器の温端における損失および侵入熱等を補償するため、
空気や窒素ガスを所定圧力に圧縮して、寒冷を発生させ
る必要がある。
2. Description of the Related Art In an air separation apparatus which has been conventionally operated for producing gas products, an expansion turbine is used to compensate for a loss at a hot end of a heat exchanger and heat intrusion.
It is necessary to compress air or nitrogen gas to a predetermined pressure to generate cold.

【0003】図3は、従来の空気分離装置の構成とその
作用を説明するための図である。同図に示すように、吸
入フィルター1で濾過された原料空気は、空気圧縮機2
に導入され、約0.5MPaまで圧縮された後、後方冷却器3
を通して冷却され、吸着塔4で含有される水分および炭
酸ガス等の不要成分が除去される。これらが原料空気を
供給する手段を構成する。
FIG. 3 is a diagram for explaining the structure and operation of a conventional air separation device. As shown in FIG. 1, the raw air filtered by the suction filter 1 is supplied to an air compressor 2.
After being compressed to about 0.5MPa, the rear cooler 3
And unnecessary components such as water and carbon dioxide contained in the adsorption tower 4 are removed. These constitute a means for supplying raw air.

【0004】次に、原料空気は主熱交換器5に入り、後
述するように、精留塔から取り出された低温の窒素ガス
や酸素ガスと熱交換することによって沸点近くまで冷却
された後、高圧精留塔6に導入される。高圧精留塔6に
導入された原料空気は、同塔内を上昇する間に還流液体
窒素との気液接触によって、次第に窒素濃度を高め、頂
部では高純度窒素ガスとなる。頂部に達した窒素ガスは
凝縮器8に導入されて、低圧精留塔7の底部の液体酸素
との熱交換により凝縮して液体窒素となり、その一部は
低圧精留塔7の還流液として低圧塔の頂部に、一部は還
流液として高圧精留塔6の頂部に供給される。
Next, the raw material air enters the main heat exchanger 5 and, as described later, is cooled to near the boiling point by exchanging heat with low-temperature nitrogen gas or oxygen gas extracted from the rectification column. It is introduced into the high-pressure rectification column 6. The raw material air introduced into the high-pressure rectification column 6 gradually increases the nitrogen concentration by gas-liquid contact with the reflux liquid nitrogen while ascending in the column, and becomes high-purity nitrogen gas at the top. The nitrogen gas that has reached the top is introduced into the condenser 8 and is condensed into liquid nitrogen by heat exchange with liquid oxygen at the bottom of the low-pressure rectification column 7, and a part thereof is used as a reflux liquid of the low-pressure rectification column 7. It is fed to the top of the low pressure column, partly as reflux, to the top of the high pressure rectification column 6.

【0005】上述の高圧精留塔6で用いられる還流液
は、高圧精留塔6の頂部から降下する間に空気と接触し
て酸素濃度を高めてゆき、底部から高酸素濃度の液体空
気として抜き取られて、低圧精留塔7の中間部に供給さ
れる。この液体空気は、低圧精留塔7を降下する間に酸
素濃度をさらに高めて、底部では高純度の液体酸素とし
て滞留する。
[0005] The reflux liquid used in the high-pressure rectification column 6 comes into contact with air while descending from the top of the high-pressure rectification column 6 to increase the oxygen concentration, and as a liquid air having a high oxygen concentration from the bottom. It is withdrawn and supplied to the middle part of the low-pressure rectification column 7. The liquid air further increases the oxygen concentration while descending the low-pressure rectification column 7 and stays at the bottom as high-purity liquid oxygen.

【0006】製品としては、高純度の酸素ガスを低圧精
留塔7の底部から、また、高純度の窒素を低圧精留塔7
の頂部または高圧精留塔6の頂部からそれぞれ取り出
し、主熱交換器5まで還流して、前述の通り、原料空気
との熱交換を行うことによって大気温度近傍まで加温さ
れ、酸素ガスおよび窒素ガスのガス製品として供給され
る。また、低圧精留塔7の上部からは低純度の窒素ガス
が抜き取られ、主熱交換器5で加熱された後、排窒素ガ
スとして吸着塔4の再生ガスや冷水製造用として利用さ
れた後、大気へ放出される。
As products, high-purity oxygen gas is supplied from the bottom of the low-pressure rectification column 7 and high-purity nitrogen is supplied from the low-pressure rectification column 7.
, Or from the top of the high-pressure rectification column 6, refluxed to the main heat exchanger 5, and heat-exchanged with the raw air as described above to warm it to near the atmospheric temperature, Supplied as gas products. After low-purity nitrogen gas is extracted from the upper part of the low-pressure rectification column 7 and heated in the main heat exchanger 5, it is used as exhaust gas for the regeneration gas of the adsorption tower 4 or for producing cold water. Released to the atmosphere.

【0007】図3に示したガス製品を製造する空気分離
装置では、通常、熱交換器の温端における損失および侵
入熱等を補償するために、常時、寒冷を発生させること
が必要になる。このため、加圧、冷却並びに水分および
炭酸ガス等が除去された原料空気の一部は、昇圧機9お
よび後方冷却器10に通して圧縮、冷却した後、膨張ター
ビン11を用いて寒冷を発生させて、低圧精留塔7の上部
に投入している。
In the air separation apparatus for producing the gas product shown in FIG. 3, it is usually necessary to constantly generate refrigeration in order to compensate for the loss at the hot end of the heat exchanger and the intrusion heat. For this reason, a part of the raw material air from which the pressurization, cooling, and moisture and carbon dioxide gas have been removed is passed through a booster 9 and a rear cooler 10 to be compressed and cooled, and then cooled using an expansion turbine 11. Then, it is charged into the upper part of the low-pressure rectification column 7.

【0008】[0008]

【発明が解決使用とする課題】LNGは環境改善型エネ
ルギーであり、石油代替エネルギーの観点から導入が推
進されるようになり、これに伴ってLNGの有する冷熱
を有効に利用する技術が開発され、液体窒素や液体酸素
を製造する空気分離装置に実用化が進められている(例
えば、特開2000−65470号公報、特開平6−11254号公
報)。
[0007] LNG is an environment-improving energy, and its introduction has been promoted from the viewpoint of alternative energy to petroleum. With this, technology for effectively utilizing the cold energy of LNG has been developed. Practical application has been promoted to an air separation device for producing liquid nitrogen and liquid oxygen (for example, JP-A-2000-65470 and JP-A-6-11254).

【0009】LNGの冷熱を利用した事例としては、L
NG受入基地から比較的近い場所に建設され、受入基地
から供給される多量、具体的には20t/h以上のLNGの
冷熱を回収し、窒素や酸素の液体製品を効率的に製造し
ている大規模な空気分離装置がある。この場合には、当
該装置で製造される窒素ガス、または酸素含有量の少な
い窒素ガスが回収媒体として用いられ、これらの窒素ガ
スがLNGとの熱交換により液化され、熱交換器の温端
における損失および侵入熱等を補償するために空気分離
装置本体に供給される。しかし、LNGの冷熱利用を大
規模の空気分離装置で実施する場合には、その冷熱回収
プロセスが複雑化していることから、既存装置を改造す
ることが困難である。
[0009] As an example of utilizing the cold heat of LNG, LNG
It is constructed relatively close to the NG receiving terminal and recovers a large amount of LNG cold, more than 20 t / h supplied from the receiving terminal, to efficiently produce liquid products of nitrogen and oxygen. There are large air separation units. In this case, nitrogen gas produced by the apparatus or nitrogen gas having a low oxygen content is used as a recovery medium, and these nitrogen gases are liquefied by heat exchange with LNG, and are liquefied at the hot end of the heat exchanger. It is supplied to the main body of the air separation device in order to compensate for loss and heat intrusion. However, when utilizing the cold energy of LNG in a large-scale air separation device, it is difficult to modify the existing device because the process of recovering the cold energy is complicated.

【0010】ー方、遠隔地における都市ガスの地域供給
のために、LNGサテライト基地が建設されている。こ
のサテライト基地まではローリー車などによりLNGが
輸送されるが、LNG受入基地と比較して小規模であ
り、代表的には1〜5t/h程度に留まるため、空温式気
化器などにより気化される程度であり、LNGの冷熱が
有効に利用されていないのが現状である。
On the other hand, an LNG satellite base has been constructed for the local supply of city gas in remote areas. LNG is transported to this satellite base by lorry, etc., but it is smaller than the LNG receiving base and typically stays at about 1 to 5 t / h, so it is vaporized by an air-heated vaporizer. At present, the cold heat of LNG is not effectively used.

【0011】前述の通り、主にガス製品を製造する空気
分離装置において必要とされる寒冷は、圧縮、冷却した
空気や窒素ガスを膨張タービンで膨張させることにより
発生させており、LNGの冷熱を利用した事例は存在し
なかった。これは、主にガス製品を製造する空気分離装
置は、液体製品を製造する場合に比べて、必要とされる
寒冷が少ないにもかかわらず、その寒冷をLNGの冷熱
で簡便に補償する手段が開発されておらず、複雑な設備
が必要となり、LNGの冷熱を利用する経済的な効果が
乏しかったためである。
As described above, the refrigeration required mainly in the air separation apparatus for producing gas products is generated by expanding compressed and cooled air or nitrogen gas with an expansion turbine, and the refrigeration of LNG is generated. There were no cases of use. This is because although air separation equipment that mainly produces gas products requires less refrigeration than when producing liquid products, there is a simple means to compensate for the refrigeration with the cold heat of LNG. This is because it has not been developed and requires complicated equipment, and the economic effect of utilizing the cold heat of LNG has been poor.

【0012】本発明は、このような状況に鑑みてなされ
たもので、主にガス製品を製造する空気分離装置であっ
ても、LNGの冷熱を有効に利用することが可能であ
り、これによりガス製品の製造に必要な電力原単位の低
減が図れる空気分離装置、およびその冷熱利用方法を提
供することを目的としている。
The present invention has been made in view of such a situation, and it is possible to effectively use the cold heat of LNG even in an air separation device that mainly produces gas products. It is an object of the present invention to provide an air separation device capable of reducing the power consumption required for producing gas products, and a method of utilizing the cold energy thereof.

【0013】[0013]

【課題を解決するための手段】本発明は、下記(1)のガ
ス製品用空気分離装置、並びに(2)および(3)の空気分離
装置による冷熱利用方法を要旨としている。 (1) 原料空気を供給する手段と、供給された原料空気と
取り出されたガス製品とを熱交換する主熱交換器と、こ
の主熱交換器で冷却された原料空気を取り込んで選択的
に組成成分を分離する精留塔と、天然ガスの冷熱を回収
するLNG熱交換器と、前記主熱交換器からLNG熱交
換器へガス製品のうち窒素ガスを流通させる手段、およ
びLNG熱交換器から主熱交換器まで窒素ガスを流通さ
せる手段を設けたことを特徴とするガス製品を製造する
空気分離装置。 (2) 供給された原料空気と取り出されたガス製品とを熱
交換する主熱交換器と、この主熱交換器で冷却された原
料空気を取り込んで選択的に組成成分を分離する精留塔
を有し、ガス製品を製造する空気分離装置による冷熱利
用方法であって、当該装置の出側に天然ガスの冷熱を回
収するLNG熱交換器を設け、前記精留塔から取り出さ
れたガス製品を前記主熱交換器で原料空気との熱交換に
よって加熱し、次いでガス製品のうち窒素ガスを前記L
NG熱交換器に通して冷熱を回収した後、再び前記主熱
交換器に通して原料空気と熱交換してガス製品とするこ
とを特徴とする空気分離装置の冷熱利用方法。 (3) 供給された原料空気と取り出されたガス製品とを熱
交換する主熱交換器と、この主熱交換器で冷却された原
料空気を取り込んで選択的に組成成分を分離する精留塔
を有し、ガス製品を製造する空気分離装置による冷熱利
用方法であって、当該装置の出側に天然ガスの冷熱を回
収するLNG熱交換器を設け、前記精留塔から取り出さ
れたガス製品を前記主熱交換器で原料空気との熱交換に
よって加熱し、次いでガス製品のうち窒素ガスを分岐し
て一部を前記LNG熱交換器に通して冷熱を回収した
後、前記精留塔から取り出され、かつ主熱交換器に通す
前の窒素ガスに合流させることを特徴とする空気分離装
置の冷熱利用方法。
SUMMARY OF THE INVENTION The gist of the present invention is the following (1) air separation device for gas products and (2) and (3) a method for utilizing cold heat by the air separation device. (1) A means for supplying raw air, a main heat exchanger for exchanging heat between the supplied raw air and the extracted gas product, and selectively taking in the raw air cooled by the main heat exchanger. A rectification column for separating composition components, an LNG heat exchanger for recovering the cold of natural gas, a means for flowing nitrogen gas of gas products from the main heat exchanger to the LNG heat exchanger, and an LNG heat exchanger An air separation device for producing a gas product, comprising a means for flowing nitrogen gas from a gas to a main heat exchanger. (2) A main heat exchanger that exchanges heat between the supplied raw air and the extracted gas product, and a rectification column that takes in the raw air cooled by the main heat exchanger and selectively separates constituent components. A method for utilizing cold energy by an air separation device for producing a gas product, wherein an LNG heat exchanger for recovering the cold energy of natural gas is provided on the outlet side of the device, and the gas product extracted from the rectification column is provided. Is heated in the main heat exchanger by heat exchange with raw material air, and then nitrogen gas is
A method for utilizing the cold energy of an air separation device, wherein cold heat is recovered through an NG heat exchanger, and then heat-exchanged with raw air through the main heat exchanger to produce a gas product. (3) A main heat exchanger that exchanges heat between the supplied raw air and the extracted gas product, and a rectification column that takes in the raw air cooled by the main heat exchanger and selectively separates constituent components. A method for utilizing cold energy by an air separation device for producing a gas product, wherein an LNG heat exchanger for recovering the cold energy of natural gas is provided on the outlet side of the device, and the gas product extracted from the rectification column is provided. Is heated by heat exchange with the raw air in the main heat exchanger, then nitrogen gas is branched out of the gas product and a part thereof is passed through the LNG heat exchanger to recover cold heat. A method for utilizing the cold energy of an air separation device, wherein the method is combined with nitrogen gas which is taken out and passed through a main heat exchanger.

【0014】上記(3)の冷熱利用方法では、主熱交換器
を通して分岐された窒素ガスを所定圧力まで圧縮または
/および所定温度まで冷却してLNG熱交換器に通すこ
とが望ましい。また、精留塔から取り出された窒素ガス
に合流させる場合には、LNG熱交換器に通して冷熱を
回収した窒素ガスを所定温度まで冷却するのが望まし
い。
In the above method (3), it is desirable that the nitrogen gas branched through the main heat exchanger is compressed to a predetermined pressure and / or cooled to a predetermined temperature and then passed through the LNG heat exchanger. In addition, when merging with the nitrogen gas taken out from the rectification column, it is desirable to cool the nitrogen gas from which the cold heat has been recovered through the LNG heat exchanger to a predetermined temperature.

【0015】上記(2)および(3)の冷熱利用方法では、L
NG熱交換器に通される窒素ガスは高純度の窒素ガスま
たは酸素含有量の少ない窒素ガスであって、LNG圧力
よりも高い圧力を有することが望ましい。
In the above-mentioned methods (2) and (3) of utilizing cold energy,
The nitrogen gas passed through the NG heat exchanger is a high-purity nitrogen gas or a nitrogen gas having a low oxygen content, and preferably has a pressure higher than the LNG pressure.

【0016】[0016]

【発明の実施の形態】本発明の空気分離装置では、装置
の出側にLNGの冷熱を回収するLNG熱交換器と、主
熱交換器からLNG熱交換器へガスを流通させる手段、
およびLNG熱交換器から主熱交換器までガスを流通さ
せる手段を設けて、精留塔から取り出されたガス製品を
主熱交換器を通して大気温度近傍まで加温させ、このガ
ス製品のうち窒素ガスを主熱交換器からLNG熱交換器
へ導入させ、窒素ガスをLNGの冷熱を回収させること
により低温まで冷却し、その冷却されたガス製品を主熱
交換器に再度導入して空気分離装置内に寒冷を供給する
ことを特徴としている。
BEST MODE FOR CARRYING OUT THE INVENTION In the air separation device of the present invention, an LNG heat exchanger for recovering cold heat of LNG at the outlet of the device, means for flowing gas from the main heat exchanger to the LNG heat exchanger,
And means for flowing gas from the LNG heat exchanger to the main heat exchanger are provided, and the gas product taken out of the rectification tower is heated to near atmospheric temperature through the main heat exchanger, and nitrogen gas is From the main heat exchanger to the LNG heat exchanger, cool the nitrogen gas to a low temperature by recovering the cold heat of the LNG, introduce the cooled gas product again into the main heat exchanger, and It is characterized by supplying cold air to

【0017】このような装置構成を採用することによっ
て、主にガス製品を製造する空気分離装置であっても、
必要となる寒冷を膨張タービンを用いることなく、その
膨張タービンの装置よりも簡易な設備装置でLNGの冷
熱から賄うことができる。
By adopting such an apparatus configuration, even in an air separation apparatus that mainly produces gas products,
Necessary refrigeration can be obtained from the cold heat of LNG without using an expansion turbine by using equipment that is simpler than the expansion turbine device.

【0018】具体的な設備装置としては、LNG熱交換
器、および主熱交換器とLNG熱交換器との間をガス製
品を流通させる手段の新設が必要になる他、主熱交換器
内の一部の改造が必要になる。しかし、この程度の改造
であれば、既に稼働している装置に対しても容易に適用
できる。
As specific equipment, it is necessary to newly install an LNG heat exchanger and a means for flowing gas products between the main heat exchanger and the LNG heat exchanger. Some modifications are required. However, such a modification can be easily applied to a device already in operation.

【0019】さらに、後述する図2に示すように、主熱
交換器とLNG熱交換器との間をガス製品を流通させる
手段の新設に替え、ガスの流通手段に分岐点を設けてガ
ス製品をLNG熱交換器と分岐点との間を流通させるよ
うにすると、主熱交換器内の改造も不要となる。
Further, as shown in FIG. 2, which will be described later, a new means for flowing gas products between the main heat exchanger and the LNG heat exchanger is provided. Is made to flow between the LNG heat exchanger and the branch point, the modification in the main heat exchanger becomes unnecessary.

【0020】LNGの冷熱回収に際して、LNGが可燃
性であることを考慮して冷熱回収に用いられる窒素ガス
は、高純度の窒素ガス、または酸素含有量の少ない窒素
ガスとする。ここで、酸素含有量の少ない窒素ガスと
は、後述する図1、図2に示す低圧精留塔7の上部から
取り出された低純度の窒素ガスが相当する。
In recovering the cold energy of the LNG, the nitrogen gas used for the cold energy recovery in consideration of the flammability of the LNG is a high-purity nitrogen gas or a nitrogen gas having a low oxygen content. Here, the nitrogen gas having a low oxygen content corresponds to a low-purity nitrogen gas extracted from the upper part of the low-pressure rectification column 7 shown in FIGS. 1 and 2 described later.

【0021】さらに熱交換器内部における万が一の漏れ
を配慮して、LNGの圧力よりも高い圧力まで圧縮され
た窒素ガスが一般的には用いられている。このため、主
熱交換器を経てLNG熱交換器に導入される窒素ガスが
LNGの圧力より低い場合には、窒素ガスを加圧する必
要があるため、窒素ガス用の圧縮機を備えることが望ま
しい。
Further, in consideration of an emergency leak inside the heat exchanger, nitrogen gas compressed to a pressure higher than the pressure of LNG is generally used. For this reason, when the nitrogen gas introduced into the LNG heat exchanger via the main heat exchanger is lower than the pressure of LNG, it is necessary to pressurize the nitrogen gas. Therefore, it is desirable to provide a nitrogen gas compressor. .

【0022】また、空気分離装置内の窒素ガスの流通手
段に分岐点を設けて、LNGの冷熱を回収した窒素ガス
を主熱交換器に通す前の窒素ガスに合流させる場合に
は、合流させる前に窒素ガスの温度コントロールが必要
になる場合もあることから、膨張タービン等の調整手段
を備えるのが望ましい。
In the case where a branch point is provided in the nitrogen gas flowing means in the air separation device, the nitrogen gas obtained by collecting the cold heat of the LNG is merged with the nitrogen gas before passing through the main heat exchanger. Since it may be necessary to control the temperature of the nitrogen gas in advance, it is desirable to provide an adjusting means such as an expansion turbine.

【0023】LNG熱交換器を通したLNGが未だ利用
できる余剰な冷熱を有している場合、例えば、LNG温
度で-50℃程度の冷熱を保有していれば、この冷熱はフ
ロンやブライン等により回収できる。したがって、LN
G熱交換器の下工程にもブライン冷却器等を設けて、回
収した冷熱を空気分離装置における原料空気の予冷やア
ルゴン精製装置におけるアルゴンの冷却に利用するのが
望ましい。
If the LNG passed through the LNG heat exchanger still has a surplus available cold, for example, if the LNG has a cold of about -50 ° C. at the LNG temperature, this cold will be transferred to Freon or brine. Can be recovered. Therefore, LN
It is desirable to provide a brine cooler or the like also in the lower process of the G heat exchanger, and use the recovered cold heat for precooling the raw material air in the air separation device or cooling argon in the argon purification device.

【0024】本発明の冷熱利用方法では、上述した冷熱
回収を適宜組み合わせることによって、ガス製品用の空
気分離装置に限定することなく、例えば、サテライト基
地で用いられる小規模な気化装置と組み合わせることに
よっても、LNGの冷熱を充分に、かつ確実に回収する
ことが可能になり、有効にガス製品の製造に必要な電力
原単位を低減することができる。
In the method for utilizing cold energy of the present invention, by appropriately combining the above-mentioned cold energy recovery, the present invention is not limited to an air separation device for gas products, but may be combined with a small-scale vaporization device used at a satellite base, for example. In addition, it is possible to sufficiently and reliably recover the cold heat of LNG, and it is possible to effectively reduce the power consumption required for producing gas products.

【0025】また、本発明の冷熱利用方法によれば、L
NGの冷熱を回収するガス製品として窒素ガスを用いて
おり、その窒素ガスの圧力をLNGの圧力以上に維持す
るようにしているので、冷熱を回収する際の安全性は十
分確保することができる。
According to the method of utilizing cold energy of the present invention,
Since nitrogen gas is used as a gas product for recovering NG cold energy, and the pressure of the nitrogen gas is maintained at or above the LNG pressure, safety at the time of recovering cold energy can be sufficiently ensured. .

【0026】[0026]

【実施例】本発明の冷熱利用方法による効果を、具体的
に実施例1、2に基づいて説明する。 (実施例1)図1は、本発明の冷熱利用方法を適用した
ガス製品を製造する空気分離装置の構成例を示す図であ
る。原料空気の供給は大気から50,000Nm/hとして、空
気圧縮機2に導入して0.5MPaまで圧縮した後、後方冷却
器3に導いて冷却水や排窒素ガスにより製造された冷
水、さらにはブラインなど(図示せず)により冷却し
て、吸着塔4で原料空気中の水分と炭酸ガスを除去し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The effects of the method of utilizing cold energy of the present invention will be specifically described based on Embodiments 1 and 2. (Embodiment 1) FIG. 1 is a view showing an example of the configuration of an air separation apparatus for producing a gas product to which the method of utilizing cold energy of the present invention is applied. The supply of the raw material air is made 50,000 Nm 3 / h from the atmosphere, introduced into the air compressor 2 and compressed to 0.5 MPa, and then guided to the rear cooler 3 to produce cooling water or cold water produced by exhausted nitrogen gas. After cooling with brine or the like (not shown), moisture and carbon dioxide in the raw material air were removed in the adsorption tower 4.

【0027】この原料空気は、主熱交換器5で高圧精留
塔6および低圧精留塔7から取り出された低温の窒素ガ
スや酸素ガス(詳細な条件は後述する)と熱交換するこ
とにより-170℃まで冷却され、高圧精留塔6に導入され
た。
The raw air is heat-exchanged with the low-temperature nitrogen gas or oxygen gas (detailed conditions will be described later) extracted from the high-pressure rectification tower 6 and the low-pressure rectification tower 7 in the main heat exchanger 5. It was cooled to -170 ° C and introduced into the high-pressure rectification column 6.

【0028】高圧精留塔6内では、選択的に底部に酸素
富化された液体空気が分離され、頂部に窒素ガスが分離
された。そして、高圧精留塔6の底部から抜き取られた
酸素富化された液体空気は低圧精留塔7の中間部に導入
された。一方、高圧精留塔6の頂部から抜き取られた窒
素ガスは分岐され、一部は製品として取り出され、一部
は凝縮器8に導入され、低圧精留塔7の底部に分離され
た液体酸素によって凝縮液化し、分岐された後、還流液
として高圧精留塔6の頂部および低圧精留部7の頂部へ
導入された。
In the high-pressure rectification column 6, oxygen-enriched liquid air was selectively separated at the bottom, and nitrogen gas was separated at the top. Then, the oxygen-enriched liquid air extracted from the bottom of the high-pressure rectification column 6 was introduced into the intermediate portion of the low-pressure rectification column 7. On the other hand, the nitrogen gas withdrawn from the top of the high-pressure rectification column 6 is branched, a part is taken out as a product, a part is introduced into the condenser 8, and the liquid oxygen separated at the bottom of the low-pressure rectification column 7 is separated. After being condensed and liquefied by the reaction, it was branched and introduced into the top of the high-pressure rectification column 6 and the top of the low-pressure rectification section 7 as a reflux liquid.

【0029】製品として高圧精留塔6の頂部から取り出
された窒素ガスは、1,250Nm/h、圧力0.45MPaの状態で
あり、主熱交換器5で原料空気と熱交換することにより
大気温近傍まで加温された後、LNG熱交換器12でLN
Gの冷熱を回収し、-140℃まで冷却された。
The nitrogen gas taken out from the top of the high-pressure rectification column 6 as a product is in a state of 1,250 Nm 3 / h and a pressure of 0.45 MPa. After being heated to the vicinity, the LNG heat exchanger 12
The cold of G was recovered and cooled to -140 ° C.

【0030】その後、冷却された窒素ガスは主熱交換器
5の中部に導入され、再度原料空気との熱交換により大
気温度付近まで加温されることにより、LNGの冷熱を
空気分離装置の寒冷として供給した後、製品ガスとして
取り出される。
Thereafter, the cooled nitrogen gas is introduced into the central part of the main heat exchanger 5 and is heated again to near the atmospheric temperature by heat exchange with the raw material air, so that the cold heat of the LNG is reduced by the refrigeration of the air separation device. And then taken out as product gas.

【0031】さらに、低圧精留塔7の頂部からは窒素ガ
スを10,000Nm/h、圧力0.3MPaの状態で、低圧精留塔7
の底部からは酸素ガスを10,000Nm/h、圧力0.3MPaの状
態で、および低圧精留塔7の上部から排窒素ガスを30,0
00Nm/h、圧力0.4MPaの状態で取り出した。
Further, from the top of the low-pressure rectification column 7, nitrogen gas was supplied at 10,000 Nm 3 / h and a pressure of 0.3 MPa.
Oxygen gas was discharged from the bottom at 10,000 Nm 3 / h and at a pressure of 0.3 MPa.
It was taken out in a state of 00 Nm 3 / h and a pressure of 0.4 MPa.

【0032】同様に、これらのガスは主熱交換器5で原
料空気と熱交換することにより大気温付近まで加温さ
れ、酸素ガスおよび窒素ガスは必要であれば製品昇圧機
(図示せず)により所定の圧力まで昇圧した後、製品ガ
スとして供給された。排窒素ガスは吸着塔4の再生ガス
や冷水製造用として利用された後、大気へ放出された。
Similarly, these gases are heated to near the ambient temperature by exchanging heat with the raw air in the main heat exchanger 5, and oxygen gas and nitrogen gas are supplied to a product booster (not shown) if necessary. And then supplied as product gas. The exhausted nitrogen gas was released to the atmosphere after being used as a regeneration gas for the adsorption tower 4 and for producing cold water.

【0033】一方、LNG熱交換器12に導入されたLN
Gは、入り側で500kg/h、圧力0.3MPa、温度-160℃であ
ったが、窒素ガスとの熱交換によって-60℃まで加温さ
れた。ここでは、窒素ガスの圧力を0.3MPa以上になるよ
うに留意したため、窒素ガス側へ可燃性成分が混入する
ことがなく十分安全性が確保された。
On the other hand, the LN introduced into the LNG heat exchanger 12
G had an inlet side of 500 kg / h, a pressure of 0.3 MPa, and a temperature of −160 ° C., but was heated to −60 ° C. by heat exchange with nitrogen gas. Here, care was taken to keep the pressure of the nitrogen gas at 0.3 MPa or more, so that no flammable components were mixed into the nitrogen gas side and sufficient safety was ensured.

【0034】LNG熱交換器12の下工程にブライン冷却
器13を設けて、LNGの余剰冷熱をブラインと熱交換す
ることで大気温付近まで加温した後、天然ガス(NG)
として供給できる。このLNGの余剰冷熱を回収した低
温のブラインは、原料空気の予冷などに利用することが
できる。
A brine cooler 13 is provided in a lower process of the LNG heat exchanger 12, and the excess cold heat of LNG is exchanged with the brine to heat it to around the ambient temperature.
Can be supplied as The low-temperature brine obtained by recovering the excess cold heat of the LNG can be used for pre-cooling the raw material air and the like.

【0035】実施例1の効果を検討すると、通常、同規
模の空気分離装置におけるガス製品の製造に必要とする
エネルギー、すなわち、酸素ガス製造での電力原単位
は、分離エネルギー分が0.40kWh/Nmで、寒冷エネルギ
ー分が0.04kWh/Nmであり、合計で0.44kWh/Nmになる
( REFRIGERATION VOL.57、 No.652 p106〜112 参
照)。実施例1の結果によれば、この内の寒冷エネルギ
ー分の0.04kWh/NmがLNG冷熱の利用によって削減さ
れることから、電力原単位が約9%低減されたことにな
る。
Considering the effects of the first embodiment, the energy required for producing gas products in an air separation device of the same scale, that is, the basic unit of electric power for producing oxygen gas, has a separation energy of 0.40 kWh / in Nm 3, cold energy content is 0.04kWh / Nm 3, become 0.44kWh / Nm 3 in total (rEFRIGERATION VOL.57, see No.652 p106~112). According to the result of the first embodiment, since 0.04 kWh / Nm 3 of the cooling energy is reduced by using the LNG cold heat, the power consumption is reduced by about 9%.

【0036】ここで注目すべきは、LNGの供給量を換
算すると600Nm/hとなり、原料空気の供給量50,000Nm
/hに比べ、約1%と非常に少量であったが、LNGが
本来有するエネルギーは約850kW/t-LNGとし、実施例
1の結果では500kg/hで約400kWの低減がなされており、
その低減効果は約800kW/t-LNGとなり、本来有するエ
ネルギーの90%以上を回収していることとなる。したが
って、本発明の冷熱利用方法を適用すれば、効率的なL
NGの冷熱利用が達成できることが確認できた。 (実施例2)前述の実施例1では、高圧精留塔6の頂部
から1,250Nm/h、圧力0.45MPaの窒素ガスを取り出して
LNGの冷熱回収を行っていたが、一般的な空気分離装
置、特に液化アルゴンを製造する空気分離装置では高圧
精留塔の頂部から窒素ガスを取り出すことが制限されて
いる。
It should be noted here that the supply amount of LNG is converted to 600 Nm 3 / h, and the supply amount of raw air is 50,000 Nm
Although it was a very small amount of about 1% compared to 3 / h, LNG originally had energy of about 850 kW / t-LNG. According to the result of the first embodiment, a reduction of about 400 kW at 500 kg / h was made. ,
The reduction effect is about 800 kW / t-LNG, which means that 90% or more of the original energy is recovered. Therefore, if the method of utilizing cold energy of the present invention is applied, efficient L
It was confirmed that the use of NG cold energy could be achieved. (Embodiment 2) In the above-described embodiment 1, nitrogen gas of 1,250 Nm 3 / h and pressure of 0.45 MPa was taken out from the top of the high-pressure rectification column 6 to recover LNG by cold heat. The removal of nitrogen gas from the top of the high pressure rectification column is limited in equipment, especially in air separation equipment for producing liquefied argon.

【0037】さらに、実施例1ではLNGの冷熱を回収
した窒素ガスは、再度主熱交換器の中部に導入していた
が、稼働中の空気分離装置の主熱交換器にはこのような
ガス導入部は備えられておらず、本発明の冷熱利用方法
を適用するために、主熱交換器の改造、または取替が必
要となる。そのため、実施例2では、稼働中の空気分離
装置の主熱交換器の改造または取替が必要ない場合につ
いて説明する。
Further, in Example 1, the nitrogen gas from which the cold heat of LNG was recovered was introduced again into the center of the main heat exchanger, but such a gas was supplied to the main heat exchanger of the operating air separation device. The introduction part is not provided, and in order to apply the cold heat utilization method of the present invention, the main heat exchanger needs to be modified or replaced. Therefore, in the second embodiment, a case will be described in which the main heat exchanger of the operating air separation device does not need to be modified or replaced.

【0038】図2は、本発明の冷熱利用方法を用いたガ
ス製品を製造する空気分離装置の他の構成例を示す図で
ある。図2に示す構成例では、主熱交換器5の出側の窒
素ガスの流通路に分岐点Bを設けて、分岐点BからLN
G熱交換器12までの流通手段を備える。それと同時に、
空気分離装置内の主熱交換器5の入り側の窒素ガスの流
通路に分岐点Aを設けて、LNG熱交換器12から分岐点
Aまでの流通手段を備える。
FIG. 2 is a diagram showing another example of the configuration of an air separation apparatus for producing a gas product using the cold energy utilization method of the present invention. In the configuration example shown in FIG. 2, a branch point B is provided in the flow path of the nitrogen gas on the outlet side of the main heat exchanger 5, and LN
A distribution means up to the G heat exchanger 12 is provided. At the same time,
A branch point A is provided in the flow path of the nitrogen gas on the inlet side of the main heat exchanger 5 in the air separation device, and a flow means from the LNG heat exchanger 12 to the branch point A is provided.

【0039】さらに、分岐点BからLNG熱交換器12ま
での流通手段には、窒素ガスの圧縮機14とその後方冷却
器15を設けるようにするのが望ましい。また、LNG熱
交換器12から分岐点Aまでの流通手段には、窒素ガスの
温度を調整するため、膨張タービン16を設けるようにす
るのが望ましい。
Further, it is desirable to provide a nitrogen gas compressor 14 and a rear cooler 15 in the flow means from the branch point B to the LNG heat exchanger 12. Further, it is desirable to provide an expansion turbine 16 in the flow means from the LNG heat exchanger 12 to the branch point A in order to adjust the temperature of the nitrogen gas.

【0040】低圧精留塔7の頂部から取り出された窒素
ガスは、分岐点Aで膨張夕一ビン16から送出される窒素
ガスと合流し、主熱交換器5に導入され、原料空気と熱
交換することにより大気温度近傍まで加温された後、出
側のB点で分岐された。分岐された一部の窒素ガスは、
必要であれば製品昇圧機(図示せず)により所定の圧力
まで昇圧された後、製品窒素ガスとして供給された。
The nitrogen gas taken out from the top of the low-pressure rectification column 7 merges with the nitrogen gas sent out from the expansion bin 16 at the branch point A, is introduced into the main heat exchanger 5, and is mixed with the raw air and heat. After being exchanged, the temperature was increased to near the atmospheric temperature, and then branched at point B on the outlet side. Some of the branched nitrogen gas is
If necessary, the pressure was increased to a predetermined pressure by a product booster (not shown), and then supplied as product nitrogen gas.

【0041】窒素ガスのうち分岐された他の一部は、流
量が1,250Nm/hとして、窒素圧縮機14で0.4MPaまで昇
圧された後、後方冷却器15で35℃に冷却されてLNG熱
交換器に導入される。LNG熱交換器に導入されるLN
Gは、500kg/h(約600Nm/h)、圧力0.3MPa、温度-160
℃であり、熱交換した窒素ガスは-140℃まで冷却され
た。この窒素ガスは、膨張タービン16で膨張することに
より-175℃まで調整されて、分岐点Aから主熱交換器5
の入り側の窒素ガスに合流された。
The other part of the nitrogen gas, which is branched, is set to a flow rate of 1,250 Nm 3 / h, pressurized to 0.4 MPa by the nitrogen compressor 14, cooled to 35 ° C. by the rear cooler 15, and subjected to LNG. Introduced to the heat exchanger. LN introduced into LNG heat exchanger
G is 500kg / h (about 600Nm 3 / h), pressure 0.3MPa, temperature -160
° C, and the heat exchanged nitrogen gas was cooled to -140 ° C. This nitrogen gas is adjusted to −175 ° C. by expanding it in the expansion turbine 16, and from the branch point A to the main heat exchanger 5.
Was merged with the nitrogen gas on the entry side.

【0042】一方、LNG熱交換器12を出たLNGは、
窒素ガスとの熱交換によって-90℃まで加温された。L
NG熱交換器12の下工程にブライン冷却器13を設けて、
LNGの余剰の冷熱をブラインと熱交換することで大気
温付近まで加温した後、NGとして供給された。
On the other hand, LNG exiting the LNG heat exchanger 12 is
Heated to -90 ° C by heat exchange with nitrogen gas. L
A brine cooler 13 is provided in a lower process of the NG heat exchanger 12,
The excess cold heat of LNG was heated to near ambient temperature by heat exchange with brine, and then supplied as NG.

【0043】上記の構成を採用することによって、本発
明方法を適用するに際し、LNG熱交換器12の設置と、
分岐点BからLNG熱交換器までの流通手段およびLN
G熱交換器から分岐点Aまでの流通手段に関する配管の
改造のみで既設の装置であっても適用が可能になる。
By adopting the above configuration, when applying the method of the present invention, installation of the LNG heat exchanger 12 and
Distribution means from branch point B to LNG heat exchanger and LN
The existing apparatus can be applied only by modifying the piping relating to the flow means from the G heat exchanger to the branch point A.

【0044】実施例2では、必要に応じて、窒素圧縮機
14、後方冷却器15および膨張タービン16が新たに必要と
なるが、これらに導入される窒素ガス量は1,250Nm/h
と原料空気量の50,000Nm/hに比べ、2.5%と少量であ
ることから、小規模の設備で対応できる。
In the second embodiment, if necessary, a nitrogen compressor
14. A new rear cooler 15 and expansion turbine 16 are required, and the amount of nitrogen gas introduced into them is 1,250 Nm 3 / h
Compared to 50,000 Nm 3 / h of raw material air volume, it is 2.5% small amount, so it can be handled with small-scale equipment.

【0045】さらに、窒素圧縮機14の消費動力が必要に
なるとしても、その動力は約100kWに留まることが予測
でき、実施例2では300kWの電力低減が可能であった。
すなわち、簡易な設備改造によって、効率的にLNGの
冷熱を利用することにより、ガス酸素の製造に必要な原
単位を0.44kWh/Nmから0.41kW/Nmとし、7%低減す
ることができた。
Further, even if the power consumption of the nitrogen compressor 14 is required, it can be predicted that the power consumption is limited to about 100 kW, and in the second embodiment, the power consumption can be reduced by 300 kW.
In other words, by using the cold energy of LNG efficiently by simple equipment modification, the basic unit required for gas oxygen production can be reduced from 0.44 kWh / Nm 3 to 0.41 kW / Nm 3 and reduced by 7%. Was.

【0046】なお、実施例2の説明では、ガス製品とし
て酸素ガスおよび窒素ガスのみを製造する空気分離装置
について説明したが、液化アルゴンを製造する場合にも
同様の方法を適用することができ、製造電力原単位を低
減することが可能である。
In the description of the second embodiment, the air separation apparatus for producing only oxygen gas and nitrogen gas as gas products has been described. However, the same method can be applied to the production of liquefied argon. It is possible to reduce the power consumption per unit of production.

【0047】[0047]

【発明の効果】本発明の空気分離装置およびその冷熱利
用方法によれば、ガス製品を製造する空気分離装置であ
っても、LNGの冷熱を有効に利用することが可能であ
り、これによりガス製品の製造に必要な電力原単位の低
減が図れる。
According to the air separation device and the method for utilizing the cold energy of the present invention, even in the air separation device for producing a gas product, the cold energy of LNG can be effectively used. It is possible to reduce the power consumption required for manufacturing products.

【0048】具体的には、ガスを製造する空気分離装置
の寒冷エネルギー分、すなわち熱交換器の温端揖失およ
び侵入熱に相当する冷熱を原料空気量の約1%程度のL
NG量で賄うことにより、酸素ガスの製造に必要な電力
原単位を5%以上低減することが可能である。また、上
記の原料空気量に対するLNG量は、従来にLNGの冷
熱を有効に利用できなかった小規模の気化装置を有する
サテライト基地の処理規模に相当するものであるから、
このような小規模のLNG気化装置と組み合わせること
も可能になる。
More specifically, the cold energy corresponding to the cold energy of the air separator for producing the gas, that is, the cold heat corresponding to the loss of the hot end of the heat exchanger and the heat of intrusion, is reduced to about 1% of the amount of the raw material air by L.
By covering the amount of NG, it is possible to reduce the power consumption unit required for producing oxygen gas by 5% or more. In addition, the LNG amount with respect to the raw material air amount corresponds to the processing scale of a satellite base having a small-scale vaporizer that could not effectively utilize the cold heat of LNG in the past,
Combination with such a small-scale LNG vaporizer is also possible.

【0049】さらに、LNG量が少なく、またLNGの
冷熱を回収するための窒素ガス量も原料空気量に比較し
て少量であるため、本発明の空気分離装置およびその冷
熱利用方法を適用するための設備装置の改造は、小規模
で、簡易なものとすることができる。このため、現在稼
働中の装置に対しても容易に適用することができ、電力
原単位の低減に有効である。
Further, since the amount of LNG is small and the amount of nitrogen gas for recovering the cold of LNG is also small compared to the amount of raw air, the air separation apparatus of the present invention and the method of utilizing the cold thereof are applied. The modification of the equipment of the above can be made small and simple. For this reason, the present invention can be easily applied to a device currently in operation, and is effective in reducing the power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷熱利用方法を適用したガス製品を製
造する空気分離装置の構成例を示す図である。
FIG. 1 is a diagram showing a configuration example of an air separation device for producing a gas product to which the method of utilizing cold energy of the present invention is applied.

【図2】本発明の冷熱利用方法を用いたガス製品を製造
する空気分離装置の他の構成例を示す図である。
FIG. 2 is a diagram showing another example of the configuration of an air separation device for producing a gas product using the cold heat utilization method of the present invention.

【図3】従来の空気分離装置の構成とその作用を説明す
るための図である。
FIG. 3 is a diagram for explaining a configuration of a conventional air separation device and its operation.

【符号の説明】[Explanation of symbols]

1:吸収フィルター、 2:空気圧縮機 3:後方冷却器、 4:吸着塔 5:主熱交換器、 6:高圧精留塔 7:低圧精留塔、 8:凝縮器 9:昇圧機、 10:後方冷却器 11:膨張タービン、 12:LNG熱交換器 13:ブライン冷却器、 14:窒素圧縮機 15:後方冷却器、 16:膨張タービン A、B:分岐点 1: Absorption filter 2: Air compressor 3: Rear cooler 4: Adsorption tower 5: Main heat exchanger 6: High pressure rectification column 7: Low pressure rectification column, 8: Condenser 9: Booster, 10 : Rear cooler 11: Expansion turbine, 12: LNG heat exchanger 13: Brine cooler, 14: Nitrogen compressor 15: Rear cooler, 16: Expansion turbine A, B: Branch point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 篤 大阪府堺市築港新町2丁6番地40 エア・ ウォーター株式会社内 Fターム(参考) 4D047 AA08 AB01 AB02 CA07 DA17 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Atsushi Miyamoto 2-6-6 Chikushinmachi, Sakai-shi, Osaka F-term in Air Water Corporation (reference) 4D047 AA08 AB01 AB02 CA07 DA17

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】原料空気を供給する手段と、供給された原
料空気と取り出されたガス製品とを熱交換する主熱交換
器と、この主熱交換器で冷却された原料空気を取り込ん
で選択的に組成成分を分離する精留塔と、天然ガスの冷
熱を回収するLNG熱交換器と、前記主熱交換器からL
NG熱交換器へガス製品のうち窒素ガスを流通させる手
段、およびLNG熱交換器から主熱交換器まで窒素ガス
を流通させる手段を設けたことを特徴とするガス製品を
製造する空気分離装置。
1. A means for supplying raw air, a main heat exchanger for exchanging heat between the supplied raw air and a taken-out gas product, and taking and selecting raw air cooled by the main heat exchanger. A rectification column that separates the constituent components in an efficient manner, an LNG heat exchanger that recovers the cold of natural gas,
An air separation apparatus for producing a gas product, comprising: means for flowing nitrogen gas out of a gas product to an NG heat exchanger; and means for flowing nitrogen gas from an LNG heat exchanger to a main heat exchanger.
【請求項2】供給された原料空気と取り出されたガス製
品とを熱交換する主熱交換器と、この主熱交換器で冷却
された原料空気を取り込んで選択的に組成成分を分離す
る精留塔を有し、ガス製品を製造する空気分離装置によ
る冷熱利用方法であって、当該装置の出側に天然ガスの
冷熱を回収するLNG熱交換器を設け、前記精留塔から
取り出されたガス製品を前記主熱交換器で原料空気との
熱交換によって加熱し、次いでガス製品のうち窒素ガス
を前記LNG熱交換器に通して冷熱を回収した後、再び
前記主熱交換器に通して原料空気と熱交換してガス製品
とすることを特徴とする空気分離装置の冷熱利用方法。
2. A main heat exchanger for exchanging heat between a supplied raw material air and a taken-out gas product, and a main heat exchanger for taking in the raw material air cooled by the main heat exchanger and selectively separating composition components. A method for utilizing cold energy by an air separation device having a distillation tower and producing a gas product, wherein an LNG heat exchanger for recovering the cold energy of natural gas is provided on the outlet side of the apparatus, and the LNG heat exchanger is taken out from the rectification tower. The gas product is heated by heat exchange with the raw air in the main heat exchanger, and then nitrogen gas of the gas product is passed through the LNG heat exchanger to recover cold heat, and then passed through the main heat exchanger again. A method for utilizing the cold energy of an air separation device, wherein heat is exchanged with raw material air to produce a gas product.
【請求項3】供給された原料空気と取り出されたガス製
品とを熱交換する主熱交換器と、この主熱交換器で冷却
された原料空気を取り込んで選択的に組成成分を分離す
る精留塔を有し、ガス製品を製造する空気分離装置によ
る冷熱利用方法であって、当該装置の出側に天然ガスの
冷熱を回収するLNG熱交換器を設け、前記精留塔から
取り出されたガス製品を前記主熱交換器で原料空気との
熱交換によって加熱し、次いでガス製品のうち窒素ガス
を分岐して一部を前記LNG熱交換器に通して冷熱を回
収した後、前記精留塔から取り出され、かつ主熱交換器
に通す前の窒素ガスに合流させることを特徴とする空気
分離装置の冷熱利用方法。
3. A main heat exchanger for exchanging heat between the supplied raw material air and the extracted gaseous product, and a precision heat exchanger for taking in the raw material air cooled by the main heat exchanger and selectively separating composition components. A method for utilizing cold energy by an air separation device having a distillation tower and producing a gas product, wherein an LNG heat exchanger for recovering the cold energy of natural gas is provided on the outlet side of the apparatus, and the LNG heat exchanger is taken out from the rectification tower. The gas product is heated by heat exchange with the raw air in the main heat exchanger, then the nitrogen gas is branched out of the gas product, a part of the gas product is passed through the LNG heat exchanger, and the cold heat is recovered. A method for utilizing the cold energy of an air separation device, wherein the nitrogen gas is taken out of a column and is combined with nitrogen gas before passing through a main heat exchanger.
【請求項4】上記LNG熱交換器に通される窒素ガスは
高純度の窒素ガスまたは酸素含有量の少ない窒素ガスで
あって、天然ガス圧力よりも高い圧力を有することを特
徴とする請求項2または3に記載の空気分離装置による
冷熱利用方法。
4. The nitrogen gas passed through the LNG heat exchanger is a high-purity nitrogen gas or a nitrogen gas having a low oxygen content, and has a pressure higher than a natural gas pressure. 4. A method for utilizing cold energy by the air separation device according to 2 or 3.
【請求項5】主熱交換器を通して分岐された窒素ガスを
所定圧力まで圧縮または/および所定温度まで冷却して
LNG熱交換器に通すことを特徴とする請求項3に記載
の空気分離装置の冷熱利用方法。
5. The air separation apparatus according to claim 3, wherein the nitrogen gas branched through the main heat exchanger is compressed to a predetermined pressure and / or cooled to a predetermined temperature and passed through an LNG heat exchanger. How to use cold heat.
【請求項6】LNG熱交換器に通して冷熱を回収した窒
素ガスを所定温度まで冷却して精留塔から取り出された
窒素ガスに合流させることを特徴とする請求項3記載の
空気分離装置の冷熱利用方法。
6. The air separation apparatus according to claim 3, wherein the nitrogen gas from which the cold energy has been recovered by passing through the LNG heat exchanger is cooled to a predetermined temperature and combined with the nitrogen gas extracted from the rectification column. How to use cold heat.
JP2001179475A 2001-06-14 2001-06-14 Air separation apparatus for gas products and method of utilizing cold energy Expired - Fee Related JP3474180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001179475A JP3474180B2 (en) 2001-06-14 2001-06-14 Air separation apparatus for gas products and method of utilizing cold energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001179475A JP3474180B2 (en) 2001-06-14 2001-06-14 Air separation apparatus for gas products and method of utilizing cold energy

Publications (2)

Publication Number Publication Date
JP2002372367A true JP2002372367A (en) 2002-12-26
JP3474180B2 JP3474180B2 (en) 2003-12-08

Family

ID=19020031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001179475A Expired - Fee Related JP3474180B2 (en) 2001-06-14 2001-06-14 Air separation apparatus for gas products and method of utilizing cold energy

Country Status (1)

Country Link
JP (1) JP3474180B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632467A (en) * 2020-05-08 2020-09-08 杭州制氧机集团股份有限公司 Vehicle-mounted electronic grade high-purity special gas tail gas liquefaction recovery device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712331B2 (en) 2006-06-30 2010-05-11 Air Products And Chemicals, Inc. System to increase capacity of LNG-based liquefier in air separation process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632467A (en) * 2020-05-08 2020-09-08 杭州制氧机集团股份有限公司 Vehicle-mounted electronic grade high-purity special gas tail gas liquefaction recovery device

Also Published As

Publication number Publication date
JP3474180B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
US6196021B1 (en) Industrial gas pipeline letdown liquefaction system
CN109690215A (en) Industrial gasses place produces integrated with liquid hydrogen
CN106595221B (en) Oxygen generation system and oxygen generation method
TW201109602A (en) Air liquefaction and separation method and device
WO2004085941A1 (en) Air separator
CA2998529C (en) A method of preparing natural gas to produce liquid natural gas (lng)
JPH0933166A (en) Method and apparatus for producing ultrahigh-purity nitrogen
JPH1163810A (en) Method and device for manufacturing low purity oxygen
JP2002372367A (en) Air separator for gas product and its cold heat utilizing method
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP2013142509A (en) Air separator
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JP4202971B2 (en) Nitrogen production method and apparatus
JP7355980B1 (en) Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment
JPH05306885A (en) Pressure type air separating device
TWM516040U (en) Apparatus for the production of nitrogen product by separation of air by cryogenic distillation
JP4283521B2 (en) Gas liquefaction apparatus and method
JPH11132652A (en) Method and device for manufacturing low-purity oxygen
JP3539709B2 (en) Air separation equipment
JP2004085032A (en) Cooling method for air separation device
JPH06174366A (en) Air separator
JPH11118352A (en) Manufacture of low purity oxygen, and its device
JPS61276680A (en) Method of liquefying and separating air
CN115448313A (en) Method and device for separating and recovering industrial carbon dioxide from gas of steel mill

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030902

R150 Certificate of patent or registration of utility model

Ref document number: 3474180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees