JPH11118352A - Manufacture of low purity oxygen, and its device - Google Patents

Manufacture of low purity oxygen, and its device

Info

Publication number
JPH11118352A
JPH11118352A JP9280399A JP28039997A JPH11118352A JP H11118352 A JPH11118352 A JP H11118352A JP 9280399 A JP9280399 A JP 9280399A JP 28039997 A JP28039997 A JP 28039997A JP H11118352 A JPH11118352 A JP H11118352A
Authority
JP
Japan
Prior art keywords
pressure
low
air
raw
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9280399A
Other languages
Japanese (ja)
Inventor
Yasuhiro Murata
康浩 村田
Kazunari Arai
一成 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP9280399A priority Critical patent/JPH11118352A/en
Publication of JPH11118352A publication Critical patent/JPH11118352A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/52Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Power Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently recover the low purity oxygen gas at high pressure by using the expansion work generated in the first expansion process to expand the compressed air from a power generating equipment to the pressure corresponding to the operation pressure of a high pressure tower as the power to compress the fluid to make an effective use of the pressure energy. SOLUTION: The compressed air as a part of the raw air received from a power generating equipment G is expanded to the pressure capable of efficiently separating oxygen from nitrogen in a multiple distillation tower 13 by a power recovery turbine 2. The raw air is separated into oxygen and nitrogen through lower temperature distillation by the multiple distillation tower 13 comprising a high pressure tower 10, a main condenser 11 and a low pressure tower 12. The expansion work generated through expansion of the compressed air in the power recovery turbine 2 is used as the compression power of the rest of the raw air (the atmospheric air A). According to this constitution the compression power can be reduced without reducing the yield of the product oxygen, and the power consumption unit can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低純度酸素の製造
方法及び装置に関し、詳しくは、発電設備からの圧縮空
気を原料空気として用い、精製,冷却した原料空気を複
式蒸留塔に導入して比較的高圧下で蒸留分離することに
より、主として低純度酸素(99%O以下)を製品と
して回収する低純度酸素の製造方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing low-purity oxygen, and more particularly, to a method in which compressed air from a power generation facility is used as raw air, and purified and cooled raw air is introduced into a double distillation column. The present invention relates to a method and an apparatus for producing low-purity oxygen, in which low-purity oxygen (99% O 2 or less) is mainly recovered as a product by distillation and separation under a relatively high pressure.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】低純度
酸素は、近年、石炭ガス化複合発電設備や重質残渣ガス
化発電設備において利用されるようになり、今後、更に
需要が見込まれている。これらの設備においては、大量
の酸素を消費することから、特に酸素の製造コストを低
減することが望まれている。
2. Description of the Related Art In recent years, low-purity oxygen has been used in integrated coal gasification combined cycle power generation equipment and heavy residue gasification power generation equipment, and further demand is expected in the future. I have. Since these facilities consume a large amount of oxygen, it is desired to reduce the production cost of oxygen in particular.

【0003】これらの発電設備においては、低純度酸素
の製造コストを低減するため、低純度酸素を製造する低
温空気蒸留装置に導入する原料空気の一部又は全部とし
て、発電設備の燃焼ガスタービンに接続された空気圧縮
機からの圧縮空気を用いる方法が提案されている。この
とき、発電設備から供給される圧縮空気は、一般的な低
温空気蒸留装置に用いられる原料空気と比較して圧力が
高いので、この比較的高い圧力を有効に利用する必要が
ある。
In these power generation facilities, in order to reduce the production cost of low-purity oxygen, part or all of the raw air introduced into a low-temperature air distillation apparatus for producing low-purity oxygen is supplied to a combustion gas turbine of the power generation facility. A method using compressed air from a connected air compressor has been proposed. At this time, since the pressure of the compressed air supplied from the power generation equipment is higher than that of the raw material air used in a general low-temperature air distillation apparatus, it is necessary to effectively use this relatively high pressure.

【0004】この圧力の高い圧縮空気を有効利用する方
法として、通常の低温空気蒸留装置よりも高い圧力で蒸
留分離を行い、低純度酸素ガス等の製品ガスを高圧で回
収することにより、従来行われていた製品ガスの再圧縮
をすることなく、低温空気蒸留装置から回収される圧力
で製品ガスを直接消費設備に送給する方法や、この圧縮
空気の一部を更に昇圧し、製品酸素を液状で圧縮する液
化酸素ポンプの導出液を気化させる熱源として用いる方
法等が提案されている。
[0004] As a method of effectively using the compressed air having a high pressure, a conventional method is employed in which distillation separation is performed at a pressure higher than that of a normal low-temperature air distillation apparatus, and a product gas such as a low-purity oxygen gas is recovered at a high pressure. A method in which product gas is directly sent to the consuming equipment at the pressure recovered from the cryogenic air distillation unit without recompressing the product gas, or a part of the compressed air is further pressurized to reduce product oxygen. A method of using a liquid derived from a liquefied oxygen pump that compresses in a liquid state as a heat source for vaporizing the liquid has been proposed.

【0005】ここで、前記発電設備で発生する圧縮空気
の圧力は、例えば、燃焼器で燃焼させた1300℃の燃
焼ガスを燃焼ガスタービンに導入して発電する方法の場
合、燃焼ガスタービンと同軸上に連結された空気圧縮機
の吐出圧力は約15kg/cmGとなる。また、燃焼
ガスを1500℃で燃焼ガスタービンに導入する方法も
検討されているが、この場合の圧縮空気の圧力は、約3
0kg/cmGと更に高圧となる。これらの圧力は、
通常の低温空気蒸留装置に用いられている原料空気の圧
力(約5〜6kg/cmG)に比較してかなり高いも
のである。
[0005] Here, the pressure of the compressed air generated in the power generation equipment is, for example, coaxial with the combustion gas turbine in the case of generating electricity by introducing the combustion gas of 1300 ° C burned in the combustor into the combustion gas turbine. The discharge pressure of the air compressor connected above is about 15 kg / cm 2 G. Also, a method of introducing the combustion gas into the combustion gas turbine at 1500 ° C. has been studied. In this case, the pressure of the compressed air is about 3
The pressure is further increased to 0 kg / cm 2 G. These pressures
This is considerably higher than the pressure (about 5 to 6 kg / cm 2 G) of the raw air used in the ordinary low-temperature air distillation apparatus.

【0006】このような高圧(約15kg/cmG以
上)の空気を低温空気蒸留塔に導入して蒸留を行う場
合、通常の低圧蒸留法に比較して酸素に対する窒素の比
揮発度の値が小さくなるため、酸素と窒素との分離効果
が低下し、高圧塔から抜き出される液化窒素流量が減少
することになり、低圧塔上部における還流液が不足する
ことになる。また、低圧塔の操作圧力も、高圧塔の操作
圧力に応じて高く(約5kg/cmG)なり、同様に
酸素と窒素との分離効果が低下するため、製品回収率が
極端に低下し、回収率の低下に伴って原単位が大幅に悪
化することになる。
[0006] When such high pressure (about 15 kg / cm 2 G or more) air is introduced into a low-temperature air distillation column to perform distillation, the value of the relative volatility of nitrogen with respect to oxygen is lower than that in a normal low pressure distillation method. Is reduced, the effect of separating oxygen and nitrogen is reduced, the flow rate of liquefied nitrogen extracted from the high-pressure column is reduced, and the reflux liquid in the upper part of the low-pressure column becomes insufficient. In addition, the operating pressure of the low pressure column also becomes higher (about 5 kg / cm 2 G) in accordance with the operating pressure of the high pressure column, and similarly, the effect of separating oxygen and nitrogen is reduced. In addition, the unit consumption is greatly deteriorated with a decrease in the recovery rate.

【0007】したがって、高圧下で蒸留する方法(高圧
蒸留)において、製品回収率を確保するためには、低圧
下で蒸留する方法(低圧蒸留)に比較して蒸留塔上部に
おける下降液(還流液)と上昇ガスとの比(以下、L/
V比と言う)を増加させる必要があるが、従来のプロセ
スではL/V比を十分に増加させることができず、製品
回収率の向上や電力原単位の改善を十分には達成できな
かった。
[0007] Therefore, in the method of distillation under high pressure (high pressure distillation), in order to ensure the product recovery rate, the descending liquid (reflux liquid) in the upper part of the distillation column is required as compared with the method of distillation under low pressure (low pressure distillation). ) And the rising gas (hereinafter L /
However, the conventional process cannot sufficiently increase the L / V ratio, and cannot sufficiently improve the product recovery rate and the power consumption rate. .

【0008】そこで本発明は、発電設備からの高圧の圧
縮空気が有する圧力エネルギーを有効に利用して低純度
酸素ガスを比較的高圧で効率よく回収することができ、
製品回収率の向上や電力原単位の低減を図ることができ
る低純度酸素の製造方法及び装置を提供することを目的
としている。
Accordingly, the present invention is capable of efficiently recovering low-purity oxygen gas at a relatively high pressure by effectively utilizing the pressure energy of high-pressure compressed air from a power generation facility,
It is an object of the present invention to provide a method and an apparatus for producing low-purity oxygen that can improve the product recovery rate and reduce the power consumption.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の低純度酸素の製造方法は、第1の構成とし
て、原料空気を高圧塔及び低圧塔を有する複式蒸留設備
で低温蒸留することにより、少なくとも低純度酸素を製
品として分離回収する低純度酸素の製造方法において、
大気を前記高圧塔の操作圧力に対応した圧力に圧縮する
空気圧縮工程と、前記高圧塔の操作圧力より高い圧力の
圧縮空気を発電設備から受給して前記高圧塔の操作圧力
に対応した圧力に膨張させる第一膨張工程と、前記空気
圧縮工程を経た大気と前記第一膨張工程を経た圧縮空気
とを混合して原料空気とする原料空気混合工程と、前記
原料空気混合工程を経た原料空気を予冷する工程と、予
冷した原料空気から水分や二酸化炭素等の不純物を除去
して精製する工程と、精製した原料空気を第一原料空気
と第二原料空気とに分岐する工程と、分岐した前記第一
原料空気を低温蒸留で得られた流体との熱交換により冷
却した後、高圧原料空気として前記高圧塔に導入する工
程と、分岐した前記第二原料空気を昇圧し、次いで低温
蒸留で得られた流体との熱交換により冷却した後、前記
低圧塔の操作圧力まで膨張させる第二膨張工程と、該第
二膨張工程を経た第二原料空気を低圧原料空気として前
記低圧塔に導入する工程と、前記高圧原料空気及び低圧
原料空気を低温蒸留することにより酸素と窒素とに分離
する工程と、前記低圧塔で分離した酸素及び窒素を低圧
塔から抜き出して原料空気との熱交換により昇温した
後、少なくとも前記酸素を製品酸素ガスとして回収する
製品回収工程とを含むとともに、前記第一膨張工程で発
生した膨張仕事を、前記発電設備から受給する圧縮空気
以外の流体を圧縮する動力の少なくとも一部として利用
することを特徴としている。
According to a first aspect of the present invention, there is provided a method for producing low-purity oxygen, wherein raw air is subjected to low-temperature distillation in a double distillation apparatus having a high-pressure column and a low-pressure column. By the method of producing a low-purity oxygen that separates and recovers at least a low-purity oxygen as a product,
An air compression step of compressing the atmosphere to a pressure corresponding to the operating pressure of the high-pressure tower, and receiving compressed air having a pressure higher than the operating pressure of the high-pressure tower from a power generation facility to a pressure corresponding to the operating pressure of the high-pressure tower. A first expansion step of expanding, a raw air mixing step of mixing the air that has passed through the air compression step and the compressed air that has passed through the first expansion step to obtain raw air, and a raw air that has passed through the raw air mixing step. A step of pre-cooling, a step of purifying by removing impurities such as moisture and carbon dioxide from the pre-cooled raw air, a step of branching the purified raw air into a first raw air and a second raw air, After cooling the first raw material air by heat exchange with the fluid obtained by the low-temperature distillation, introducing the high-pressure raw material air into the high-pressure column, and pressurizing the branched second raw material air, and then obtaining the same by the low-temperature distillation Flow After cooling by heat exchange with, a second expansion step of expanding to the operating pressure of the low pressure column, and a step of introducing the second raw material air that has passed through the second expansion step to the low pressure column as low pressure raw material air, A step of separating high-pressure raw air and low-pressure raw air into oxygen and nitrogen by low-temperature distillation, and after extracting the oxygen and nitrogen separated in the low-pressure tower from the low-pressure tower and raising the temperature by heat exchange with the raw air, A product recovery step of recovering at least the oxygen as product oxygen gas, and the expansion work generated in the first expansion step, as at least a part of power for compressing a fluid other than compressed air received from the power generation facility. It is characterized by using.

【0010】さらに、上述の第1の構成において、前記
第一膨張工程で発生した膨張仕事を、前記空気圧縮工程
の動力、あるいは、前記製品回収工程の製品ガスを圧縮
する動力として利用することを特徴としている。
Further, in the above-mentioned first structure, the expansion work generated in the first expansion step is used as power for the air compression step or power for compressing product gas in the product recovery step. Features.

【0011】また、本発明方法の第2の構成は、原料空
気を高圧塔及び低圧塔を有する複式蒸留設備で低温蒸留
することにより、少なくとも低純度酸素を製品として分
離回収する低純度酸素の製造方法において、前記高圧塔
の操作圧力より高い圧力の圧縮空気を発電設備から受給
して原料空気の少なくとも一部とする工程と、原料空気
を予冷する工程と、予冷した原料空気から水分や二酸化
炭素等の不純物を除去して精製する工程と、精製した原
料空気を第一原料空気と第二原料空気とに分岐する工程
と、分岐した前記第一原料空気を前記高圧塔の操作圧力
まで膨張させて前記高圧塔に導入する工程と、分岐した
前記第二原料空気を低温蒸留で得られた流体との熱交換
により冷却した後、前記高圧塔の操作圧力まで減圧して
前記高圧塔に導入する工程と、導入された原料空気を複
式蒸留塔で低温蒸留することにより酸素と窒素とに分離
する工程と、前記複式蒸留塔で分離した酸素及び窒素を
抜き出して原料空気との熱交換により昇温した後、少な
くとも前記酸素を製品酸素ガスとして回収する製品回収
工程とを含むとともに、前記第一原料空気の膨張工程で
発生した膨張仕事を、前記発電設備から受給する圧縮空
気以外の流体を圧縮する動力の少なくとも一部として利
用することを特徴としている。
A second structure of the method of the present invention is to produce low-purity oxygen by separating and recovering at least low-purity oxygen as a product by low-temperature distillation of raw air in a double distillation apparatus having a high-pressure column and a low-pressure column. In the method, a step of receiving compressed air having a pressure higher than the operating pressure of the high-pressure column from a power generation facility to make at least a part of the raw air, a step of pre-cooling the raw air, and a step of removing water or carbon dioxide from the pre-cooled raw air. A step of purifying by removing impurities such as, a step of branching the purified raw air into a first raw air and a second raw air, and expanding the branched first raw air to the operating pressure of the high-pressure column. And introducing into the high-pressure column, and cooling the branched second raw material air by heat exchange with a fluid obtained by low-temperature distillation, then reducing the pressure to the operating pressure of the high-pressure column and introducing it to the high-pressure column. A step of separating the introduced raw material air into oxygen and nitrogen by low-temperature distillation in a double distillation column, and extracting the oxygen and nitrogen separated in the double distillation column and raising the temperature by heat exchange with the raw material air. After the heating, including a product recovery step of recovering at least the oxygen as product oxygen gas, the expansion work generated in the expansion step of the first raw material air, compressing the fluid other than the compressed air received from the power generation equipment It is characterized in that it is used as at least a part of the driving power.

【0012】さらに、上述の第2の構成において、前記
製品酸素ガスの回収工程が、前記低圧塔底部の液化酸素
を抜き出して圧縮した後、前記原料空気との熱交換によ
って気化させることにより行うことを特徴とし、また、
前記原料空気を第一原料空気と第二原料空気とに分岐す
る工程を、前記低温蒸留で得られた流体との熱交換によ
り冷却する工程の途中で行うことを特徴としている。加
えて、前記第一原料空気を膨張させる際に発生する膨張
仕事を、前記製品回収工程において低圧塔から抜き出し
た製品ガスを圧縮する動力として利用することを特徴と
している。さらに、前記高圧塔から抜き出した高圧窒素
ガス及び前記低圧塔から抜き出した低圧窒素ガスの少な
くとも一方の窒素ガスを昇圧した後、低温蒸留で得られ
た流体との熱交換により冷却し、次いで前記高圧塔の塔
底液との熱交換により液化し、前記高圧塔及び前記低圧
塔の少なくともいずれか一方に導入することを特徴と
し、この窒素ガスを昇圧する動力として、前記第一原料
空気を膨張させる際に発生する膨張仕事を利用すること
を特徴としている。
Further, in the above-mentioned second configuration, the step of recovering the product oxygen gas is performed by extracting and compressing liquefied oxygen at the bottom of the low-pressure column, and then vaporizing it by heat exchange with the raw material air. It is characterized by
The step of branching the raw air into the first raw air and the second raw air is performed in the course of cooling by heat exchange with the fluid obtained by the low-temperature distillation. In addition, expansion work generated when expanding the first raw material air is used as power for compressing product gas extracted from the low-pressure column in the product recovery step. Further, after increasing the pressure of at least one of the high-pressure nitrogen gas extracted from the high-pressure column and the low-pressure nitrogen gas extracted from the low-pressure column, the mixture is cooled by heat exchange with a fluid obtained by low-temperature distillation, and then the high-pressure nitrogen is cooled. Liquefied by heat exchange with the bottom liquid of the column, and introduced into at least one of the high-pressure column and the low-pressure column, and as the power for increasing the pressure of the nitrogen gas, the first raw material air is expanded. It is characterized by utilizing expansion work generated at the time.

【0013】また、本発明の低純度酸素の製造装置は、
第1の構成として、原料空気を高圧塔及び低圧塔を有す
る複式蒸留設備で低温蒸留することにより、少なくとも
低純度酸素を製品として分離回収する低純度酸素の製造
装置において、大気を前記高圧塔の操作圧力に対応した
圧力に圧縮する空気圧縮機と、前記高圧塔の操作圧力よ
り高い圧力の圧縮空気を発電設備から受給して前記高圧
塔の操作圧力に対応した圧力に膨張させる動力回収ター
ビンと、前記空気圧縮機で圧縮した原料空気と前記動力
回収タービンで膨張させた圧縮空気とを混合して原料空
気とする混合経路と、前記混合経路を導出した原料空気
を予冷する予冷設備と、予冷した原料空気から水分や二
酸化炭素等の不純物を除去して精製する精製設備と、精
製した原料空気を第一原料空気と第二原料空気とに分岐
する分岐経路と、分岐した第一原料空気を低温蒸留で得
られた流体と熱交換させる主熱交換器と、該主熱交換器
を導出した第一原料空気を前記高圧塔に導入する高圧原
料空気導入経路と、前記分岐経路で分岐した第二原料空
気を昇圧する昇圧機と、前記昇圧機を導出した前記第二
原料空気を前記主熱交換器で冷却した後に導入して膨張
させる寒冷発生タービンと、該寒冷発生タービンを導出
した第二原料空気を前記低圧塔に導入する低圧原料空気
導入経路と、前記高圧原料空気導入経路及び前記低圧原
料空気導入経路から導入された原料空気を低温蒸留する
ことにより酸素と窒素とに分離する高圧塔,主凝縮器及
び低圧塔からなる複式蒸留塔と、該複式蒸留塔の低圧塔
で分離した酸素及び窒素を抜き出して前記主熱交換器に
より昇温した後、少なくとも前記酸素を製品酸素ガスと
して回収する製品回収経路とを備えるとともに、前記動
力回収タービンが、前記発電設備から受給する圧縮空気
以外の流体を圧縮する圧縮機に同軸上に連結して設けら
れていることを特徴としている。
[0013] The apparatus for producing low-purity oxygen of the present invention comprises:
As a first configuration, in a low-purity oxygen producing apparatus that separates and recovers at least low-purity oxygen as a product by distilling raw air at a low temperature in a double distillation facility having a high-pressure tower and a low-pressure tower, An air compressor that compresses to a pressure corresponding to the operating pressure, and a power recovery turbine that receives compressed air having a pressure higher than the operating pressure of the high-pressure tower from a power generation facility and expands the compressed air to a pressure corresponding to the operating pressure of the high-pressure tower. A mixing path for mixing the raw air compressed by the air compressor and the compressed air expanded by the power recovery turbine to obtain raw air, a pre-cooling device for pre-cooling the raw air derived from the mixing path, Purification equipment for purifying by removing impurities such as moisture and carbon dioxide from the purified raw air, and a branch path for branching the purified raw air into a first raw air and a second raw air, A main heat exchanger for exchanging the branched first raw material air with a fluid obtained by low-temperature distillation, and a high-pressure raw air introduction path for introducing the first raw air derived from the main heat exchanger to the high-pressure column, A booster for boosting the second raw material air branched in the branch path; a cold generation turbine for introducing the second raw material air derived from the booster after cooling it in the main heat exchanger and expanding the turbine; A low-pressure feed air introduction path for introducing the second feed air derived from the generation turbine to the low-pressure tower, and oxygen by low-temperature distillation of the feed air introduced from the high-pressure feed air introduction path and the low-pressure feed air introduction path. A double distillation column consisting of a high-pressure column, a main condenser and a low-pressure column which separates into nitrogen, and oxygen and nitrogen separated in the low-pressure column of the double distillation column are extracted and heated by the main heat exchanger. acid And a product recovery path for recovering the product as product oxygen gas, and the power recovery turbine is coaxially connected to a compressor that compresses a fluid other than compressed air received from the power generation facility. Features.

【0014】また、本発明装置の第2の構成は、原料空
気を高圧塔及び低圧塔を有する複式蒸留設備で低温蒸留
することにより、少なくとも低純度酸素を製品として分
離回収する低純度酸素の製造装置において、発電設備か
ら前記高圧塔の操作圧力より高い圧力の圧縮空気を原料
空気の少なくとも一部として受給する圧縮空気需給経路
と、原料空気を予冷する予冷設備と、予冷設備を導出し
た原料空気から水分や二酸化炭素等の不純物を除去して
精製する精製設備と、精製設備を導出した原料空気を第
一原料空気と第二原料空気とに分岐する分岐経路と、分
岐した第一原料空気を前記高圧塔の操作圧力まで膨張さ
せる動力回収タービンと、該動力回収タービンを導出し
た第一原料空気を前記高圧塔に導入する第一原料空気導
入経路と、前記分岐経路で分岐した第二原料空気を低温
蒸留で得られた流体との熱交換により冷却する主熱交換
器と、該主熱交換器を導出した第二原料空気を減圧弁を
介して減圧した後に前記高圧塔に導入する第二原料空気
導入経路と、前記第一原料空気導入経路及び前記第二原
料空気導入経路から導入された原料空気を低温蒸留する
ことにより酸素と窒素とに分離する高圧塔,主凝縮器及
び低圧塔からなる複式蒸留塔と、該複式蒸留塔で分離し
た酸素及び窒素を抜き出して前記主熱交換器により昇温
した後、少なくとも前記酸素を製品酸素ガスとして回収
する製品回収経路とを備えるとともに、前記動力回収タ
ービンが、前記圧縮空気需給経路を介して受給する発電
設備からの圧縮空気以外の流体を圧縮する圧縮機と同軸
上に連結して設けられていることを特徴としている。
A second configuration of the apparatus of the present invention is a method for producing low-purity oxygen by separating and recovering at least low-purity oxygen as a product by distilling raw air at a low temperature in a double distillation facility having a high-pressure column and a low-pressure column. In the apparatus, a compressed air supply / demand path for receiving compressed air at a pressure higher than the operating pressure of the high-pressure tower as at least a part of the raw material air from the power generation equipment, a precooling equipment for precooling the raw air, and a raw air derived from the precooling equipment A purification equipment for removing impurities such as moisture and carbon dioxide from the purification equipment, a branch path for branching the raw material air derived from the purification equipment into a first raw material air and a second raw material air, and a branched first raw material air. A power recovery turbine that expands to the operating pressure of the high pressure tower, a first raw material air introduction path for introducing the first raw material air derived from the power recovery turbine into the high pressure tower, A main heat exchanger that cools the second raw material air branched in the path by heat exchange with a fluid obtained by low-temperature distillation, and after the second raw material air led out of the main heat exchanger is depressurized through a pressure reducing valve, A second raw material air introduction path to be introduced into the high pressure tower, and a high pressure column for separating the raw material air introduced from the first raw material air introduction path and the second raw material air introduction path into oxygen and nitrogen by low-temperature distillation. A double distillation column consisting of a main condenser and a low-pressure column, and a product recovery system in which oxygen and nitrogen separated in the double distillation column are extracted and heated by the main heat exchanger, and at least the oxygen is recovered as product oxygen gas. And a power recovery turbine, wherein the power recovery turbine is provided so as to be coaxially connected to a compressor that compresses a fluid other than compressed air from a power generation facility that is received via the compressed air supply and demand path. It is a symptom.

【0015】さらに、上述の第2の構成において、前記
第一原料空気と第二原料空気とに分岐する分岐経路が前
記主熱交換器内に設けられ、前記動力回収タービンが低
温の原料空気を導入する低温仕様のタービンであるこ
と、この低温仕様の動力回収タービンと同軸上に、低温
流体を圧縮する低温仕様の圧縮機を連結したことを特徴
としている。また、前記高圧塔の上部から高圧窒素ガス
を抜き出す経路と、該経路に抜き出した高圧窒素ガスを
昇圧する高圧循環昇圧機と、該高圧循環昇圧機で昇圧し
た昇圧窒素ガスを前記高圧塔の塔底液と熱交換させて液
化するコンデンサ/リボイラと、該コンデンサ/リボイ
ラで液化した液化窒素を前記高圧塔に導入する経路とか
らなる高圧窒素循環系統、あるいは、前記低圧塔の上部
から低圧窒素ガスを抜き出す経路と、該経路に抜き出し
た低圧窒素ガスを昇圧する低圧循環昇圧機と、該低圧循
環昇圧機で昇圧した昇圧窒素ガスを前記高圧塔の塔底液
と熱交換させて液化する窒素凝縮器と、該窒素凝縮器で
液化した液化窒素を前記低圧塔に導入する経路とからな
る低圧窒素循環系統を備えたことを特徴としている。さ
らに、本発明装置においては、前記低圧塔及び高圧塔の
少なくともいずれか一方が、充填式蒸留塔であることを
特徴としている。
Further, in the above-mentioned second configuration, a branch path for branching into the first raw material air and the second raw material air is provided in the main heat exchanger, and the power recovery turbine supplies low-temperature raw material air. The low-temperature turbine to be introduced is characterized in that a low-temperature compressor that compresses a low-temperature fluid is connected coaxially with the low-temperature power recovery turbine. Also, a path for extracting high-pressure nitrogen gas from the upper part of the high-pressure column, a high-pressure circulating booster for increasing the pressure of the high-pressure nitrogen gas extracted to the path, and a pressurized nitrogen gas pressurized by the high-pressure circulator A high-pressure nitrogen circulation system comprising a condenser / reboiler which liquefies by exchanging heat with the bottom liquid and a path for introducing liquefied nitrogen liquefied by the condenser / reboiler into the high-pressure column, or a low-pressure nitrogen gas from the upper part of the low-pressure column , A low-pressure circulating pressurizer for pressurizing the low-pressure nitrogen gas discharged to the path, and a nitrogen condensate for liquefying by heat-exchanging the pressurized nitrogen gas pressurized by the low-pressure circulating press with the bottom liquid of the high-pressure column. A low-pressure nitrogen circulation system comprising a vessel and a path for introducing liquefied nitrogen liquefied by the nitrogen condenser into the low-pressure column. Further, the apparatus of the present invention is characterized in that at least one of the low-pressure column and the high-pressure column is a packed distillation column.

【0016】[0016]

【発明の実施の形態】図1は、本発明の低純度酸素製造
装置の第1形態例を示す系統図である。この低純度酸素
製造装置Sは、主要な構成機器として、原料空気の一部
となる大気Aを圧縮する空気圧縮機1と、発電設備Gか
ら受給した圧縮空気を膨張させる動力回収タービン2
と、前記空気圧縮機1及び前記動力回収タービン2を導
出した両空気が合流した原料空気を予冷する予冷設備3
と、予冷後の原料空気中に含まれている水分や二酸化炭
素等の不純物を除去して精製する精製設備4と、精製し
た原料空気を低温蒸留で得られた流体で冷却する主熱交
換器5と、前記精製設備4を導出した原料空気の一部を
昇圧する昇圧機6と、該昇圧機6で昇圧した原料空気
(昇圧空気)を冷却する冷却器7と、該冷却器7を導出
した昇圧空気と昇圧機6に導入する原料空気とを熱交換
させる空気予冷器8と、該空気予冷器8を導出した昇圧
空気を断熱膨張させる寒冷発生タービン9と、原料空気
を低温蒸留により酸素と窒素とに分離する高圧塔10,
主凝縮器11,低圧塔12からなる複式蒸留塔13と、
前記低圧塔12に導入する還流液を冷却する過冷器1
4,15とを備えている。そして、これらの構成機器の
内、低温となる機器は、保冷槽に収納されて低温蒸留設
備Cを構成している。また、空気圧縮機1と動力回収タ
ービン2、昇圧機6と寒冷発生タービン9は、それぞれ
同軸上に連結して設けられている。
FIG. 1 is a system diagram showing a first embodiment of a low-purity oxygen producing apparatus according to the present invention. The low-purity oxygen production apparatus S includes, as main components, an air compressor 1 for compressing the atmosphere A, which is a part of the raw air, and a power recovery turbine 2 for expanding the compressed air received from the power generation equipment G.
And a pre-cooling facility 3 for pre-cooling the raw material air in which the air derived from the air compressor 1 and the power recovery turbine 2 are merged.
And a purification equipment 4 for removing impurities such as water and carbon dioxide contained in the pre-cooled raw air to purify the raw air, and a main heat exchanger for cooling the purified raw air with a fluid obtained by low-temperature distillation. 5, a booster 6 that boosts a part of the raw air derived from the purification facility 4, a cooler 7 that cools the raw air (pressurized air) boosted by the booster 6, and a cooler 7 that is derived. Pre-cooler 8 for exchanging heat between the pressurized air thus obtained and the raw air introduced into the booster 6, a cold-generation turbine 9 for adiabatically expanding the pressurized air derived from the air pre-cooler 8, -Pressure column 10, which separates into nitrogen and nitrogen,
A double distillation column 13 composed of a main condenser 11 and a low pressure column 12,
Subcooler 1 for cooling the reflux liquid introduced into low pressure column 12
4, 15 are provided. Among these constituent devices, the device having a low temperature is housed in a cold storage tank to constitute a low-temperature distillation facility C. Further, the air compressor 1 and the power recovery turbine 2, and the booster 6 and the cold generation turbine 9 are provided coaxially and connected to each other.

【0017】次に、このように構成された低純度酸素製
造装置Sに、前記空気圧縮機1と前記発電設備Gから略
等量の原料空気(大気と圧縮空気)を供給し、製品の低
純度酸素ガスを製造するプロセスに基づいて本発明方法
を説明する。
Next, the air compressor 1 and the power generation equipment G are supplied with substantially equal amounts of raw material air (atmosphere and compressed air) to the low-purity oxygen producing apparatus S configured as described above to reduce the product quality. The method of the present invention will be described based on a process for producing pure oxygen gas.

【0018】大気から取り入れられた50900Nm
/hの原料空気が、空気圧縮機1で12.5kgf/c
abs.に圧縮されて経路20に導出するととも
に、発電設備Gから経路21を通って導入される30.
5kgf/cmabs.,51700Nm/hの圧
縮空気は、動力回収タービン2に導入され、該動力回収
タービン2で空気圧縮機1の吐出圧力と同じ圧力の1
2.5kgf/cmabs.に膨張して経路22に導
出する。両経路20,22に導出した原料空気は、混合
経路23で合流し、102600Nm/hの原料空気
となって予冷設備3に導入される。
50900 Nm 3 taken from the atmosphere
/ H of raw material air is 12.5kgf / c by the air compressor 1.
m 2 abs. And is introduced into the path 20 through the path 21 and introduced from the power generation facility G through the path 21.
5 kgf / cm 2 abs. , 51700 Nm 3 / h compressed air is introduced into the power recovery turbine 2, where the compressed air having the same pressure as the discharge pressure of the air compressor 1 is discharged.
2.5 kgf / cm 2 abs. To the path 22. The raw material air led out to the two paths 20 and 22 merges in the mixing path 23, becomes 102600 Nm 3 / h of raw material air, and is introduced into the precooling facility 3.

【0019】予冷設備3で所要の温度に冷却された原料
空気は、精製設備4で含有する水分や二酸化炭素等の不
純物が吸着除去されて精製された後、経路24を通って
分岐経路25で経路26の第一原料空気と経路27の第
二原料空気とに分岐する。経路26に分岐した9980
0Nm/hの第一原料空気は、主熱交換器5に導入さ
れ、複式蒸留塔13から導出される低温流体と熱交換し
て略露点温度に冷却された後、高圧原料空気として高圧
原料空気導入経路28から高圧塔10の下部に導入され
る。
The raw material air cooled to a required temperature in the precooling facility 3 is purified by adsorbing and removing impurities such as water and carbon dioxide contained in the refining facility 4, and then passes through a path 24 to a branch path 25. It branches into a first raw material air in a path 26 and a second raw material air in a path 27. 9980 branched to route 26
The first raw material air of 0 Nm 3 / h is introduced into the main heat exchanger 5 and exchanges heat with a low-temperature fluid derived from the double distillation column 13 to be cooled to a substantially dew-point temperature. Air is introduced into the lower part of the high-pressure column 10 from the air introduction path 28.

【0020】一方、前記経路27に分岐した2800N
/hの第二原料空気は、空気予冷器8,経路29を
通って昇圧機6に導入され、該昇圧機6で19kgf/
cmabs.に昇圧された後、冷却器7,空気予冷器
8を通って17℃に冷却され、次いで経路30,前記主
熱交換器5を通り、さらに冷却されて経路31から前記
寒冷発生タービン9に導入される。該寒冷発生タービン
9に導入された第二原料空気は、3.8kgf/cm
abs.に断熱膨張して寒冷を発生し、低圧原料空気と
なり、低圧原料空気導入経路32を経て低圧塔12の中
部に導入される。
On the other hand, the 2800N branched to the path 27
m 3 / h of the second raw material air is introduced into the booster 6 through the air precooler 8 and the path 29, where the pressure of 19 kgf /
cm 2 abs. After cooling to 17 ° C. through the cooler 7 and the air precooler 8, it is further cooled through the path 30 and the main heat exchanger 5, and introduced into the cold-generation turbine 9 from the path 31. Is done. The second raw material air introduced into the cold generation turbine 9 is 3.8 kgf / cm 2
abs. The adiabatic expansion causes cold to occur, resulting in low-pressure raw air, which is introduced into the low-pressure tower 12 through the low-pressure raw air introduction path 32.

【0021】高圧塔10に導入された高圧原料空気は、
塔内を上昇し、塔内を流下する下降液と気液接触するこ
とにより、塔上部の窒素ガスと塔底部の酸素富化液化空
気とに分離される。塔底部の経路33から抜き出された
酸素富化液化空気は、過冷器14で低温窒素と熱交換し
て過冷状態に冷却され、経路34を通って減圧弁35で
3.8kgf/cmabs.に減圧された後、経路3
6から低圧塔12の中部に還流液として導入される。
The high-pressure feed air introduced into the high-pressure column 10 is
By ascending in the tower and coming into gas-liquid contact with the descending liquid flowing down in the tower, it is separated into nitrogen gas at the top of the tower and oxygen-enriched liquefied air at the bottom of the tower. The oxygen-enriched liquefied air extracted from the passage 33 at the bottom of the tower is cooled to a supercooled state by exchanging heat with low-temperature nitrogen in the subcooler 14, passes through the passage 34, and is reduced by the pressure reducing valve 35 to 3.8 kgf / cm. 2 abs. After the pressure is reduced to
From 6, it is introduced into the middle part of the low pressure column 12 as a reflux liquid.

【0022】一方、高圧塔10の上部に分離した窒素ガ
スは、経路37から前記主凝縮器11に導入され、低圧
塔12の塔底の液化酸素と熱交換し、該液化酸素を気化
して低圧塔12の上昇ガスを生成するとともに、自身は
液化して経路38に導出し、大部分は還流液として高圧
塔10の頂部に戻される。経路38から分岐して経路3
9に抜き出された残りの液化窒素42000Nm/h
は、前記過冷器15で低温窒素と熱交換して過冷状態に
冷却され、経路40を通って減圧弁41で3.7kgf
/cmabs.に減圧された後、経路42から低圧塔
12の上部に還流液として導入される。
On the other hand, the nitrogen gas separated at the top of the high-pressure column 10 is introduced into the main condenser 11 through a path 37, and exchanges heat with liquefied oxygen at the bottom of the low-pressure column 12 to vaporize the liquefied oxygen. As the rising gas in the low pressure column 12 is generated, it is liquefied and led to the passage 38, and is returned to the top of the high pressure column 10 as a reflux liquid. Route 3 branches from Route 38
9 liquefied nitrogen 42000Nm 3 / h
Is cooled to a supercooled state by exchanging heat with low-temperature nitrogen in the subcooler 15, passes through a path 40 and is reduced by a pressure reducing valve 41 to 3.7 kgf.
/ Cm 2 abs. After being reduced to a pressure, the liquid is introduced into the upper part of the low-pressure column 12 from the passage 42 as a reflux liquid.

【0023】低圧塔12では、前記経路36,42から
供給される還流液と、前記主凝縮器11で気化した酸素
ガス及び前記経路32から供給される低圧原料空気から
なる上昇ガスとが気液接触してさらに蒸留が行われ、塔
下部に酸素が、塔上部に窒素がそれぞれ分離する。
In the low-pressure column 12, the reflux liquid supplied from the paths 36 and 42 and the ascending gas composed of the oxygen gas vaporized in the main condenser 11 and the low-pressure raw material air supplied from the path 32 are vapor-liquid. Upon contact, further distillation is performed, and oxygen is separated at the bottom of the column and nitrogen is separated at the top of the column.

【0024】低圧塔12の下部に分離した酸素の内、2
2300Nm/hの酸素ガスは、製品酸素回収経路を
構成する経路43から抜き出され、主熱交換器5で原料
空気を冷却することにより昇温し、圧力3.7kgf/
cmabs.,温度13℃で経路44から純度95%
の製品酸素ガスGOとして導出される。
Of the oxygen separated at the lower part of the low pressure column 12,
The oxygen gas of 2300 Nm 3 / h is extracted from the path 43 constituting the product oxygen recovery path, and the temperature is increased by cooling the raw material air in the main heat exchanger 5 so that the pressure is 3.7 kgf / h.
cm 2 abs. 95% pure from path 44 at 13 ° C
Of the product oxygen gas GO.

【0025】また、低圧塔12の頂部に分離された窒素
ガス80300Nm/hは、製品窒素回収経路を構成
する経路45から抜き出され、過冷器15で前記高圧塔
10上部からの還流液化窒素を、さらに経路46を通っ
て過冷器14で高圧塔10底部からの酸素富化液化空気
を順次冷却することにより温度を高め、さらに経路47
を通り、主熱交換器5で前記原料空気を冷却することに
より昇温し、圧力3.6kgf/cmabs.,温度
13℃で経路48から製品窒素ガスGNとして導出され
る。
The nitrogen gas 80300 Nm 3 / h separated at the top of the low-pressure column 12 is extracted from a path 45 constituting a product nitrogen recovery path, and is refluxed and liquefied from the upper part of the high-pressure column 10 by a subcooler 15. The temperature of the nitrogen is further increased by successively cooling the nitrogen and the oxygen-enriched liquefied air from the bottom of the high-pressure column 10 in the subcooler 14 through a path 46, and further increased by a path 47.
And the temperature was increased by cooling the raw material air in the main heat exchanger 5 to a pressure of 3.6 kgf / cm 2 abs. , At a temperature of 13 ° C., from the path 48 as product nitrogen gas GN.

【0026】本形態例における酸素回収率(原料空気中
の酸素量に対する製品酸素中の純酸素換算量の比)は9
8.5%となり、空気圧縮機1で圧縮する原料空気(大
気A)を、大気圧から12.5kgf/cmabs.
まで圧縮するために必要な動力の約15%を、動力回収
タービン2で発生する膨張仕事で補うことができた。
In this embodiment, the oxygen recovery rate (the ratio of the amount of pure oxygen in product oxygen to the amount of oxygen in the raw air) is 9
The raw material air (atmosphere A) to be compressed by the air compressor 1 is 12.5 kgf / cm 2 abs.
Approximately 15% of the power required for compression to the maximum was compensated by the expansion work generated in the power recovery turbine 2.

【0027】本形態例に示すように、発電設備Gから受
給した原料空気の一部としての圧縮空気を、動力回収タ
ービン2で、複式蒸留塔13における酸素と窒素との分
離が効率的に行える圧力まで膨張させ、該膨張により発
生する膨張仕事を、残部の原料空気(大気A)の圧縮動
力として利用することにより、製品酸素の収率を低下さ
せることなく、圧縮動力を低減することができる。した
がって、動力原単位を改善することができる。
As shown in the present embodiment, the compressed air as a part of the raw material air received from the power generation equipment G can be efficiently separated into oxygen and nitrogen in the double distillation column 13 by the power recovery turbine 2. By expanding to a pressure and using the expansion work generated by the expansion as the compression power of the remaining raw material air (atmosphere A), the compression power can be reduced without lowering the yield of product oxygen. . Therefore, the power consumption can be improved.

【0028】また、本形態例では、発電設備Gから受給
した圧縮空気の膨張仕事を、残部の原料空気の圧縮動力
として利用した場合を示したが、この膨張仕事を、製品
酸素ガスを回収する経路44の製品酸素ガス及び製品窒
素ガスを回収する経路48の製品窒素ガスの一方あるい
は双方を圧縮するための動力として利用することもでき
る。
Further, in this embodiment, the case where the expansion work of the compressed air received from the power generation equipment G is used as the compression power of the remaining raw material air is shown, but this expansion work is used to recover the product oxygen gas. One or both of the product nitrogen gas in the route 48 for recovering the product oxygen gas and the product nitrogen gas in the route 44 can be used as power for compressing the product nitrogen gas.

【0029】さらに、高圧塔10及び低圧塔12のいず
れか一方又は双方の気液接触手段として、シーブトレイ
よりも圧力損失の小さい充填物を用いた充填式蒸留塔を
使用することにより、複式蒸留塔13に供給される原料
空気の圧力が同じ場合、シーブトレイを用いた場合より
もさらに高い圧力で製品を抜き出すことができ、製品ガ
スを圧縮するための動力を低減することができる。
Further, by using a packed distillation column using a packing having a smaller pressure loss than a sieve tray as a gas-liquid contacting means for one or both of the high pressure column 10 and the low pressure column 12, the double distillation column When the pressure of the raw material air supplied to 13 is the same, the product can be extracted at a higher pressure than when the sieve tray is used, and the power for compressing the product gas can be reduced.

【0030】図2は、本発明の第2形態例を示す系統図
である。なお、前記第1形態例の低純度酸素製造装置に
おける構成要素と同一の構成要素には、それぞれ同一符
号を付して詳細な説明は省略する。
FIG. 2 is a system diagram showing a second embodiment of the present invention. The same components as those in the low-purity oxygen production apparatus of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0031】この低純度酸素製造装置は、発電設備Gか
ら受給する圧縮空気と、空気圧縮機51で圧縮空気と同
じ圧力に圧縮した大気とからなる原料空気を、主熱交換
器5で中間温度まで冷却した後、その一部を低温仕様の
動力回収タービン52で低温状態で膨張させ、該膨張に
よる膨張仕事を、複式蒸留塔13の高圧塔10から経路
37に導出して経路53に分岐した高圧窒素ガスの一部
を昇圧する高圧循環窒素昇圧機54の動力に利用し、該
高圧循環窒素昇圧機54で昇圧された窒素ガスを、高圧
塔10の底部に設けたコンデンサ/リボイラ55で塔底
液と熱交換させることにより液化した後、減圧弁56を
介して高圧塔10の上部に還流液として導入するように
形成したものである。さらに、本形態例では、ガス製品
に加えて、液製品(液化酸素)も回収できるようにして
いる。
In this low-purity oxygen production apparatus, raw air consisting of compressed air received from the power generation equipment G and air compressed to the same pressure as the compressed air by the air compressor 51 is converted into an intermediate temperature by the main heat exchanger 5. After cooling to a low temperature, a part thereof is expanded in a low-temperature state by a low-temperature power recovery turbine 52, and the expansion work due to the expansion is led out from the high-pressure column 10 of the double distillation column 13 to the path 37 and branched to the path 53. The nitrogen gas pressurized by the high-pressure circulating nitrogen pressurizer 54 is used as the power of the high-pressure circulating nitrogen pressurizer 54 that pressurizes a part of the high-pressure nitrogen gas, and the nitrogen gas pressurized by the high-pressure circulating nitrogen pressurizer 54 is supplied to the tower It is formed such that it is liquefied by heat exchange with the bottom liquid and then introduced as a reflux liquid into the upper part of the high-pressure column 10 via the pressure reducing valve 56. Further, in the present embodiment, a liquid product (liquefied oxygen) can be recovered in addition to the gas product.

【0032】すなわち、動力回収タービン52は、主熱
交換器5の中部から分岐導出した低温の原料空気を、高
圧塔10の操作圧力まで膨張させるものであり、該膨張
による膨張仕事を、同軸上に連結して設けた高圧循環窒
素昇圧機54の圧縮動力に利用している。
That is, the power recovery turbine 52 expands the low-temperature raw material air branched out from the central part of the main heat exchanger 5 to the operating pressure of the high-pressure tower 10. And is used for the compression power of a high-pressure circulating nitrogen booster 54 connected to the compressor.

【0033】次に、このように構成された低純度酸素製
造設備Sに、空気圧縮機51と発電設備Gとから略等量
の原料空気を供給し、製品の低純度酸素を製造するプロ
セスに基づいて本発明方法を説明する。
Next, a substantially equal amount of raw material air is supplied from the air compressor 51 and the power generation equipment G to the low-purity oxygen production equipment S configured as described above, and a process for producing low-purity oxygen of the product is performed. The method of the present invention will be described based on this.

【0034】大気Aから取り入れられた51000Nm
/hの原料空気は、空気圧縮機51で、発電設備Gか
ら経路21を経て受給する圧縮空気と同じ圧力の30.
5kgf/cmabs.に圧縮されて経路20に導出
し、経路21からの51700Nm/h,30.5k
gf/cmabs.の圧縮空気と混合経路23で合流
し、102700Nm/hの原料空気となる。この高
圧の原料空気は、予冷設備3で冷却され、精製設備4で
精製された後、経路24を通って主熱交換器5に導かれ
る。
51,000 Nm taken from atmosphere A
3 / h of raw air is supplied to the air compressor 51 at a pressure of the same pressure as the compressed air received from the power generation equipment G via the path 21.
5 kgf / cm 2 abs. And is derived to the path 20, and 51700Nm 3 / h, 30.5k from the path 21
gf / cm 2 abs. With the compressed air in the mixing path 23 to obtain 102700 Nm 3 / h of raw material air. The high-pressure raw material air is cooled in the pre-cooling equipment 3, purified in the purification equipment 4, and then guided to the main heat exchanger 5 through the passage 24.

【0035】主熱交換器5に導入された原料空気は、そ
の冷却途中において、主熱交換器5の中間部に設けられ
た分岐経路57で、経路58の第一原料空気と経路59
の第二原料空気とに分岐し、一方の経路58に分岐した
66100Nm/hの第一原料空気は、動力回収ター
ビン52で15kgf/cmabs.に膨張した後、
第一原料空気導入経路60から高圧塔10に導入され
る。また、他方の経路59に分岐した残りの36600
Nm/hの第二原料空気は、主熱交換器5の原料空気
通路をそのまま通ってさらに冷却され、全量液化して第
二原料空気導入経路61に導出し、減圧弁62で15k
gf/cmabs.に減圧した後、経路63から高圧
塔10に導入される。
During the cooling of the raw air introduced into the main heat exchanger 5, the first raw air of the path 58 and the path 59 are branched by a branch path 57 provided at an intermediate portion of the main heat exchanger 5.
The first raw material air of 66100 Nm 3 / h branched to one path 58 and 15 kgf / cm 2 abs. After expanding to
It is introduced into the high-pressure column 10 from the first raw material air introduction path 60. The remaining 36600 branched to the other route 59
The Nm 3 / h second raw material air passes through the raw material air passage of the main heat exchanger 5 and is further cooled, liquefied in its entirety and led to the second raw material air introduction path 61.
gf / cm 2 abs. After the pressure is reduced, the pressure is introduced into the high-pressure column 10 through the path 63.

【0036】高圧塔10の塔底から経路33に導出され
た酸素富化液化空気は、前記同様に、過冷器14で過冷
却され、経路34,減圧弁35,経路36を経て低圧塔
12の中部に還流液として導入される。一方、高圧塔1
0の上部に分離した窒素ガスは、経路37に導出されて
経路37aと前記経路53とに分岐し、経路37aに分
岐した窒素ガスは、前記同様に、主凝縮器11で液化さ
れて経路38に導出し、その大部分は還流液として高圧
塔10の頂部に戻される。経路38から経路39に分岐
した残りの液化窒素50500Nm/hは、過冷器1
5で過冷却された後、低圧塔12に向かう経路40と、
液化窒素取出経路64とに分岐し、経路40に分岐した
49100Nm/hの液化窒素は、減圧弁41,経路
42を通り、還流液として低圧塔12の頂部に導入され
る。また、液化窒素取出経路64に分岐した1400N
/hの液化窒素LNは、低温蒸留設備Cの寒冷調節
のために系外に取り出される。
The oxygen-enriched liquefied air led from the bottom of the high-pressure tower 10 to the path 33 is subcooled by the subcooler 14 and passes through the path 34, the pressure reducing valve 35, and the path 36. Is introduced as a reflux liquid into the middle part. On the other hand, high pressure tower 1
The nitrogen gas separated at the upper part of the zero gas is led out to a path 37 and branches into a path 37a and the path 53, and the nitrogen gas branched into the path 37a is liquefied in the main condenser 11 and a path 38 Most of which is returned to the top of the high pressure column 10 as reflux. The remaining 50500 Nm 3 / h of liquefied nitrogen branched from the path 38 to the path 39 is supplied to the subcooler 1
After being supercooled in 5, a path 40 toward the low pressure column 12;
The liquefied nitrogen of 49100 Nm 3 / h branched to the liquefied nitrogen extraction path 64 and branched to the path 40 passes through the pressure reducing valve 41 and the path 42 and is introduced as a reflux liquid to the top of the low-pressure column 12. Also, the 1400N branched to the liquefied nitrogen extraction path 64
The liquefied nitrogen LN of m 3 / h is taken out of the system for controlling the temperature of the low-temperature distillation facility C.

【0037】一方、前記高圧塔10から経路37に抜き
出されて経路53に分岐した61600Nm/hの窒
素ガスは、前記高圧循環窒素昇圧機54に導かれ、高圧
塔10の塔底液との熱交換によって液化可能な圧力の2
3kgf/cmabs.に昇圧される。昇圧後の窒素
ガスは、経路65により主熱交換器5に導入されて冷却
され、経路66を経て高圧塔底部のコンデンサ/リボイ
ラ55に導かれる。このコンデンサ/リボイラ55で
は、昇圧した窒素ガスと高圧塔10の塔底の酸素富化液
化空気とが熱交換することにより、酸素富化液化空気が
気化するとともに窒素ガスが全量液化し、気化した酸素
富化空気は高圧塔10を上昇し、液化した窒素は、経路
67に導出されて前記減圧弁56で減圧された後、経路
68を通って高圧塔10の頂部に還流液として導入され
る。
On the other hand, the nitrogen gas of 61600 Nm 3 / h extracted from the high-pressure tower 10 to the path 37 and branched to the path 53 is guided to the high-pressure circulating nitrogen booster 54 to remove the bottom liquid of the high-pressure tower 10. Of the pressure that can be liquefied by heat exchange
3 kgf / cm 2 abs. Is boosted. The pressurized nitrogen gas is introduced into the main heat exchanger 5 through a path 65 and cooled, and is guided through a path 66 to a condenser / reboiler 55 at the bottom of the high-pressure column. In this condenser / reboiler 55, the heat exchange between the pressurized nitrogen gas and the oxygen-enriched liquefied air at the bottom of the high-pressure tower 10 causes the oxygen-enriched liquefied air to evaporate and the nitrogen gas to be entirely liquefied and vaporized. The oxygen-enriched air rises in the high-pressure column 10, and the liquefied nitrogen is led out to a path 67, depressurized by the pressure reducing valve 56, and then introduced as a reflux liquid to the top of the high-pressure column 10 through a path 68. .

【0038】低圧塔12の底部に分離した酸素の内、2
2300Nm/hの液化酸素は、製品酸素回収経路を
形成する経路69に抜き出され、液化酸素ポンプ70で
14kgf/cmabs.に圧縮された後、経路71
を通って主熱交換器5に導かれ、前記原料空気を冷却す
ることにより気化・昇温し、圧力14kgf/cm
bs.,温度13℃,純度95%の製品酸素ガスGOと
して経路72から導出される。
Of the oxygen separated at the bottom of the low pressure column 12, 2
The liquefied oxygen of 2300 Nm 3 / h is extracted to a passage 69 forming a product oxygen recovery passage, and is supplied to a liquefied oxygen pump 70 at 14 kgf / cm 2 abs. After being compressed to
The raw material air is led to the main heat exchanger 5 where it is vaporized and heated by cooling the raw material air, and has a pressure of 14 kgf / cm 2 a.
bs. , A temperature of 13 ° C. and a purity of 95% as product oxygen gas GO.

【0039】一方、低圧塔12の頂部に分離した790
00Nm/hの窒素ガスは、製品窒素回収経路を構成
する経路45に抜き出された後、前記同様に、過冷器1
5,経路46,過冷器14,経路47を通り、主熱交換
器5で昇温し、圧力4.7kgf/cmabs.,温
度13℃の製品窒素ガスGNとして経路48から導出さ
れる。
On the other hand, 790 separated at the top of the low pressure column 12
After the nitrogen gas of 00 Nm 3 / h is extracted to the path 45 constituting the product nitrogen recovery path, the supercooler 1
5, through the path 46, the subcooler 14, and the path 47, and the temperature is increased in the main heat exchanger 5, and the pressure is 4.7 kgf / cm 2 abs. , At a temperature of 13 ° C. as a product nitrogen gas GN.

【0040】本形態例では、低温蒸留に必要な原料空気
として、大気から導入して空気圧縮機51で圧縮した原
料空気と、発電設備Gから受給する圧縮空気を略等量で
混合した場合を示したが、空気圧縮機51を設けず、発
電設備Gから受給する圧縮空気を、低温蒸留設備Cに必
要な原料空気の全量とすることができる。
In the present embodiment, as the raw material air necessary for low-temperature distillation, a case where raw air introduced from the atmosphere and compressed by the air compressor 51 and compressed air received from the power generation equipment G are mixed in substantially equal amounts. Although shown, the compressed air received from the power generation equipment G without the air compressor 51 can be the total amount of the raw air required for the low-temperature distillation equipment C.

【0041】このように、本発明によれば、高圧の原料
空気が低温蒸留設備Cに直接供給されるため、供給され
る原料空気が低温蒸留設備Cに持ち込むエンタルピーよ
りも、蒸留によって得られる製品が低温蒸留設備Cから
持ち出すエンタルピーの方が大きくなる。このため、寒
冷発生タービンが不要となり、液製品を回収することが
できる。なお、本形態例では寒冷調節のために液化窒素
を製品として抜き出す場合を示したが、液化窒素に代え
て、又は液化窒素と同時に、製品液化酸素LOを、破線
で示す経路73から抜き出すこともできる。また、液製
品を抜き出さず、主熱交換器5の温端温度差を調節する
ことによって寒冷を調節することもできる。この場合に
は、主熱交換器5のサイズを小さくすることが可能とな
る。
As described above, according to the present invention, since the high-pressure raw material air is directly supplied to the low-temperature distillation facility C, the supplied raw-material air is obtained by distillation rather than the enthalpy brought into the low-temperature distillation facility C. However, the enthalpy brought out from the low-temperature distillation facility C is larger. Therefore, a cold generation turbine is not required, and the liquid product can be collected. In the present embodiment, the case where liquefied nitrogen is extracted as a product for cooling control has been described.However, instead of or simultaneously with liquefied nitrogen, the product liquefied oxygen LO may be extracted from the path 73 indicated by a broken line. it can. In addition, it is also possible to control the cooling by adjusting the hot end temperature difference of the main heat exchanger 5 without extracting the liquid product. In this case, the size of the main heat exchanger 5 can be reduced.

【0042】また、本形態例では、動力回収タービン5
2で発生した高圧の原料空気の膨張による膨張仕事を、
高圧循環窒素昇圧機54における窒素ガスの昇圧動力と
して利用しているため、この膨張仕事は、高圧循環窒素
昇圧機54での高圧循環窒素ガスの昇圧動力と、該昇圧
により発生する熱とに変換されている。このとき発生す
る昇圧熱は、系外に取り出されないため、動力回収ター
ビン52は、実質的に寒冷を発生せず、動力回収として
の機能を果たしている。
In this embodiment, the power recovery turbine 5
The expansion work due to the expansion of the high-pressure raw material air generated in Step 2
This expansion work is converted into the power for raising the pressure of the high-pressure circulating nitrogen gas in the high-pressure circulating nitrogen booster 54 and the heat generated by the pressurization because the pressure is used as the power for raising the pressure of the nitrogen gas in the high-pressure circulating nitrogen booster 54. Have been. Since the boosted heat generated at this time is not taken out of the system, the power recovery turbine 52 does not substantially generate cooling, and functions as power recovery.

【0043】さらに、上述のように、高圧塔10の頂部
に分離した高圧窒素ガスの一部を、主凝縮器11に導入
することなく分岐させて昇圧し、昇圧した窒素ガスをコ
ンデンサ/リボイラ55で液化した後、高圧塔10の頂
部に還流液として導入するようにしたから、高圧塔10
のL/V比が改善されるとともに、これにより主凝縮器
11で液化して経路39に分岐する低圧塔12への還流
液化窒素の量も増加することができるので、低圧塔12
の上部における下降液量を増大することができ、複式蒸
留塔13の操作圧力が高いにも拘わらず、製品酸素の回
収率を98.5%にすることができる。
Further, as described above, a part of the high-pressure nitrogen gas separated at the top of the high-pressure column 10 is branched without being introduced into the main condenser 11 and pressurized, and the pressurized nitrogen gas is supplied to the condenser / reboiler 55. After liquefaction, the liquid was introduced as a reflux liquid at the top of the high-pressure column 10.
Is improved, and the amount of reflux liquefied nitrogen liquefied in the main condenser 11 to the low-pressure column 12 branched to the path 39 can be increased.
Can be increased, and the product oxygen recovery rate can be 98.5% despite the high operating pressure of the double distillation column 13.

【0044】さらに、本形態例では、低圧塔12から液
化酸素を取り出す製品酸素回収経路に液化酸素ポンプ7
0を設けた場合を示したが、液化酸素ポンプ70を設け
ずに、低圧塔12から直接製品酸素ガスを抜き出すこと
もできる。また、高圧塔10から抜き出した窒素ガスの
一部を、破線で示す経路74に分岐して主熱交換器5で
昇温し、経路75から高圧製品窒素ガスMNとして採取
することができる。
Further, in the present embodiment, the liquefied oxygen pump 7 is provided in the product oxygen recovery path for extracting liquefied oxygen from the low-pressure column 12.
Although the case where 0 is provided is shown, the product oxygen gas can be directly extracted from the low pressure column 12 without providing the liquefied oxygen pump 70. In addition, a part of the nitrogen gas extracted from the high-pressure tower 10 is branched into a path 74 shown by a broken line, heated in the main heat exchanger 5, and can be collected as a high-pressure product nitrogen gas MN from a path 75.

【0045】また、動力回収タービン52は、主熱交換
器5で冷却途中の低温の第一原料空気を、高圧循環窒素
昇圧機54は、高圧塔10からの低温の窒素ガスをそれ
ぞれ導入し、低温状態で膨張又は圧縮する低温仕様の機
器であり、このように低温で膨張又は圧縮する場合は、
それを常温で行う場合に比較して機器を小型化すること
ができる。
The power recovery turbine 52 introduces low-temperature first raw material air which is being cooled in the main heat exchanger 5, and the high-pressure circulating nitrogen booster 54 introduces low-temperature nitrogen gas from the high-pressure tower 10. It is equipment of low temperature specification that expands or compresses at low temperature, and when expanding or compressing at such low temperature,
The device can be downsized as compared with the case where the process is performed at room temperature.

【0046】なお、動力回収タービン52に導入する第
一原料空気は、精製設備4を導出してから主熱交換器5
の冷端までの間の任意の位置で分岐導出することが可能
であり、例えば、精製設備4から主熱交換器5への間の
経路24に分岐経路を設け、常温付近の温度の第一原料
空気を動力回収タービン52に導入することができる。
また、動力回収タービン52で発生する膨張仕事も、低
温仕様の高圧循環窒素昇圧機54の圧縮動力に利用する
以外に、動力回収タービン52の仕様温度に合わせて、
常温付近で運転される高圧循環窒素昇圧機や、低温又は
常温の製品を圧縮する製品ガス圧縮機や、液製品を圧縮
する液化酸素ポンプ等の圧縮動力としても利用すること
ができる。
The first raw material air introduced into the power recovery turbine 52 is supplied to the main heat exchanger 5
It is possible to branch out at an arbitrary position up to the cold end of, for example, a branch path is provided in a path 24 from the refining facility 4 to the main heat exchanger 5, and a first branch of the temperature near normal temperature is provided. Feed air can be introduced into the power recovery turbine 52.
The expansion work generated in the power recovery turbine 52 is used not only for the compression power of the low-pressure high-pressure circulating nitrogen booster 54 but also in accordance with the specification temperature of the power recovery turbine 52.
It can also be used as a compression power for a high-pressure circulating nitrogen booster operated near normal temperature, a product gas compressor for compressing low-temperature or normal-temperature products, or a liquefied oxygen pump for compressing liquid products.

【0047】図3は、本発明の第3形態例を示す系統図
であり、前記第1,2形態例における構成要素と同一の
構成要素には同一符号を付している。本形態例は、前記
第2形態例に示す高圧窒素循環系統に代えて、低圧塔1
2から導出した低圧の窒素ガスの一部を昇圧・液化して
低圧塔12に循環させる低圧窒素循環系統を設けた例を
示している。
FIG. 3 is a system diagram showing a third embodiment of the present invention, wherein the same components as those in the first and second embodiments are denoted by the same reference numerals. This embodiment is different from the second embodiment in that the high-pressure nitrogen circulation system is replaced with a low-pressure tower 1.
2 shows an example in which a low-pressure nitrogen circulation system is provided in which a part of the low-pressure nitrogen gas derived from 2 is pressurized and liquefied and circulated to the low-pressure tower 12.

【0048】すなわち、低圧塔12の頂部から経路45
に抜き出され、過冷器15,経路46,過冷器14,経
路47を通って主熱交換器5に向かう低圧窒素ガスの一
部を経路80に分岐し、分岐した低圧窒素を、動力回収
タービン52での圧縮空気の膨張仕事を利用した低圧循
環窒素昇圧機81で昇圧し、昇圧した窒素ガスを、経路
82,主熱交換器5,経路83,過冷器14,経路8
4,過冷器15を通して順次冷却し、さらに窒素凝縮器
85で減圧弁35aを導出した高圧塔10の塔底液(酸
素富化液化空気)と熱交換させることにより液化した
後、減圧弁86で減圧して経路87,42を介して低圧
塔12に循環させる低圧窒素循環系統を設けたものであ
る。
That is, the path 45 from the top of the low pressure tower 12
And a part of the low-pressure nitrogen gas flowing to the main heat exchanger 5 through the subcooler 15, the path 46, the subcooler 14, and the path 47 is branched into a path 80, and the branched low-pressure nitrogen is used as power. The pressure of the pressurized nitrogen gas is increased by a low-pressure circulating nitrogen booster 81 utilizing the expansion work of the compressed air in the recovery turbine 52, and the increased nitrogen gas is supplied to a path 82, a main heat exchanger 5, a path 83, a subcooler 14, and a path 8
4. Cooling is sequentially performed through the subcooler 15, and further liquefied by heat exchange with the bottom liquid (oxygen-enriched liquefied air) of the high-pressure tower 10 from the pressure reducing valve 35a through the nitrogen condenser 85, and then the pressure reducing valve 86 And a low-pressure nitrogen circulation system for circulating the low-pressure nitrogen through the passages 87 and 42 to the low-pressure tower 12 is provided.

【0049】前記動力回収タービン52は、前記第2形
態例と同様に、主熱交換器5の中部で経路58に分岐し
た低温で高圧の第一原料空気を高圧塔10の操作圧力ま
で膨張させるものであり、該膨張による膨張仕事は、同
軸上に連結して設けられた低圧循環窒素昇圧機81の圧
縮動力に利用されている。また、低圧循環窒素昇圧機8
1は、低圧塔12から抜き出した低圧の窒素ガスを、窒
素凝縮器85において、高圧塔10の底部から抜き出さ
れて減圧した後の塔底液と熱交換することにより液化す
る圧力まで昇圧するもので、昇圧された窒素ガスは、窒
素凝縮器85で液化された後、低圧塔12の操作圧力ま
で減圧され、還流液として低圧塔12の上部に循環導入
される。
The power recovery turbine 52 expands the low-temperature and high-pressure first raw material air branched to the path 58 in the middle part of the main heat exchanger 5 to the operating pressure of the high-pressure tower 10 as in the second embodiment. The expansion work by the expansion is used for the compression power of a low-pressure circulating nitrogen booster 81 provided coaxially and connected. In addition, low pressure circulating nitrogen booster 8
1 is to raise the pressure of the low-pressure nitrogen gas extracted from the low-pressure column 12 to a pressure at which it is liquefied by heat exchange with the column bottom liquid extracted from the bottom of the high-pressure column 10 and reduced in the nitrogen condenser 85. The pressurized nitrogen gas is liquefied in a nitrogen condenser 85, then reduced in pressure to the operation pressure of the low-pressure column 12, and circulated as a reflux liquid into the upper part of the low-pressure column 12.

【0050】次に、このように構成された低純度酸素製
造設備Sに、前記空気圧縮機51と前記発電設備Gから
略等量の原料空気を供給し、製品の低純度酸素を製造す
るプロセスに基づいて本発明方法を説明する。
Next, a process for supplying substantially equal amounts of raw material air from the air compressor 51 and the power generation facility G to the low-purity oxygen production equipment S thus configured to produce low-purity oxygen of the product. The method of the present invention will be described based on FIG.

【0051】大気から取り入れられた51000Nm
/hの原料空気は、空気圧縮機51で、発電設備Gから
経路21を介して受給する圧縮空気と同じ圧力の30.
5kgf/cmabs.に圧縮されて経路20に導出
し、経路21から受給する発電設備Gからの51700
Nm/h,30.5kgf/cmabs.の圧縮空
気と混合経路23で合流することによって102700
Nm/hの原料空気となり、予冷設備3で冷却され、
次いで精製設備4で水分や二酸化炭素等が除去されて主
熱交換器5に導かれる。
51,000 Nm 3 taken from the atmosphere
/ H of the raw material air having the same pressure as the compressed air received from the power generation equipment G via the path 21 by the air compressor 51.
5 kgf / cm 2 abs. 51700 from the power generation facility G, which is compressed to
Nm 3 / h, 30.5 kgf / cm 2 abs. 102700 by mixing with the compressed air of
Nm 3 / h of raw material air, cooled by the pre-cooling equipment 3,
Next, water, carbon dioxide, and the like are removed in the refining facility 4 and guided to the main heat exchanger 5.

【0052】主熱交換器5に導入された原料空気は、そ
の冷却途中の分岐経路57で、経路58の第一原料空気
と、経路59の第二原料空気とに分岐する。経路58に
分岐した56500Nm/hの第一原料空気は、動力
回収タービン52で15kgf/cmabs.に膨張
した後、第一原料空気導入経路60から高圧塔10の下
部に導入される。また、経路59に分岐した46200
Nm/hの第二原料空気は、そのまま主熱交換器5で
冷却されて液化し、第二原料空気導入経路61に導出し
て減圧弁62で減圧された後、経路63から高圧塔10
の下部に導入される。
The raw air introduced into the main heat exchanger 5 is branched into a first raw air in a path 58 and a second raw air in a path 59 through a branch path 57 in the course of cooling. The 56500 Nm 3 / h first raw material air branched to the path 58 is supplied to the power recovery turbine 52 at 15 kgf / cm 2 abs. After that, it is introduced into the lower part of the high-pressure column 10 from the first raw material air introduction path 60. 46200 branched to the route 59
The second raw material air of Nm 3 / h is cooled and liquefied as it is in the main heat exchanger 5, is led out to the second raw material air introduction path 61, and is depressurized by the pressure reducing valve 62.
Introduced at the bottom.

【0053】高圧塔10の塔底から経路33に導出され
た酸素富化液化空気は、過冷器14で過冷却されて経路
34に導出され、減圧弁35aで減圧された後に、前記
窒素凝縮器85に導入される。この窒素凝縮器85で前
記低圧窒素循環系統を流れる昇圧窒素ガスと熱交換した
酸素富化液化空気は、経路36aを通って低圧塔12の
中部に還流液として導入される。
The oxygen-enriched liquefied air led from the bottom of the high-pressure column 10 to the path 33 is supercooled by the subcooler 14 and led to the path 34, and after being depressurized by the pressure reducing valve 35a, the nitrogen Is introduced into the vessel 85. The oxygen-enriched liquefied air that has exchanged heat with the pressurized nitrogen gas flowing through the low-pressure nitrogen circulation system in the nitrogen condenser 85 is introduced as a reflux liquid into the center of the low-pressure column 12 through the path 36a.

【0054】高圧塔10の上部から経路37に導出され
た窒素ガスは、主凝縮器11で液化されて経路38に導
出し、その大部分が還流液として高圧塔10の頂部に戻
される。一部の液化窒素32800Nm/hは、経路
39に分岐して過冷器15で過冷却された後、一部の液
化窒素(LN)1300Nm/hが経路64に分岐し
て寒冷調節のために系外に取り出され、経路40に分岐
した残りの31500Nm/hの液化窒素は、減圧弁
41で4.9kgf/cmabs.に減圧された後、
経路42を通り、還流液として低圧塔12の頂部に導入
される。
The nitrogen gas led from the upper part of the high-pressure column 10 to the path 37 is liquefied in the main condenser 11 and led to the path 38, and most of the nitrogen gas is returned to the top of the high-pressure tower 10 as a reflux liquid. A part of liquefied nitrogen 32,800 Nm 3 / h branches to the path 39 and is supercooled by the supercooler 15, and then a part of liquefied nitrogen (LN) 1300 Nm 3 / h branches to the path 64 to control the cooling. The remaining 31500 Nm 3 / h of liquefied nitrogen which was taken out of the system and branched to the path 40 was supplied to the pressure reducing valve 41 at 4.9 kgf / cm 2 abs. After being decompressed to
The solution is introduced into the top of the low-pressure column 12 as a reflux liquid through a path 42.

【0055】低圧塔12の底部から経路69に抜き出さ
れた22300Nm/hの液化酸素は、液化酸素ポン
プ70によって14kgf/cmabs.に圧縮さ
れ、経路71から主熱交換器5に導入されて気化・昇温
し、圧力14kgf/cmabs.,温度13℃,純
度95%の製品酸素ガスGOとして経路72から導出さ
れる。
The liquefied oxygen of 22300 Nm 3 / h extracted from the bottom of the low-pressure column 12 to the passage 69 was supplied to the liquefied oxygen pump 70 at 14 kgf / cm 2 abs. And introduced into the main heat exchanger 5 through the passage 71 to evaporate and raise the temperature, and the pressure is 14 kgf / cm 2 abs. , A temperature of 13 ° C. and a purity of 95% as product oxygen gas GO.

【0056】そして、低圧塔12の頂部に分離して経路
45に抜き出された120400Nm/hの窒素ガス
は、過冷器15,経路46,過冷器14を経て経路47
に至り、ここで、製品窒素ガスGNとして回収される経
路47aと、前記低圧窒素循環系統に向かう経路80と
に分岐する。経路47aに分岐した79100Nm
hの窒素ガスは、主熱交換器5で昇温し、圧力4.7k
gf/cmabs.,温度13℃の製品窒素ガスGN
として経路48から導出される。
The nitrogen gas of 120400 Nm 3 / h separated at the top of the low-pressure column 12 and extracted to the path 45 passes through the subcooler 15, the path 46, the subcooler 14, and the path 47.
Here, the flow branches into a path 47a that is recovered as product nitrogen gas GN and a path 80 that goes to the low-pressure nitrogen circulation system. 79100Nm 3 /
h nitrogen gas is heated in the main heat exchanger 5 and has a pressure of 4.7 k.
gf / cm 2 abs. , Product nitrogen gas GN at 13 ° C
From the path 48.

【0057】一方、経路80に分岐した41000Nm
/hの窒素ガスは、低圧循環窒素昇圧機81に導か
れ、窒素凝縮器85で液化可能な圧力である7.5kg
f/cmabs.に昇圧される。昇圧後の窒素ガス
は、経路82から主熱交換器5に導入されて冷却され、
続いて経路83,過冷器14,経路84,過冷器15を
通って更に冷却され、経路88から前記窒素凝縮器85
に導入される。この窒素凝縮器85に導入された昇圧窒
素ガスは、前記高圧塔10の塔底からの酸素富化液化空
気と熱交換することによって全量液化し、経路89に導
出して減圧弁86で減圧された後、経路87を通り、前
記高圧塔上部からの還流液化窒素が流れる経路42に合
流し、還流液として低圧塔12の頂部に導入される。
On the other hand, 41000 Nm branched to the path 80
The nitrogen gas of 3 / h is led to the low-pressure circulating nitrogen booster 81, and is a pressure that can be liquefied by the nitrogen condenser 85, that is, 7.5 kg.
f / cm 2 abs. Is boosted. The pressurized nitrogen gas is introduced into the main heat exchanger 5 from the path 82 and cooled,
Subsequently, it is further cooled through a path 83, a subcooler 14, a path 84, and a subcooler 15, and is further cooled through a path 88 to the nitrogen condenser 85.
Will be introduced. The pressurized nitrogen gas introduced into the nitrogen condenser 85 is entirely liquefied by heat exchange with oxygen-enriched liquefied air from the bottom of the high-pressure column 10, is led out to a path 89, and is depressurized by a pressure reducing valve 86. After passing through the passage 87, it joins the passage 42 through which the reflux liquefied nitrogen flows from the upper part of the high-pressure column, and is introduced as a reflux liquid at the top of the low-pressure column 12.

【0058】上述のように、低圧塔12から抜き出した
低圧窒素ガスを昇圧し、昇圧した窒素ガスを窒素凝縮器
85で液化した後、低圧塔12の頂部に還流液として導
入するようにしたから、低圧塔12の上部のL/V比が
改善され、複式蒸留塔13の操作圧力が高いにも拘わら
ず、製品酸素の回収率を98.5%に向上させることが
できる。
As described above, the low-pressure nitrogen gas extracted from the low-pressure column 12 is pressurized, the pressurized nitrogen gas is liquefied in the nitrogen condenser 85, and then introduced into the top of the low-pressure column 12 as a reflux liquid. The L / V ratio at the top of the low-pressure column 12 is improved, and the recovery rate of product oxygen can be increased to 98.5% despite the high operating pressure of the double distillation column 13.

【0059】本形態例においても、前記図2で示した第
2形態例と同様に、発電設備Gから受給する圧縮空気を
低温蒸留に必要な原料空気の全量とすることができる。
また、製品としては、高圧塔10から経路37に抜き出
した窒素ガスの一部を、経路90,主熱交換器5及び経
路91を介して高圧製品窒素ガスMNとして採取するこ
ともでき、寒冷発生タービンが不要で、液製品を回収で
きることから、低圧塔12の下部から経路69に抜き出
した液化酸素の一部を、経路73から製品液化酸素LO
として回収することもできる。逆に、このように液製品
を回収することに代えて、前述のように、主熱交換器5
の温端温度差を調節することにより寒冷を調節し、主熱
交換器5の小型化を図るようにしてもよい。さらに、製
品酸素ガスを回収するにあたっては、液化酸素ポンプ7
0を設けずに、低圧塔12から直接製品酸素ガスを抜き
出すようにしてもよい。
In this embodiment, similarly to the second embodiment shown in FIG. 2, the compressed air received from the power generation equipment G can be the entire amount of the raw air required for low-temperature distillation.
In addition, as a product, a part of the nitrogen gas extracted from the high-pressure tower 10 to the path 37 can be collected as a high-pressure product nitrogen gas MN via the path 90, the main heat exchanger 5, and the path 91, and the cold generation can occur. Since a liquid product can be recovered without a turbine, a part of the liquefied oxygen extracted from the lower part of the low-pressure column 12 to the path 69 is transferred from the path 73 to the product liquefied oxygen LO.
It can also be collected as. Conversely, instead of recovering the liquid product in this way, as described above, the main heat exchanger 5
By controlling the temperature difference between the hot end and the cold end, the main heat exchanger 5 may be downsized. Further, when recovering the product oxygen gas, the liquefied oxygen pump 7
Without providing 0, the product oxygen gas may be directly extracted from the low pressure column 12.

【0060】また、動力回収タービン52で発生する膨
張仕事は、種々の流体の圧縮動力として利用することが
でき、蒸留塔として充填式蒸留塔を使用することによ
り、製品の回収圧力を高められることなどは、前記各形
態例と同じであり、同様な作用効果が得られる。
The expansion work generated in the power recovery turbine 52 can be used as compression power for various fluids. By using a packed distillation column as the distillation column, the product recovery pressure can be increased. And the like are the same as those in the above embodiments, and the same operation and effect can be obtained.

【0061】なお、各形態例において、窒素ガスが不要
の場合は、製品として回収せずに大気に放出してもよ
く、他の用途、例えば予冷設備用の冷却源等として用い
てもよい。また、窒素ガスの一部は、精製設備の再生用
としても用いられる。さらに、第2,第3形態例におい
て、各循環系統から低圧塔又は高圧塔に還流液として循
環導入される液化窒素の一部を他の塔の還流液として用
いることも可能であり、一部を系外に抜き出すことも可
能である。また、両循環系統を併設することもできる。
In each embodiment, when nitrogen gas is unnecessary, it may be released to the atmosphere without being recovered as a product, and may be used for other purposes, for example, as a cooling source for precooling equipment. Part of the nitrogen gas is also used for regenerating purification equipment. Further, in the second and third embodiments, it is also possible to use a part of the liquefied nitrogen circulated as a reflux liquid from each circulation system to the low-pressure column or the high-pressure column as a reflux liquid for another column, Can be extracted out of the system. Further, both circulation systems can be provided in parallel.

【0062】[0062]

【発明の効果】以上説明したように、本発明によれば、
発電設備から受給する圧縮空気の圧力を有効に利用する
ことができ、製品低純度酸素ガスの回収率の向上や電力
原単位の低減を図ることができる。
As described above, according to the present invention,
The pressure of the compressed air received from the power generation equipment can be effectively used, and the recovery rate of the product low-purity oxygen gas can be improved and the power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の低純度酸素製造装置の第1形態例を
示す系統図である。
FIG. 1 is a system diagram showing a first embodiment of a low-purity oxygen production apparatus of the present invention.

【図2】 本発明の低純度酸素製造装置の第2形態例を
示す系統図である。
FIG. 2 is a system diagram showing a second embodiment of the low-purity oxygen production apparatus of the present invention.

【図3】 本発明の低純度酸素製造装置の第3形態例を
示す系統図である。
FIG. 3 is a system diagram showing a third embodiment of the low-purity oxygen production apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…空気圧縮機、2…動力回収タービン、3…予冷設
備、4…精製設備、5…主熱交換器、6…昇圧機、7…
冷却器、8…空気予冷器、9…寒冷発生タービン、10
…高圧塔、11…主凝縮器、12…低圧塔、13…複式
蒸留塔、14,15…過冷器、23…混合経路、25…
分岐経路、28…高圧原料空気導入経路、32…低圧原
料空気導入経路、35…減圧弁、41…減圧弁、51…
空気圧縮機、52…動力回収タービン、54…高圧循環
窒素昇圧機、55…コンデンサ/リボイラ、56…減圧
弁、57…分岐経路、60…第一原料空気導入経路、6
1…第二原料空気導入経路、62…減圧弁、64…液化
窒素取出経路、70…液化酸素ポンプ、81…低圧循環
窒素昇圧機、85…窒素凝縮器、86…減圧弁、A…大
気、C…低温蒸留設備、G…発電設備、S…低純度酸素
製造装置、GN…製品窒素ガス、GO…製品酸素ガス、
LN…液化窒素、LO…製品液化酸素、MN…高圧製品
窒素ガス
DESCRIPTION OF SYMBOLS 1 ... Air compressor, 2 ... Power recovery turbine, 3 ... Pre-cooling equipment, 4 ... Refining equipment, 5 ... Main heat exchanger, 6 ... Booster, 7 ...
Cooler, 8 ... Air pre-cooler, 9 ... Cold generation turbine, 10
... high-pressure column, 11 ... main condenser, 12 ... low-pressure column, 13 ... double distillation column, 14, 15 ... subcooler, 23 ... mixing path, 25 ...
Branch path, 28 high-pressure raw material air introduction path, 32 low-pressure raw material air introduction path, 35 pressure reducing valve, 41 pressure reducing valve, 51 ...
Air compressor, 52: power recovery turbine, 54: high pressure circulating nitrogen booster, 55: condenser / reboiler, 56: pressure reducing valve, 57: branch path, 60: first raw material air introduction path, 6
DESCRIPTION OF SYMBOLS 1 ... Second raw material air introduction path, 62 ... Pressure reducing valve, 64 ... Liquefied nitrogen extraction path, 70 ... Liquefied oxygen pump, 81 ... Low pressure circulating nitrogen booster, 85 ... Nitrogen condenser, 86 ... Pressure reducing valve, A ... Atmosphere, C: low-temperature distillation equipment, G: power generation equipment, S: low-purity oxygen production equipment, GN: product nitrogen gas, GO: product oxygen gas,
LN: liquefied nitrogen, LO: product liquefied oxygen, MN: high pressure product nitrogen gas

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 原料空気を高圧塔及び低圧塔を有する複
式蒸留設備で低温蒸留することにより、少なくとも低純
度酸素を製品として分離回収する低純度酸素の製造方法
において、大気を前記高圧塔の操作圧力に対応した圧力
に圧縮する空気圧縮工程と、前記高圧塔の操作圧力より
高い圧力の圧縮空気を発電設備から受給して前記高圧塔
の操作圧力に対応した圧力に膨張させる第一膨張工程
と、前記空気圧縮工程を経た大気と前記第一膨張工程を
経た圧縮空気とを混合して原料空気とする原料空気混合
工程と、前記原料空気混合工程を経た原料空気を予冷す
る工程と、予冷した原料空気から水分や二酸化炭素等の
不純物を除去して精製する工程と、精製した原料空気を
第一原料空気と第二原料空気とに分岐する工程と、分岐
した前記第一原料空気を低温蒸留で得られた流体との熱
交換により冷却した後、高圧原料空気として前記高圧塔
に導入する工程と、分岐した前記第二原料空気を昇圧
し、次いで低温蒸留で得られた流体との熱交換により冷
却した後、前記低圧塔の操作圧力まで膨張させる第二膨
張工程と、該第二膨張工程を経た第二原料空気を低圧原
料空気として前記低圧塔に導入する工程と、前記高圧原
料空気及び低圧原料空気を低温蒸留することにより酸素
と窒素とに分離する工程と、前記低圧塔で分離した酸素
及び窒素を低圧塔から抜き出して原料空気との熱交換に
より昇温した後、少なくとも前記酸素を製品酸素ガスと
して回収する製品回収工程とを含むとともに、前記第一
膨張工程で発生した膨張仕事を、前記発電設備から受給
する圧縮空気以外の流体を圧縮する動力の少なくとも一
部として利用することを特徴とする低純度酸素の製造方
法。
1. A low-purity oxygen production method for separating and recovering at least low-purity oxygen as a product by subjecting raw air to low-temperature distillation in a double distillation apparatus having a high-pressure tower and a low-pressure tower, wherein the air is treated by operating the high-pressure tower. An air compression step of compressing to a pressure corresponding to the pressure, and a first expansion step of receiving compressed air having a pressure higher than the operating pressure of the high-pressure tower from a power generation facility and expanding the compressed air to a pressure corresponding to the operating pressure of the high-pressure tower. A raw air mixing step of mixing the air that has passed through the air compression step and the compressed air that has passed through the first expansion step to obtain raw air, and a step of pre-cooling the raw air that has passed through the raw air mixing step, A step of purifying by removing impurities such as moisture and carbon dioxide from the raw material air; a step of branching the purified raw material air into a first raw material air and a second raw material air; After cooling by heat exchange with the fluid obtained by low-temperature distillation, a step of introducing the high-pressure raw material air into the high-pressure column, and pressurized the branched second raw material air, and then the fluid obtained by low-temperature distillation A second expansion step of expanding to an operating pressure of the low-pressure column after cooling by heat exchange of the low-pressure column, a step of introducing the second raw material air having passed through the second expansion step as the low-pressure raw material air into the low-pressure column, A step of separating the raw air and the low-pressure raw air into oxygen and nitrogen by low-temperature distillation, and extracting the oxygen and nitrogen separated in the low-pressure tower from the low-pressure tower and raising the temperature by heat exchange with the raw air, A product recovery step of recovering the oxygen as product oxygen gas, and the expansion work generated in the first expansion step, the power of compressing fluid other than compressed air received from the power generation equipment. Low purity oxygen production method characterized by utilizing as least part.
【請求項2】 前記第一膨張工程で発生した膨張仕事
を、前記空気圧縮工程の動力として利用することを特徴
とする請求項1記載の低純度酸素の製造方法。
2. The method for producing low-purity oxygen according to claim 1, wherein the expansion work generated in the first expansion step is used as power for the air compression step.
【請求項3】 前記第一膨張工程で発生した膨張仕事
を、前記製品回収工程の製品ガスを圧縮する動力として
利用することを特徴とする請求項1記載の低純度酸素の
製造方法。
3. The method for producing low-purity oxygen according to claim 1, wherein the expansion work generated in the first expansion step is used as power for compressing product gas in the product recovery step.
【請求項4】 原料空気を高圧塔及び低圧塔を有する複
式蒸留設備で低温蒸留することにより、少なくとも低純
度酸素を製品として分離回収する低純度酸素の製造方法
において、前記高圧塔の操作圧力より高い圧力の圧縮空
気を発電設備から受給して原料空気の少なくとも一部と
する工程と、原料空気を予冷する工程と、予冷した原料
空気から水分や二酸化炭素等の不純物を除去して精製す
る工程と、精製した原料空気を第一原料空気と第二原料
空気とに分岐する工程と、分岐した前記第一原料空気を
前記高圧塔の操作圧力まで膨張させて前記高圧塔に導入
する工程と、分岐した前記第二原料空気を低温蒸留で得
られた流体との熱交換により冷却した後、前記高圧塔の
操作圧力まで減圧して前記高圧塔に導入する工程と、導
入された原料空気を複式蒸留塔で低温蒸留することによ
り酸素と窒素とに分離する工程と、前記複式蒸留塔で分
離した酸素及び窒素を抜き出して原料空気との熱交換に
より昇温した後、少なくとも前記酸素を製品酸素ガスと
して回収する製品回収工程とを含むとともに、前記第一
原料空気の膨張工程で発生した膨張仕事を、前記発電設
備から受給する圧縮空気以外の流体を圧縮する動力の少
なくとも一部として利用することを特徴とする低純度酸
素の製造方法。
4. A method for producing low-purity oxygen by separating and recovering at least low-purity oxygen as a product by subjecting raw air to low-temperature distillation in a double distillation apparatus having a high-pressure column and a low-pressure column, wherein the operating pressure of the high-pressure column is reduced. A step of receiving high-pressure compressed air from a power generation facility to form at least a part of the raw air, a step of pre-cooling the raw air, and a step of purifying by removing impurities such as moisture and carbon dioxide from the pre-cooled raw air. And, a step of branching the purified raw material air into a first raw material air and a second raw material air, and a step of expanding the branched first raw material air to the operating pressure of the high pressure column and introducing it to the high pressure column, After cooling the branched second raw material air by heat exchange with a fluid obtained by low-temperature distillation, reducing the pressure to the operating pressure of the high-pressure column and introducing the raw material air into the high-pressure column, A step of separating into oxygen and nitrogen by low-temperature distillation in a double distillation column, and extracting the oxygen and nitrogen separated in the double distillation column and raising the temperature by heat exchange with the raw material air; Including a product recovery step of recovering as gas, and using expansion work generated in the expansion step of the first raw material air as at least a part of power for compressing a fluid other than compressed air received from the power generation facility. A method for producing low-purity oxygen, characterized in that:
【請求項5】 前記製品酸素ガスの回収工程は、前記低
圧塔底部の液化酸素を抜き出して圧縮した後、前記原料
空気との熱交換によって気化させることにより行うこと
を特徴とする請求項4記載の低純度酸素の製造方法。
5. The method according to claim 4, wherein the step of recovering the product oxygen gas is performed by extracting liquefied oxygen at the bottom of the low-pressure column, compressing the liquefied oxygen, and vaporizing the liquefied oxygen by heat exchange with the raw material air. Method for producing low-purity oxygen.
【請求項6】 前記原料空気を第一原料空気と第二原料
空気とに分岐する工程を、前記低温蒸留で得られた流体
との熱交換により冷却する工程の途中で行うことを特徴
とする請求項4記載の低純度酸素の製造方法。
6. The step of branching the source air into a first source air and a second source air is performed in the middle of a step of cooling by heat exchange with a fluid obtained by the low-temperature distillation. The method for producing low-purity oxygen according to claim 4.
【請求項7】 前記第一原料空気を膨張させる際に発生
する膨張仕事を、前記製品回収工程において低圧塔から
抜き出した製品ガスを圧縮する動力として利用すること
を特徴とする請求項4記載の低純度酸素の製造方法。
7. The method according to claim 4, wherein expansion work generated when expanding the first raw material air is used as power for compressing a product gas extracted from a low-pressure column in the product recovery step. A method for producing low-purity oxygen.
【請求項8】 前記高圧塔から抜き出した高圧窒素ガス
及び前記低圧塔から抜き出した低圧窒素ガスの少なくと
も一方の窒素ガスを昇圧した後、低温蒸留で得られた流
体との熱交換により冷却し、次いで前記高圧塔の塔底液
との熱交換により液化し、前記高圧塔及び前記低圧塔の
少なくともいずれか一方に導入することを特徴とする請
求項4記載の低純度酸素の製造方法。
8. After increasing the pressure of at least one of the high-pressure nitrogen gas extracted from the high-pressure column and the low-pressure nitrogen gas extracted from the low-pressure column, the mixture is cooled by heat exchange with a fluid obtained by low-temperature distillation, The method for producing low-purity oxygen according to claim 4, wherein the liquid is liquefied by heat exchange with the bottom liquid of the high-pressure column, and is introduced into at least one of the high-pressure column and the low-pressure column.
【請求項9】 前記第一原料空気を膨張させる際に発生
する膨張仕事を、前記窒素ガスを昇圧する動力として利
用することを特徴とする請求項8記載の低純度酸素の製
造方法。
9. The method for producing low-purity oxygen according to claim 8, wherein expansion work generated when expanding the first raw material air is used as power for increasing the pressure of the nitrogen gas.
【請求項10】 原料空気を高圧塔及び低圧塔を有する
複式蒸留設備で低温蒸留することにより、少なくとも低
純度酸素を製品として分離回収する低純度酸素の製造装
置において、大気を前記高圧塔の操作圧力に対応した圧
力に圧縮する空気圧縮機と、前記高圧塔の操作圧力より
高い圧力の圧縮空気を発電設備から受給して前記高圧塔
の操作圧力に対応した圧力に膨張させる動力回収タービ
ンと、前記空気圧縮機で圧縮した原料空気と前記動力回
収タービンで膨張させた圧縮空気とを混合して原料空気
とする混合経路と、前記混合経路を導出した原料空気を
予冷する予冷設備と、予冷した原料空気から水分や二酸
化炭素等の不純物を除去して精製する精製設備と、精製
した原料空気を第一原料空気と第二原料空気とに分岐す
る分岐経路と、分岐した第一原料空気を低温蒸留で得ら
れた流体と熱交換させる主熱交換器と、該主熱交換器を
導出した第一原料空気を前記高圧塔に導入する高圧原料
空気導入経路と、前記分岐経路で分岐した第二原料空気
を昇圧する昇圧機と、前記昇圧機を導出した前記第二原
料空気を前記主熱交換器で冷却した後に導入して膨張さ
せる寒冷発生タービンと、該寒冷発生タービンを導出し
た第二原料空気を前記低圧塔に導入する低圧原料空気導
入経路と、前記高圧原料空気導入経路及び前記低圧原料
空気導入経路から導入された原料空気を低温蒸留するこ
とにより酸素と窒素とに分離する高圧塔,主凝縮器及び
低圧塔からなる複式蒸留塔と、該複式蒸留塔の低圧塔で
分離した酸素及び窒素を抜き出して前記主熱交換器によ
り昇温した後、少なくとも前記酸素を製品酸素ガスとし
て回収する製品回収経路とを備えるとともに、前記動力
回収タービンが、前記発電設備から受給する圧縮空気以
外の流体を圧縮する圧縮機に同軸上に連結して設けられ
ていることを特徴とする低純度酸素の製造装置。
10. A low-purity oxygen producing apparatus for separating and recovering at least low-purity oxygen as a product by subjecting raw material air to low-temperature distillation in a double distillation apparatus having a high-pressure column and a low-pressure column, An air compressor that compresses to a pressure corresponding to the pressure, a power recovery turbine that receives compressed air having a pressure higher than the operating pressure of the high-pressure tower from a power generation facility and expands the compressed air to a pressure corresponding to the operating pressure of the high-pressure tower, A mixing path for mixing the raw air compressed by the air compressor and the compressed air expanded by the power recovery turbine to obtain raw air, a pre-cooling facility for pre-cooling the raw air derived from the mixing path, A purifying facility for purifying by removing impurities such as moisture and carbon dioxide from the raw air, a branch path for branching the purified raw air into a first raw air and a second raw air, and a branch. A main heat exchanger for exchanging the first raw material air with the fluid obtained by the low-temperature distillation, and a high-pressure raw air introduction path for introducing the first raw air derived from the main heat exchanger into the high-pressure column, A booster that boosts the second raw material air branched in the branch path; a cold generating turbine that cools the second raw material air derived from the booster in the main heat exchanger and then introduces and expands the cold; Oxygen and nitrogen by low-temperature distillation of the low-pressure raw air introduction path for introducing the second raw air derived from the turbine into the low-pressure tower, and low-temperature raw air introduced from the high-pressure raw air introduction path and the low-pressure raw air introduction path. A double distillation column comprising a high-pressure column, a main condenser and a low-pressure column, and oxygen and nitrogen separated in the low-pressure column of the double distillation column are extracted and heated by the main heat exchanger. To A product recovery path for recovering as product oxygen gas, and the power recovery turbine is provided coaxially connected to a compressor that compresses a fluid other than compressed air received from the power generation equipment. Low-purity oxygen production equipment.
【請求項11】 原料空気を高圧塔及び低圧塔を有する
複式蒸留設備で低温蒸留することにより、少なくとも低
純度酸素を製品として分離回収する低純度酸素の製造装
置において、発電設備から前記高圧塔の操作圧力より高
い圧力の圧縮空気を原料空気の少なくとも一部として受
給する圧縮空気需給経路と、原料空気を予冷する予冷設
備と、予冷設備を導出した原料空気から水分や二酸化炭
素等の不純物を除去して精製する精製設備と、精製設備
を導出した原料空気を第一原料空気と第二原料空気とに
分岐する分岐経路と、分岐した第一原料空気を前記高圧
塔の操作圧力まで膨張させる動力回収タービンと、該動
力回収タービンを導出した第一原料空気を前記高圧塔に
導入する第一原料空気導入経路と、前記分岐経路で分岐
した第二原料空気を低温蒸留で得られた流体との熱交換
により冷却する主熱交換器と、該主熱交換器を導出した
第二原料空気を減圧弁を介して減圧した後に前記高圧塔
に導入する第二原料空気導入経路と、前記第一原料空気
導入経路及び前記第二原料空気導入経路から導入された
原料空気を低温蒸留することにより酸素と窒素とに分離
する高圧塔,主凝縮器及び低圧塔からなる複式蒸留塔
と、該複式蒸留塔で分離した酸素及び窒素を抜き出して
前記主熱交換器により昇温した後、少なくとも前記酸素
を製品酸素ガスとして回収する製品回収経路とを備える
とともに、前記動力回収タービンが、前記圧縮空気需給
経路を介して受給する発電設備からの圧縮空気以外の流
体を圧縮する圧縮機と同軸上に連結して設けられている
ことを特徴とする低純度酸素の製造装置。
11. A low-purity oxygen producing apparatus for separating and recovering at least low-purity oxygen as a product by subjecting raw air to low-temperature distillation in a double distillation facility having a high-pressure tower and a low-pressure tower, A compressed air supply / reception path for receiving compressed air at a pressure higher than the operating pressure as at least a part of the raw air, a precooling facility for precooling the raw air, and removing impurities such as moisture and carbon dioxide from the raw air derived from the precooling equipment. Refining equipment for refining, and a branch path for branching the raw material air derived from the refining facility into a first raw air and a second raw air, and a power for expanding the branched first raw air to the operating pressure of the high-pressure column. A recovery turbine, a first raw material air introduction path for introducing the first raw material air derived from the power recovery turbine to the high-pressure tower, and a second raw material air branched on the branch path. A main heat exchanger that cools by heat exchange with a fluid obtained by low-temperature distillation, and a second raw material that is introduced into the high-pressure column after the second raw material air derived from the main heat exchanger is depressurized through a pressure reducing valve. An air introduction path, a high-pressure column, a main condenser, and a low-pressure column for separating the raw air introduced from the first raw air introduction path and the second raw air introduction path into oxygen and nitrogen by low-temperature distillation. A double distillation column, and a product recovery path for extracting oxygen and nitrogen separated in the double distillation column, heating the temperature by the main heat exchanger, and recovering at least the oxygen as product oxygen gas, and An apparatus for producing low-purity oxygen, wherein a turbine is provided coaxially with a compressor that compresses a fluid other than compressed air from a power generation facility that is received through the compressed air supply and demand path.
【請求項12】 前記第一原料空気と第二原料空気とに
分岐する分岐経路が前記主熱交換器内に設けられ、前記
動力回収タービンが低温の原料空気を導入する低温仕様
のタービンであることを特徴とする請求項11記載の低
純度酸素の製造装置。
12. A low-temperature specification turbine in which a branch path for branching into the first raw material air and the second raw material air is provided in the main heat exchanger, and the power recovery turbine introduces low-temperature raw material air. The low-purity oxygen producing apparatus according to claim 11, wherein:
【請求項13】 前記低温仕様の動力回収タービンと同
軸上に、低温流体を圧縮する低温仕様の圧縮機を連結し
たことを特徴とする請求項12記載の低純度酸素の製造
装置。
13. The apparatus for producing low-purity oxygen according to claim 12, wherein a low-temperature specification compressor for compressing a low-temperature fluid is connected coaxially with said low-temperature specification power recovery turbine.
【請求項14】 前記高圧塔の上部から高圧窒素ガスを
抜き出す経路と、該経路に抜き出した高圧窒素ガスを昇
圧する高圧循環昇圧機と、該高圧循環昇圧機で昇圧した
昇圧窒素ガスを前記高圧塔の塔底液と熱交換させて液化
するコンデンサ/リボイラと、該コンデンサ/リボイラ
で液化した液化窒素を前記高圧塔に導入する経路とから
なる高圧窒素循環系統を備えたことを特徴とする請求項
11記載の低純度酸素の製造装置。
14. A path for extracting high-pressure nitrogen gas from the upper part of the high-pressure column, a high-pressure circulating booster for increasing the pressure of the high-pressure nitrogen gas extracted to the path, and a high-pressure circulating pressure booster for increasing the pressure of the high-pressure nitrogen gas. A high-pressure nitrogen circulation system comprising a condenser / reboiler that liquefies by exchanging heat with the bottom liquid of the column and a path for introducing liquefied nitrogen liquefied by the condenser / reboiler into the high-pressure column. Item 12. An apparatus for producing low-purity oxygen according to Item 11.
【請求項15】 前記低圧塔の上部から低圧窒素ガスを
抜き出す経路と、該経路に抜き出した低圧窒素ガスを昇
圧する低圧循環昇圧機と、該低圧循環昇圧機で昇圧した
昇圧窒素ガスを前記高圧塔の塔底液と熱交換させて液化
する窒素凝縮器と、該窒素凝縮器で液化した液化窒素を
前記低圧塔に導入する経路とからなる低圧窒素循環系統
を備えたことを特徴とする請求項11記載の低純度酸素
の製造装置。
15. A path for extracting low-pressure nitrogen gas from the upper part of the low-pressure column, a low-pressure circulating booster for increasing the pressure of the low-pressure nitrogen gas extracted to the path, and a high-pressure nitrogen gas pressurized by the low-pressure circulating pressure booster. A low-pressure nitrogen circulation system comprising a nitrogen condenser that liquefies by exchanging heat with the bottom liquid of the column and a path for introducing liquefied nitrogen liquefied by the nitrogen condenser into the low-pressure column. Item 12. An apparatus for producing low-purity oxygen according to Item 11.
【請求項16】 前記低圧塔及び高圧塔の少なくともい
ずれか一方が、充填式蒸留塔であることを特徴とする請
求項10又は11記載の低純度酸素の製造装置。
16. The apparatus for producing low-purity oxygen according to claim 10, wherein at least one of the low-pressure column and the high-pressure column is a packed distillation column.
JP9280399A 1997-10-14 1997-10-14 Manufacture of low purity oxygen, and its device Pending JPH11118352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9280399A JPH11118352A (en) 1997-10-14 1997-10-14 Manufacture of low purity oxygen, and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9280399A JPH11118352A (en) 1997-10-14 1997-10-14 Manufacture of low purity oxygen, and its device

Publications (1)

Publication Number Publication Date
JPH11118352A true JPH11118352A (en) 1999-04-30

Family

ID=17624494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9280399A Pending JPH11118352A (en) 1997-10-14 1997-10-14 Manufacture of low purity oxygen, and its device

Country Status (1)

Country Link
JP (1) JPH11118352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010056560A1 (en) 2010-08-13 2012-02-16 Linde Aktiengesellschaft Method for recovering compressed oxygen and compressed nitrogen by low temperature degradation of air in e.g. classical lime dual column system, for nitrogen-oxygen separation, involves driving circuit compressor by external energy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010056560A1 (en) 2010-08-13 2012-02-16 Linde Aktiengesellschaft Method for recovering compressed oxygen and compressed nitrogen by low temperature degradation of air in e.g. classical lime dual column system, for nitrogen-oxygen separation, involves driving circuit compressor by external energy
WO2012019753A3 (en) * 2010-08-13 2013-01-24 Linde Aktiengesellschaft Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
CN103069238A (en) * 2010-08-13 2013-04-24 林德股份公司 Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air
US9733014B2 (en) 2010-08-13 2017-08-15 Linde Aktiengesellschaft Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air

Similar Documents

Publication Publication Date Title
JPS581350B2 (en) Gaseous oxygen production method and low temperature plant for implementing the production method
CN106595221B (en) Oxygen generation system and oxygen generation method
CN110307694B (en) Nitrogen production method and nitrogen production apparatus
JP2875206B2 (en) High purity nitrogen production apparatus and method
JPH11351738A (en) Method and system for producing high purity oxygen
US6178774B1 (en) Process and plant for the combined production of an ammonia synthesis mixture and carbon monoxide
US6173585B1 (en) Process for the production of carbon monoxide
JPH02230079A (en) Manufacture of oxygen by analysis of air
JPH08254389A (en) Separating method of gas mixture by low-temperature distribution
JP6092804B2 (en) Air liquefaction separation method and apparatus
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JPH0933166A (en) Method and apparatus for producing ultrahigh-purity nitrogen
JP2006329615A (en) Method and device for separating air by low temperature distillation
JP3748677B2 (en) Method and apparatus for producing low purity oxygen
JP4447501B2 (en) Air liquefaction separation method and apparatus
JPH11118352A (en) Manufacture of low purity oxygen, and its device
JPH11132652A (en) Method and device for manufacturing low-purity oxygen
JP3737612B2 (en) Method and apparatus for producing low purity oxygen
JP4447502B2 (en) Air liquefaction separation method and apparatus
JP4177507B2 (en) Method and apparatus for producing low purity oxygen
JPH05306885A (en) Pressure type air separating device
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JPH0413630B2 (en)
JP2007510879A (en) Method and apparatus for separating air by cryogenic distillation
JPH06194036A (en) Method and device for liquifying gas containing impurities of low boiling point

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 12

FPAY Renewal fee payment

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130616

FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 14