JP2002320989A - Biological water treatment equipment - Google Patents

Biological water treatment equipment

Info

Publication number
JP2002320989A
JP2002320989A JP2001127107A JP2001127107A JP2002320989A JP 2002320989 A JP2002320989 A JP 2002320989A JP 2001127107 A JP2001127107 A JP 2001127107A JP 2001127107 A JP2001127107 A JP 2001127107A JP 2002320989 A JP2002320989 A JP 2002320989A
Authority
JP
Japan
Prior art keywords
water
air supply
air
treatment
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127107A
Other languages
Japanese (ja)
Other versions
JP4489990B2 (en
Inventor
Seiji Furukawa
誠司 古川
Junji Hirotsuji
淳二 廣辻
Hisao Tanaka
久雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001127107A priority Critical patent/JP4489990B2/en
Publication of JP2002320989A publication Critical patent/JP2002320989A/en
Application granted granted Critical
Publication of JP4489990B2 publication Critical patent/JP4489990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological water treatment equipment capable of efficiently controlling contaminant concentration after discharging treatment as a target value by setting a proper amount of air supply to mix water to be treated with the air so as to be cleaned even when a quantity of contaminant fluctuates in the water to be treated. SOLUTION: Air diffusers 41-44 are provided in the direction of flowing down the water to be treated in a biological reaction layer 1, and air supply devices 51-54 for supplying air are connected to each air diffuser 41-44, respectively. Furthermore, controllers 91-94 are connected to air supply device 51-54, respectively, and respective air supply amounts supplied from the air diffusers 41-44 connected to the controllers, respectively, are calculated by using an operation expression on the basis of values measured with a BOD concentration meter 2, a flowmeter 2 and a BOD concentration meter 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、都市下水や有機
性廃水を生物反応によって浄化処理する生物学的水処理
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological water treatment apparatus for purifying municipal sewage and organic wastewater by a biological reaction.

【0002】[0002]

【従来の技術】「水処理工学(井出哲夫編著、技法
堂)」にも記載されているように、都市下水や有機性排
水を処理する一般的な方法として、活性汚泥法がある。
活性汚泥法とは、浄化機能をもつ微生物群(活性汚泥)
を生物反応槽にたくわえ、これと下水とを混合・接触さ
せつつ曝気することにより、下水中の汚濁物を酸化・分
解する方法である。この汚濁物を十分に浄化するために
は、適切な量の空気を生物反応槽に供給する必要があ
る。図4は、例えば特開平11−141566号公報に
示された従来の生物学的水処理装置の断面図である。図
において、1は活性汚泥を蓄えた生物反応槽で、配管a
を介して流入する被処理水(処理前水)としての下水を
生物反応によって浄化処理し、浄化処理後の被処理水
(処理後水)を配管bに排出する。2は配管aに取り付
けられた流量計で下水の流量を計測する。3は配管bを
介して生物反応槽1から排出された活性汚泥と被処理水
との混合液を沈殿処理するための沈殿槽であり、沈殿処
理したあとの上澄水は配管cを介して放流される。ま
た、沈殿処理によって分離した活性汚泥は、配管dを介
して生物反応槽1へ返送されるが、余剰分は配管eを介
して外部に排出される。4は生物反応槽1内に設けられ
た散気装置で、空気供給装置5から配管5aを介して送
られた空気を生物反応槽1内に供給する。6は空気供給
量を計測するための流量計である。7は下水のBOD濃
度(生物学的酸素要求量、有機性汚濁物質量の指標)を
計測するためのBOD濃度計であり、配管aにとりつけ
られている。8はBOD濃度計7で計測されたBOD濃
度と流量計2で計測された流量とをもとに生物反応槽1
への空気供給量を演算するための演算装置であり、該B
OD濃度は信号線7aを介して、また該流量は信号線2
aを介して入力する。9は演算装置8で算出された空気
供給量の設定値を信号線8aを介して入力し、空気供給
装置5に対して、その空気供給量を制御するためのコン
トローラである。コントローラ9は信号線9aを介して
空気供給装置5と、また信号線9bを介して流量計6と
接続されている。
2. Description of the Related Art As described in "Water treatment engineering (edited by Tetsuo Ide, Technical Hall)", there is an activated sludge method as a general method for treating municipal sewage and organic wastewater.
The activated sludge method is a group of microorganisms that have a purification function (activated sludge).
Is stored in a biological reactor, and aerated while mixing and contacting the wastewater with the sewage to oxidize and decompose pollutants in the sewage. In order to sufficiently purify the contaminants, it is necessary to supply an appropriate amount of air to the biological reaction tank. FIG. 4 is a cross-sectional view of a conventional biological water treatment apparatus disclosed in, for example, Japanese Patent Application Laid-Open No. 11-141566. In the figure, 1 is a biological reaction tank storing activated sludge, and a pipe a
The sewage as treated water (pre-treatment water) flowing through is purified by a biological reaction, and the treated water (treated water) after the purification treatment is discharged to a pipe b. 2 measures the flow rate of sewage by a flow meter attached to the pipe a. Reference numeral 3 denotes a sedimentation tank for sedimenting a mixed liquid of the activated sludge and the water to be treated discharged from the biological reaction tank 1 via the pipe b, and the supernatant water after the sedimentation treatment is discharged via the pipe c. Is done. The activated sludge separated by the sedimentation treatment is returned to the biological reaction tank 1 via the pipe d, but the surplus is discharged to the outside via the pipe e. Reference numeral 4 denotes an air diffuser provided in the biological reaction tank 1 for supplying air sent from the air supply device 5 through the pipe 5a into the biological reaction tank 1. Reference numeral 6 denotes a flow meter for measuring an air supply amount. Reference numeral 7 denotes a BOD concentration meter for measuring the BOD concentration of sewage (index of biological oxygen demand, amount of organic pollutants), which is attached to the pipe a. Reference numeral 8 denotes a biological reaction tank 1 based on the BOD concentration measured by the BOD concentration meter 7 and the flow rate measured by the flow meter 2.
Calculation device for calculating the amount of air supply to the
The OD concentration is via signal line 7a and the flow rate is via signal line 2a.
Input via a. Reference numeral 9 denotes a controller for inputting the set value of the air supply amount calculated by the arithmetic unit 8 via the signal line 8a and controlling the air supply amount to the air supply unit 5. The controller 9 is connected to the air supply device 5 via a signal line 9a, and to the flow meter 6 via a signal line 9b.

【0003】このような従来の生物学的水処理装置にお
ける動作について説明する。下水は配管aを介して生物
反応槽1に導入される。生物反応槽1には、空気供給装
置5から配管5a、散気装置4を介して空気が供給され
る。この空気と下水、活性汚泥とを混合・撹拌すること
により、下水中の汚濁物質が生物学的に酸化分解され
る。流入する下水の量が多い場合は生物学的酸化分解の
ための空気供給量を増やす必要がある。逆に流入する下
水の量が少ない場合は、空気供給量は少なくてよい。な
お、沈殿槽3では、混合液から活性汚泥を沈殿分離した
あと、配管cを介して上澄水を排出する。分離された活
性汚泥の一部は配管dを介して生物反応槽1へ返送され
る。その他の余剰な汚泥は配管eを介して系外へ排出さ
れる。演算装置8は、下水の流量を信号線2aを介して
入力し、また下水のBOD濃度を信号線7aを介して入
力する。さらに、予め設定された処理後水におけるBO
D濃度目標値を保持している。そして、空気供給量の設
定値G[Nm/h]を次式に従って算出する。 G=a(S−S)Q+bQ+c S ;下水中のBOD濃度[mg/l] S ;BOD濃度目標値[mg/l] Q ;下水の流量[m/h] a,b,c;係数 コントローラ9は、算出された設定値Gを信号線8aを
介して入力し、その値に従って空気供給装置5からの空
気供給量を制御する。そして、その供給量が制御された
該空気が散気装置4から生物反応槽1内に供給される。
以上のように、下水の流量とBOD濃度との積で得られ
る浄化処理前の下水の汚濁物量に応じて空気供給量が設
定され、所定量の空気が生物反応槽1内に供給される。
The operation of such a conventional biological water treatment apparatus will be described. The sewage is introduced into the biological reaction tank 1 via the pipe a. The biological reaction tank 1 is supplied with air from an air supply device 5 via a pipe 5 a and a diffuser 4. By mixing and stirring this air, sewage and activated sludge, pollutants in the sewage are biologically oxidatively decomposed. If the amount of incoming sewage is large, it is necessary to increase the air supply for biological oxidative degradation. Conversely, when the amount of sewage flowing in is small, the air supply amount may be small. In the sedimentation tank 3, after the activated sludge is separated from the mixed solution, the supernatant water is discharged via the pipe c. Part of the separated activated sludge is returned to the biological reaction tank 1 via the pipe d. Other surplus sludge is discharged out of the system via the pipe e. The arithmetic unit 8 inputs the flow rate of the sewage through the signal line 2a, and inputs the BOD concentration of the sewage through the signal line 7a. Further, the BO in the preset treated water is
The D density target value is held. Then, the set value G [Nm 3 / h] of the air supply amount is calculated according to the following equation. G = a (S−S 0 ) Q + bQ + c S; BOD concentration in sewage [mg / l] S 0 ; BOD concentration target value [mg / l] Q; sewage flow rate [m 3 / h] a, b, c The coefficient controller 9 inputs the calculated set value G via the signal line 8a, and controls the amount of air supplied from the air supply device 5 according to the value. Then, the air whose supply amount is controlled is supplied from the air diffuser 4 into the biological reaction tank 1.
As described above, the air supply amount is set according to the amount of sewage contaminants before purification obtained by the product of the sewage flow rate and the BOD concentration, and a predetermined amount of air is supplied into the biological reaction tank 1.

【0004】[0004]

【発明が解決しようとする課題】このような従来の生物
学的水処理装置においては、下水中の汚濁物量(BOD
濃度と流量との積)に応じて生物反応槽への空気供給量
を制御していた。しかし、一般家庭を主たる排出源とす
る都市下水は、生活時間帯に応じて流量ならびに性状が
著しく変動するのに対して、生物反応槽の滞留時間は、
活性汚泥微生物群が汚濁物を分解するのに必要な時間を
考慮して、6〜8時間となるように設計されている場合
が多い(下水道施設計画・設計指針)。したがって、生
物反応槽における滞留中にも、流入する下水の流量およ
びBOD濃度が大きく変動する。しかしながら、従来の
生物学的水処理装置では、生物反応槽入口での汚濁物量
によってのみ生物反応槽全体への空気供給量が制御さ
れ、生物反応槽出口での汚濁物については全く考慮され
なかったので、生物反応槽内に供給される空気量が不適
切となる場合があった。すなわち、反応槽出口でのBO
D濃度が高くても、反応槽入口の汚濁物量が少なければ
空気供給量が下がり、逆に反応槽出口でのBOD濃度が
低くても、反応槽入口の汚濁物量が多ければ空気供給量
が上がるといった不都合が生じ、その結果、処理後のB
OD濃度ないしは汚濁物量を目標値通りに制御できない
という問題点があった。
In such a conventional biological water treatment apparatus, the amount of pollutants (BOD) in the sewage is reduced.
The air supply to the biological reaction tank was controlled according to the product of the concentration and the flow rate. However, while urban sewage, whose main source is ordinary households, varies significantly in flow rate and properties depending on the time of day, the residence time in biological reactors is
It is often designed to be 6 to 8 hours in consideration of the time required for activated sludge microorganisms to decompose pollutants (sewerage facility planning and design guidelines). Therefore, even during the residence in the biological reaction tank, the flow rate of the flowing sewage and the BOD concentration vary greatly. However, in the conventional biological water treatment apparatus, the amount of air supplied to the entire biological reaction tank is controlled only by the amount of contaminants at the entrance of the biological reaction tank, and no consideration is given to the contaminants at the exit of the biological reaction tank. Therefore, the amount of air supplied into the biological reaction tank may be inappropriate. That is, BO at the outlet of the reaction tank
Even if the D concentration is high, if the amount of contaminants at the inlet of the reaction tank is small, the amount of air supply will decrease. As a result, as a result, B
There was a problem that the OD concentration or the amount of pollutants could not be controlled to the target value.

【0005】この発明は、上述のような問題点を解決す
るためになされたものであり、その目的は、被処理水に
対して適切な空気供給量を設定して生物反応処理を行
い、処理後水の汚濁物濃度を目標値通りに制御できる生
物学的水処理装置を得ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to set an appropriate air supply amount to the water to be treated, carry out a biological reaction treatment, and carry out the treatment. It is an object of the present invention to obtain a biological water treatment apparatus capable of controlling the concentration of pollutants in sewage water to a target value.

【0006】[0006]

【課題を解決するための手段】この発明に係る生物学的
水処理装置においては、浄化処理する前の処理前水の汚
濁物濃度SINを計測する手段、該処理前水の流量Q
INを計測する手段、処理後水の汚濁物濃度SOUT
計測する手段、反応槽内で被処理水に空気を散気するた
めの空気供給手段、および上記計測された処理前水の汚
濁物濃度SINと該処理前水の流量QINとの積で得ら
れる該処理前水の汚濁物量と上記計測された処理後水の
汚濁物濃度SOUTとに応じて、上記空気供給手段から
散気する空気供給量を調節する手段を備えるものであ
る。
In the biological water treatment apparatus according to the present invention, means for measuring the concentration of contaminants S IN of the pre-treatment water before the purification treatment, and the flow rate Q of the pre-treatment water
Means for measuring IN , means for measuring the concentration of contaminants S OUT of the treated water, air supply means for diffusing air into the water to be treated in the reaction tank, and contaminants for the treated water before treatment Dispersion from the air supply means according to the amount of contaminants of the pre-treatment water obtained by the product of the concentration S IN and the flow rate Q IN of the pre-treatment water, and the measured contaminant concentration S OUT of the post-treatment water. It is provided with a means for adjusting the air supply amount to be considered.

【0007】また、空気供給手段を被処理水が流下する
方向に沿って複数個(n個)設け、空気供給量を調節す
る手段は、処理後水の汚濁物濃度の目標値Sと各空気
供給手段ごとに予め定められた第1の係数ki1,第2
の係数ki2および定数kとを保持し、各空気供給手
段から散気する空気供給量Gを次式 G=ki1・SIN・QIN+ki2・(SOUT
)+k (i=1,・・,n) によって算出するものである。
A plurality of (n) air supply means are provided along the direction in which the water to be treated flows down, and the means for adjusting the air supply amount includes a target value S 0 of the concentration of contaminants in the treated water and each of the air supply means. A first coefficient k i1 , a second coefficient
Coefficient k i2 and constants k and i holds, the following equation air supply amount G i to air diffusion from the air supply means G i = k i1 · S IN · Q IN + k i2 · (S OUT of the -
S 0 ) + k i (i = 1,..., N).

【0008】また、各空気供給手段ごとに定められた第
1の係数ki1は、反応槽の流入部に近い空気供給手段
ほど大きく、排出部に近い空気供給手段ほど小さい値で
あり(k11>k21>・・・>kn1)、第2の係数k
i2は、上記反応槽の流入部に近い空気供給手段ほど小
さく、排出部に近い空気供給手段ほど大きい値とする
(k12<k22<・・・<kn2)ものである。
Further, the first coefficient k i1 defined for each air supply means is larger as the air supply means close to the inlet portion of the reaction vessel, a smaller value as the air supply means close to the discharge unit (k 11 > K 21 >...> k n1 ), the second coefficient k
i2, the more air supply means close to the inlet of the reactor reduced, and larger value air supply means close to the discharge unit (k 12 <k 22 <··· <k n2) is intended.

【0009】また、浄化処理する前の処理前水の汚濁物
濃度SINを計測する手段、該処理前水の流量QIN
計測する手段、処理後水の汚濁物濃度SOUTを計測す
る手段、被処理水が流下する方向に沿って設けられ、被
処理水に空気を散気するための複数個(n個)の空気供
給手段、および上記計測された処理後水の汚濁物濃度S
OUTと、上記計測された処理前水の汚濁物濃度SIN
と該処理前水の流量Q INとの積で得られる該処理前水
の汚濁物量と、一つ上流側の空気供給手段から散気され
る空気供給量とに応じて、上記各空気供給手段から散気
する空気供給量を調節する手段を備えるものである。
[0009] Contamination of the pre-treatment water before the purification treatment
Concentration SINFor measuring the flow rate of the pre-treatment waterINTo
Means of measurement, pollutant concentration S of treated waterOUTMeasure
Means are provided along the direction in which the water to be treated flows down.
Multiple (n) air supplies for diffusing air into the treated water
Supply means and the measured contaminant concentration S of the treated water
OUTAnd the measured contaminant concentration S of the pre-treatment water.IN
And the flow rate Q of the pre-treatment water INAnd the pre-treatment water obtained by multiplying
And the amount of pollutants from the air supply means on the upstream side
Air from each of the above air supply means according to the air supply amount
Means for adjusting the amount of supplied air.

【0010】また、空気供給量を調節する手段は、処理
後水の汚濁物濃度の目標値Sと各空気供給手段ごとに
予め定められた第1の係数ki1,第2の係数ki2,お
よび定数kとを保持し、各空気供給手段から散気する
空気供給量Gを次式 G=Gi1+Gi2+k 但し i=1のとき G11=k11・SIN12=k12・(SOUT−S) i=2,・・・,nのとき Gi1=ki1・G(i−1)1i2=ki2・G(i−1)2 によって算出するものである。
The means for adjusting the amount of air supply comprises a target value S 0 of the concentration of contaminants in the treated water and a first coefficient k i1 and a second coefficient k i2 which are predetermined for each air supply means. , And a constant k i , and the air supply amount G i diffused from each air supply means is expressed by the following equation: G i = G i1 + G i2 + k i where i = 1 G 11 = k 11 · S IN G 12 = k 12 · (S OUT -S 0) i = 2, ···, by G i1 = k i1 · G ( i1) 1 G i2 = k i2 · G (i1) 2 when n It is to be calculated.

【0011】また、i=2,・・・,nのとき、各空気供給手
段に定められた第1の係数ki1は1よりも小さい値と
し、第2の係数ki2は1よりも大きい値とするもので
ある。
When i = 2,..., N, the first coefficient k i1 defined for each air supply means is set to a value smaller than 1, and the second coefficient k i2 is larger than 1. Value.

【0012】[0012]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の一形態例による生物学的水処理装置を示す構成
図である。図において、その他の図と同一符号は、同一
または相当部分を示している。図1において、1は活性
汚泥を蓄えた生物反応槽で、配管aを介して流入する被
処理水としての処理前水を生物反応によって浄化処理
し、浄化処理後の処理後水を配管bに排出する。2は配
管aに取り付けられた流量計で、生物反応槽1に流入す
る処理前水の流量を計測する。3は配管bを介して生物
反応槽1から排出された処理後水に含まれる活性汚泥を
沈殿させるための沈殿槽であり、沈殿処理したあとの上
澄水は配管cを介して排出される。また、沈殿処理によ
って分離した活性汚泥は、配管dを介して生物反応槽1
へ返送されるが、余剰分は配管eを介して外部に排出さ
れる。41〜44は生物反応槽1内で被処理水が流下す
る方向に並んで設けられた散気装置で、空気供給装置5
1〜54から配管51a〜54aを介して送られた空気
を生物反応槽1内に供給する。7は処理前水のBOD濃
度(生物学的酸素要求量、有機性汚濁物質量の指標)を
計測するためのBOD濃度計であり、配管aに取り付け
られている。また、10は生物反応槽1から排出される
処理後水のBOD濃度を計測するためのBOD濃度計で
あり、配管bに取り付けられている。91〜94はそれ
ぞれ空気供給装置51〜54に対して空気供給量を信号
線91a〜94aを介して制御するためのコントローラ
であり、信号線7aを介して入力する処理前水のBOD
濃度および信号線10aを介して入力する処理後水のB
OD濃度と信号線2aを介して入力する流量とをもと
に、空気供給量の設定値を算出する。なお、流量計2と
BOD濃度計7との位置関係はこの図に限定されるもの
ではなく、どちらが上流にあってもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram showing a biological water treatment apparatus according to an embodiment of the present invention. In the drawings, the same reference numerals as those in other drawings indicate the same or corresponding parts. In FIG. 1, reference numeral 1 denotes a biological reaction tank storing activated sludge, which purifies water before treatment as water to be treated flowing through a pipe a by a biological reaction, and supplies treated water after the purification treatment to a pipe b. Discharge. Reference numeral 2 denotes a flow meter attached to the pipe a for measuring the flow rate of the pre-treatment water flowing into the biological reaction tank 1. Reference numeral 3 denotes a sedimentation tank for sedimenting activated sludge contained in the post-treatment water discharged from the biological reaction tank 1 via the pipe b, and the supernatant water after the sedimentation treatment is discharged via the pipe c. The activated sludge separated by the sedimentation treatment is supplied to the biological reaction tank 1 via a pipe d.
The excess is discharged to the outside through the pipe e. Reference numerals 41 to 44 denote diffusers provided in the biological reaction tank 1 in the direction in which the water to be treated flows down.
The air sent from 1 to 54 via the pipes 51 a to 54 a is supplied into the biological reaction tank 1. Reference numeral 7 denotes a BOD concentration meter for measuring the BOD concentration (indicator of the amount of biological oxygen required and the amount of organic pollutants) of the pre-treatment water, and is attached to the pipe a. Reference numeral 10 denotes a BOD concentration meter for measuring the BOD concentration of the treated water discharged from the biological reaction tank 1, and is attached to the pipe b. Reference numerals 91 to 94 denote controllers for controlling the amount of air supplied to the air supply devices 51 to 54 via signal lines 91a to 94a, respectively.
B of the treated water input via the concentration and signal line 10a
A set value of the air supply amount is calculated based on the OD concentration and the flow rate input via the signal line 2a. Note that the positional relationship between the flow meter 2 and the BOD concentration meter 7 is not limited to this figure, and either one may be upstream.

【0013】このように構成された生物学的水処理装置
においても、従来と同様、生物反応槽1において、配管
aを介して流入する処理前水を活性汚泥および空気と混
合・撹拌し、水中の汚濁物質を生物学的に酸化分解する
ことで浄化処理する。生物反応槽1に流入する処理前水
の流量は流量計2で計測され、信号線2aを介してコン
トローラ91〜94に伝えられる。同時に、該処理前水
のBOD濃度はBOD濃度計7で計測され、信号線7a
を介してコントローラ91〜94に伝えられる。同様
に、生物反応槽2から排出される処理後水のBOD濃度
はBOD濃度計10で計測され、信号線10aを介して
コントローラ91〜94に伝えられる。コントローラ9
1〜94では、それら計測値をもとに、散気装置41〜
44から供給する空気供給量の設定値をそれぞれ演算に
よって求める。
[0013] In the biological water treatment apparatus configured as described above, as before, the pre-treatment water flowing through the pipe a is mixed and stirred with the activated sludge and the air in the biological reaction tank 1, as in the prior art. Purification treatment by biologically oxidatively decomposing the pollutants. The flow rate of the pre-treatment water flowing into the biological reaction tank 1 is measured by the flow meter 2 and transmitted to the controllers 91 to 94 via the signal line 2a. At the same time, the BOD concentration of the pre-treatment water is measured by the BOD concentration meter 7, and the signal line 7a
Are transmitted to the controllers 91 to 94 via the. Similarly, the BOD concentration of the treated water discharged from the biological reaction tank 2 is measured by the BOD concentration meter 10 and transmitted to the controllers 91 to 94 via the signal line 10a. Controller 9
1 to 94, based on the measured values, the air diffusers 41 to 94
The set value of the air supply amount supplied from 44 is obtained by calculation.

【0014】各コントローラは、それぞれに接続されて
いる空気供給手段に予め定められた第1の係数、第2の
係数および定数を保持しており、信号線2a、信号線7
aおよび信号線10aを介して伝えられた各計測値をも
とに下記の(a)(b)(c)の和を算出する。 (a)BOD濃度計7で計測された処理前水のBOD濃
度と流量計2で計測された処理前水の流量との積に、第
1の係数を乗じた量 (b)BOD濃度計10で計測された処理後水のBOD
濃度と予め定められたBOD濃度の目標値との差に、第
2の係数を乗じた量 (c)定数 このようにして算出された量をそれぞれのコントローラ
に接続された空気供給手段に伝えることにより、その量
の空気が各散気装置から生物反応槽から供給される。な
お、上記第1の係数、第2の係数および定数は、生物反
応槽1から排出される処理後水のBOD濃度が予め定め
られたBOD濃度の目標値により近づけるために最適な
空気供給量を、上記演算において得ることができるよう
に予め設定された値であり、散気装置の位置あるいは個
数によってそれぞれ異なった値が設定される。
Each controller holds a first coefficient, a second coefficient, and a constant which are predetermined in the air supply means connected to each controller.
The sum of the following (a), (b), and (c) is calculated based on a and each measurement value transmitted via the signal line 10a. (A) An amount obtained by multiplying the product of the BOD concentration of the pre-treatment water measured by the BOD concentration meter 7 and the flow rate of the pre-treatment water measured by the flow meter 2 by a first coefficient. (B) BOD concentration meter 10 BOD of treated water measured at
An amount obtained by multiplying the difference between the concentration and a predetermined target value of the BOD concentration by a second coefficient. (C) Constant The amount calculated in this way is transmitted to the air supply means connected to each controller. As a result, that amount of air is supplied from each of the aeration devices from the biological reaction tank. Note that the first coefficient, the second coefficient, and the constant are optimal air supply amounts for the BOD concentration of the treated water discharged from the biological reaction tank 1 to be closer to a predetermined BOD concentration target value. , Which are set in advance so as to be obtained in the above calculation, and different values are set depending on the position or the number of the air diffusers.

【0015】例えば、コントローラ91では、散気装置
41から供給される空気供給量の設定値G[Nm/h]
を次式(1)により算出する。 G=k11・SIN・QIN+k12・(SOUT−S)+k13 …(1) SIN;処理前水のBOD濃度計測値[mg/l] QIN;流量計測値[m/h] SOUT;処理後水のBOD濃度計測値[mg/l] S;処理後水のBOD濃度の目標値[mg/l] k11,k12,k13;定数 同様にして、コントローラ92〜94では、空気供給量
の設定値G〜G[Nm/h]を次式(2)〜(4)に
従ってそれぞれ算出する。 G=k21・SIN・QIN+k22・(SOUT−S)+k23 …(2) k21,k22,k23;第1の係数,第2の係数,定数 G=k31・SIN・QIN+k32・(SOUT−S)+k33 …(3) k31,k32,k33;第1の係数,第2の係数,定数 G=k41・SIN・QIN+k42・(SOUT−S)+k43 …(4) k41,k42,k43;第1の係数,第2の係数,定数
For example, in the controller 91, the set value G 1 [Nm 3 / h] of the air supply amount supplied from the air diffuser 41.
Is calculated by the following equation (1). G 1 = k 11 · S IN · Q IN + k 12 · (S OUT -S 0) + k 13 ... (1) S IN; processing BOD concentration measuring value before water [mg / l] Q IN; flow rate measurement value [ m 3 / h] S OUT ; measured value of BOD concentration of treated water [mg / l] S 0 ; target value of BOD concentration of treated water [mg / l] k 11 , k 12 , k 13 ; constant Then, the controllers 92 to 94 calculate the set values G 2 to G 4 [Nm 3 / h] of the air supply amount according to the following equations (2) to (4), respectively. G 2 = k 21 · S IN · Q IN + k 22 · (S OUT -S 0 ) + k 23 (2) k 21 , k 22 , k 23 ; first coefficient, second coefficient, constant G 3 = k 31 · S iN · Q iN + k 32 · (S OUT -S 0) + k 33 ... (3) k 31, k 32, k 33; first coefficient, the second coefficient, the constant G 4 = k 41 · S IN · Q IN + k 42 · (S OUT −S 0 ) + k 43 (4) k 41 , k 42 , k 43 ; first coefficient, second coefficient, constant

【0016】ここで、上式(1)〜(4)において各散
気装置に対応して予め定める第1の係数および第2の係
数は、前述したように、処理後水のBOD濃度が予め定
められたBOD濃度の目標値により近づけるために最適
な空気供給量を、上記演算において得ることができるよ
うに予め設定された値であるが、さらに、第1の係数k
11,k21,k31,k41は、k11≧k21≧k
31≧k41の関係が成立するように、また第2の係数
12,k22,k32,k42は、k12≦k ≦k
32≦k42の関係が成立するように値を設定する。こ
れにより、生物反応槽1の上流(入口)に近い散気装置
から供給される空気供給量ほど、処理後水のBOD濃度
とその目標値との差よりは主として処理前水の汚濁物量
(BOD濃度と流量との積)に対応して決定され、逆に
生物反応槽1の下流(出口)に近い散気装置から供給さ
れる空気供給量ほど、処理前水の汚濁物量よりは主とし
て処理後水のBOD濃度とその目標値との差に対応して
決定されるようになる。上記のようにして算出された空
気供給量の設定値G〜Gはそれぞれ信号線91a〜
94aを介して空気供給装置51〜54に伝えられる。
各空気供給装置51〜54では、それぞれ配管51a〜
54aおよび散気装置41〜44を介して、それぞれに
設定された量の空気を生物反応槽1内に供給する。な
お、上記説明では散気装置を4つとしたが、例えば散気
装置41を1つだけ設けた場合においても、第1の係数
11,第2の係数k12,定数k13に散気装置が1つ
の場合の最適な値が別個に予め定められ、上式(1)に
よって空気供給量Gが算出され、処理前水の汚濁物量
だけでなく、処理後水のBOD濃度も考慮した空気量を
供給することができる。さらに、散気装置が5つ以上で
あっても、各散気装置から供給する最適な空気量を簡単
に算出できることはいうまでもない。
Here, in the above equations (1) to (4), the first coefficient and the second coefficient which are predetermined for each air diffuser are, as described above, the BOD concentration of the treated water. This is a value that is set in advance so that an optimal air supply amount for approaching the predetermined target value of the BOD concentration can be obtained in the above calculation.
11 , k 21 , k 31 , and k 41 are k 11 ≧ k 21 ≧ k
31 ≧ such relationship holds for k 41, while the second coefficient k 12, k 22, k 32 , k 42 is, k 12 ≦ k 2 2 ≦ k
Relationship 32k 42 sets the value so established. As a result, as the amount of air supplied from the air diffuser closer to the upstream (inlet) of the biological reaction tank 1, the amount of contaminants (BOD) in the pre-treatment water becomes larger than the difference between the BOD concentration of the treated water and the target value. (Product of the concentration and the flow rate), and conversely, the air supply amount supplied from the air diffuser closer to the downstream (outlet) of the biological reaction tank 1 is mainly after the treatment, rather than the contaminant amount of the pre-treatment water. It is determined according to the difference between the BOD concentration of water and its target value. The above manner set value G 1 of the air supply amount calculated by ~G 4 each signal line 91a~
The air is transmitted to the air supply devices 51 to 54 via the 94a.
In each of the air supply devices 51 to 54, the pipes 51a to 51a are respectively provided.
A set amount of air is supplied into the biological reaction tank 1 via the air passage 54a and the air diffusers 41 to 44. In the above description, four air diffusers are used. However, for example, even when only one air diffuser 41 is provided, the first coefficient k 11 , the second coefficient k 12 , and the constant k 13 are used as the air diffusers. air but separately predetermined optimal value when the one air supply amount G 1 is calculated by the above equation (1), not only the contamination quantity of the pretreatment water, BOD concentration of the processed water is also taken into consideration Amount can be supplied. Furthermore, even if there are five or more air diffusers, it goes without saying that the optimum amount of air supplied from each air diffuser can be easily calculated.

【0017】以上のように、生物反応槽1に流入する処
理前水の汚濁物量だけでなく、生物反応槽1から現在排
出されている処理後水の汚濁物濃度とその目標値との差
も考慮しながら生物反応槽1内に供給する空気量を設定
するので、処理後に排出される処理後水の汚濁物濃度を
より目標値に近づけることができ、より精緻に水質制御
ができる。また、空気供給量を求める演算において、各
空気供給手段51〜54にそれぞれ接続された散気装置
41〜44の生物反応槽1内での位置に従って、それぞ
れに定める係数に大小関係をつけることにより、生物反
応槽1の流入部に近い散気装置からは主として流入する
処理前水の汚濁物量に応じて、また生物反応槽1の排出
部に近い散気装置からは主として処理後水の汚濁物濃度
とその目標値との差に応じてそれぞれ空気が供給される
ので、流入する汚濁物量が変動しても生物反応槽1の各
ポイントにおいて適切な空気供給を実現できるうえに、
排出される処理後水の汚濁物濃度をより目標値に近づけ
ることができる。さらに、過不足のない空気供給量で効
率的な水質制御ができる。
As described above, not only the amount of the contaminants of the pre-treatment water flowing into the biological reaction tank 1 but also the difference between the concentration of the contaminants of the post-treatment water currently discharged from the biological reaction tank 1 and its target value. Since the amount of air to be supplied into the biological reaction tank 1 is set while taking into account, the concentration of contaminants in the treated water discharged after the treatment can be made closer to the target value, and the water quality can be controlled more precisely. Further, in the calculation for obtaining the air supply amount, by assigning a magnitude relationship to the coefficients determined according to the positions in the biological reaction tank 1 of the air diffusers 41 to 44 connected to the air supply means 51 to 54, respectively. From the diffuser near the inflow portion of the biological reaction tank 1 depending on the amount of contaminants of the pre-treatment water flowing in, and from the diffuser near the discharge portion of the biological reaction tank 1 mainly the pollutants of the treated water. Since air is supplied according to the difference between the concentration and the target value, an appropriate air supply can be realized at each point of the biological reaction tank 1 even if the amount of contaminants flowing in varies.
The pollutant concentration of the discharged post-treatment water can be made closer to the target value. Further, efficient water quality control can be performed with an adequate amount of air supply.

【0018】実施の形態2.図2は、この発明の実施の
形態2による生物学的水処理装置を示す構成図である。
なお、図2において、1〜3,41〜44,51a〜54
a,7,10は図1に示した実施の形態1のものと同一ま
たは相当部分を示している。50は空気供給装置で、配
管50aを介して弁71〜74に空気を送る。弁71〜
74は、それぞれ接続されている散気装置41〜44か
ら供給される空気の量を制御するための弁である。90
はコントローラで、信号線2a,7a,10aを介して伝
えられた各計測値をもとに各散気装置41〜44から供
給する空気量の設定値を算出し、その設定値を信号線7
1a〜74aを介して弁71〜74に伝える。
Embodiment 2 FIG. FIG. 2 is a configuration diagram showing a biological water treatment apparatus according to Embodiment 2 of the present invention.
In FIG. 2, 1-3, 41-44, 51a-54
Reference numerals a, 7, and 10 denote the same or corresponding parts as those of the first embodiment shown in FIG. Reference numeral 50 denotes an air supply device which sends air to the valves 71 to 74 via the pipe 50a. Valves 71 to
Numeral 74 is a valve for controlling the amount of air supplied from the air diffusers 41 to 44 connected thereto. 90
Is a controller that calculates a set value of the amount of air supplied from each of the air diffusers 41 to 44 based on each measured value transmitted through the signal lines 2a, 7a, and 10a, and transfers the set value to the signal line 7
The signal is transmitted to valves 71 to 74 via 1a to 74a.

【0019】このように構成された実施の形態2におい
ては、流量計2で計測された生物反応槽2に流入する処
理前水の流量、BOD濃度計7で計測された処理前水の
BOD濃度、およびBOD濃度計10で計測された生物
反応槽1から排出される処理後水のBOD濃度が、それ
ぞれ信号線2a、信号線7aおよび信号線10aを介し
て、コントローラ90に伝えられる。コントローラ90
においては、上記実施の形態1で述べた数式(1)〜
(4)を用いて、各散気装置41〜44から供給する空
気供給量の設定値G[Nm/h],G[Nm/h],G
[Nm/h],G[Nm/h]を算出する。ここでも、実
施の形態1と同様、上式(1)〜(4)において各散気
装置に対応して予め定める係数k11,k21,k31,
41は、k11≧k21≧k ≧k41の関係が成
立するように値を設定する。また、k12,k22,k
32,k42は、k12≦k22≦k32≦k42の関
係が成立するように値を設定する。
In the second embodiment thus configured, the flow rate of the pre-treatment water flowing into the biological reaction tank 2 measured by the flow meter 2 and the BOD concentration of the pre-treatment water measured by the BOD concentration meter 7 , And the BOD concentration of the treated water discharged from the biological reaction tank 1 measured by the BOD concentration meter 10 are transmitted to the controller 90 via the signal line 2a, the signal line 7a, and the signal line 10a, respectively. Controller 90
In formulas (1) to (3) described in the first embodiment,
Using (4), set values G 1 [Nm 3 / h], G 2 [Nm 3 / h], G 3 of the air supply amount supplied from each of the air diffusers 41 to 44
[Nm 3 / h] and G 4 [Nm 3 / h] are calculated. Again, as in the first embodiment, the coefficient k 11 of predetermined corresponding to each air diffuser in the above equation (1) ~ (4), k 21, k 31,
k 41, the relationship between k 11 ≧ k 21 ≧ k 3 1 ≧ k 41 sets the value so established. Also, k 12 , k 22 , k
32, k 42, the relationship between k 12 ≦ k 22 ≦ k 32 ≦ k 42 sets the value so established.

【0020】コントローラ90で算出された空気供給量
の設定値G〜Gは、それぞれ信号線71a〜74a
を介して弁71〜74に伝えられる。弁71〜74は伝
えられた空気量が散気装置41〜44から生物反応槽1
内に供給されるように、それぞれの設定値G〜G
従って開度を調節する。このようにして、空気供給装置
50から、配管50a、弁71〜74、配管51a〜5
4aおよび散気装置41〜44を介して所定量の空気を
送ることができる。以上のように、各散気装置から供給
する空気量の算出を1つのコントローラでまとめて行う
ようにし、各散気装置へ送る空気量の調整を弁を用いて
行うようにしたので、散気装置の数が増えてもコントロ
ーラおよび空気供給装置の数は増えず、簡単な構成で実
現することができる。
The set values G 1 to G 4 of the air supply amount calculated by the controller 90 are signal lines 71 a to 74 a, respectively.
To valves 71-74. The valves 71 to 74 are used for controlling the amount of air transmitted from the air diffusers 41 to 44 to the biological reaction tank 1.
As it supplied within, adjusting the opening in accordance with the respective set value G 1 ~G 4. Thus, from the air supply device 50, the pipe 50a, the valves 71 to 74, and the pipes 51a to 51
A predetermined amount of air can be sent through 4a and the air diffusers 41 to 44. As described above, the calculation of the amount of air supplied from each diffuser is performed collectively by one controller, and the adjustment of the amount of air sent to each diffuser is performed using the valve. Even if the number of devices increases, the number of controllers and air supply devices does not increase, and it can be realized with a simple configuration.

【0021】実施の形態3.図3は、この発明の実施の
形態3による生物学的水処理装置を記す構成図である。
なお、図3において各部分に付した符号は図1に示した
実施の形態1のものと同一または相当部分であるが、B
OD濃度計7で計測された処理前水のBOD濃度、流量
計2で計測された処理前水の流量、およびBOD濃度計
10で計測された処理後水のBOD濃度は、それぞれ信
号線7a,2a,および10aを介してコントローラ91
にのみ伝えられる。また、コントローラ91では、散気
装置41から供給する空気量の設定値を算出し、その算
出式を信号線91bを介して、ひとつ下流のコントロー
ラ92に伝える。同様にコントローラ92からコントロ
ーラ93へは信号線92bを介して、コントローラ93
からコントローラ94へは信号線93bを介して、それ
ぞれで用いた算出式を伝える。
Embodiment 3 FIG. 3 is a configuration diagram illustrating a biological water treatment apparatus according to Embodiment 3 of the present invention.
3 are the same as or correspond to those of the first embodiment shown in FIG.
The BOD concentration of the pre-treatment water measured by the OD densitometer 7, the flow rate of the pre-treatment water measured by the flow meter 2, and the BOD concentration of the post-treatment water measured by the BOD densitometer 10 are represented by signal lines 7a and 7a, respectively. Controller 91 via 2a and 10a
Only conveyed to. Further, the controller 91 calculates a set value of the amount of air supplied from the air diffuser 41, and transmits the calculation formula to the controller 92 one downstream via the signal line 91b. Similarly, from the controller 92 to the controller 93, the controller 93 is connected via a signal line 92b.
To the controller 94 via the signal line 93b.

【0022】このように構成された実施の形態3におい
ては、まず、コントローラ91において、信号線7a,
2a,および10aを介して伝えられた処理前水のBO
D濃度とその流量、および処理後水のBOD濃度、さら
に空気供給装置51に対して予め定められた第3の係数
11,第4の係数k12,および定数kをもとに、散
気装置41から供給する空気供給量の設定値G[Nm
/h]を次式(5)に従って算出する。 G=G11+G12+k …(5) G11=k11・SIN・QIN12=k12・(SOUT−S) 但し SIN;処理前水のBOD濃度計測値[mg/l] QIN;流量計測値[m/h] SOUT;処理後水のBOD濃度計測値[mg/l] S;処理後水のBOD濃度の目標値[mg/l] k11,k12,k;第3の係数,第4の係数,定数 なお、第3の係数および第4の係数は、前述したよう
に、処理後水のBOD濃度が予め定められたBOD濃度
の目標値により近づけるために最適な空気供給量を、上
記演算において得ることができるように予め設定された
値である。
In the third embodiment configured as described above, first, in the controller 91, the signal lines 7a,
BO before treatment water transmitted through 2a, and 10a
Based on the D concentration and its flow rate, the BOD concentration of the treated water, and the third coefficient k 11 , fourth coefficient k 12 , and constant k 1 predetermined for the air supply device 51, Set value G 1 [Nm 3
/ h] is calculated according to the following equation (5). G 1 = G 11 + G 12 + k 1 (5) G 11 = k 11 · S IN · Q ING 12 = k 12 · (S OUT −S 0 ) where S IN ; BOD concentration measurement value of pre-treatment water [ mg / l] Q IN ; flow rate measurement value [m 3 / h] S OUT ; BOD concentration measurement value of treated water [mg / l] S 0 ; target value of BOD concentration of treated water [mg / l] k 11 , k 12 , k 1 ; third coefficient, fourth coefficient, constant Note that the third coefficient and the fourth coefficient are BOD concentrations in which the BOD concentration of the treated water is predetermined as described above. Is a value that is set in advance so that an optimal air supply amount for approaching the target value can be obtained in the above calculation.

【0023】コントローラ91は、上式(5)のG11
の値およびG12の値を信号線91bを介してコントロ
ーラ92に伝える。コントローラ92においては、空気
供給装置52に対して予め定められた第3の係数
21,第4の係数k22,および定数kを保持し、散
気装置42から供給する空気供給量の設定値G[Nm
/h]を次式(6)に従って算出する。 G=G21+G22+k …(6) G21=k21・G1122=k22・G12 但し、0<k21<1,1<k22とする。同様に、コ
ントローラ92は、上式(6)のG21の値およびG
22の値を信号線92bを介してコントローラ93に伝
える。コントローラ93においては、空気供給装置53
に対して予め定められた第3の係数k31,第4の係数
32,および定数kを保持し、散気装置43から供
給する空気供給量の設定値G[Nm/h]を次式(7)
に従って算出する。 G=G31+G32+k …(7) G31=k31・G2132=k32・G22 但し、0<k31<1,1<k32とする。さらに、コ
ントローラ93は、上式(7)のG31の値およびG
32の値を信号線93bを介してコントローラ94に伝
える。コントローラ94においては、空気供給装置54
に対して予め定められた第3の係数k41,第4の係数
42,および定数kを保持し、散気装置44から供
給する空気供給量の設定値G[Nm/h]を次式(8)
に従って算出する。 G=G41+G42+k …(8) G41=k41・G3142=k42・G32 但し、0<k41<1,1<k42とする。
The controller 91 calculates G 11 in the above equation (5).
It passes the value of the value and G 12 to the controller 92 via a signal line 91b. The controller 92 holds a predetermined third coefficient k 21 , fourth coefficient k 22 , and constant k 2 for the air supply device 52, and sets the air supply amount to be supplied from the air diffuser 42. value G 2 [Nm 3
/ h] is calculated according to the following equation (6). G 2 = G 21 + G 22 + k 2 (6) G 21 = k 21 · G 11 G 22 = k 22 · G 12 where 0 <k 21 <1, 1 <k 22 . Similarly, the controller 92, the value of G 21 of the above equation (6) and G
The value of 22 is transmitted to the controller 93 via the signal line 92b. In the controller 93, the air supply device 53
Holds a third coefficient k 31 , a fourth coefficient k 32 , and a constant k 3 , and sets a set value G 3 [Nm 3 / h] of the air supply amount supplied from the air diffuser 43. Is given by the following equation (7).
Calculated according to G 3 = G 31 + G 32 + k 3 (7) G 31 = k 31 · G 21 G 32 = k 32 · G 22 provided that 0 <k 31 <1,1 <k 32 . Furthermore, the controller 93, the value of G 31 of the above equation (7) and G
The value of 32 is transmitted to the controller 94 via the signal line 93b. In the controller 94, the air supply device 54
Holds a third coefficient k 41 , a fourth coefficient k 42 , and a constant k 4 , and sets a set value G 4 [Nm 3 / h] of the amount of air supplied from the air diffuser 44. Is given by the following equation (8).
Calculated according to G 4 = G 41 + G 42 + k 4 (8) G 41 = k 41 · G 31 G 42 = k 42 · G 32 where 0 <k 41 <1, 1 <k 42 .

【0024】以上のように、生物反応槽1内に被処理水
の流れる方向に設けられた散気装置から供給する空気量
の設定値を、一つ上流側の散気装置から供給された空気
量を考慮して算出するので、より緻密な空気供給量を設
定できる。また、上流側のBOD濃度に重みづけられる
第3の係数は1より小さい値とし、排出する処理後水の
濃度と目標値との差に重みづけられる第4の係数は1よ
り大きい値とすることにより、生物反応槽1の流入部に
近い散気装置からは主として流入する処理前水の汚濁物
量に応じて、また生物反応槽1の排出部に近い散気装置
からは主として処理後水の汚濁物濃度とその目標値との
差に応じてそれぞれ所定の空気量が供給されるので、流
入する処理前水の汚濁物量が変動しても生物反応槽の各
ポイントにおいて適切な空気供給を実現でき、排出され
る処理後水の汚濁物濃度を精緻に制御できる。
As described above, the set value of the amount of air supplied from the air diffuser provided in the direction in which the water to be treated flows in the biological reaction tank 1 is changed to the air supplied from the air diffuser on one upstream side. Since the calculation is performed in consideration of the amount, a more precise air supply amount can be set. The third coefficient weighted to the upstream BOD concentration is set to a value smaller than 1, and the fourth coefficient weighted to the difference between the concentration of the treated water to be discharged and the target value is set to a value larger than 1. Thereby, the air diffuser near the inflow portion of the biological reaction tank 1 mainly depends on the amount of contaminants of the inflowing pre-treatment water, and the air diffuser near the discharge portion of the biological reaction tank 1 mainly emits post-treatment water. A predetermined amount of air is supplied according to the difference between the concentration of pollutants and its target value, so even if the amount of contaminants in the incoming pre-treatment water fluctuates, appropriate air supply is achieved at each point in the biological reaction tank. It is possible to precisely control the concentration of pollutants discharged after treatment.

【0025】なお、上記実施の形態1〜3では、被処理
水の汚濁物濃度として、BOD濃度を指標とする場合を
示したが、窒素濃度やりん濃度を対象とした場合も同等
の効果を奏する。また、流入する処理前水のBOD濃度
と処理後水のBOD濃度とを別々のBOD濃度計で計測
する例を示したが、単一のセンサで計測することも可能
である。その場合、両者の測定周期をずらせばよい。ま
た、これらのBOD濃度計は必ずしも配管にとりつけら
れる必要はなく、処理前水もしくは処理後水をサンプリ
ングして計測できれば、設置場所は任意でよい。また、
処理後水のBOD濃度を計測するために、生物反応槽か
らの処理後水を排出するための配管bにとりつける、も
しくは配管bからサンプリングする例を示したが、沈殿
槽3の上澄水を排出するための配管cにとりつける、も
しくは配管cからサンプリングするようにしても、同等
の効果を奏する。さらに、散気装置を4つ設ける場合に
ついて述べたが、もちろんこれは一例を示したに過ぎず
散気装置の数は任意であり、各散気装置に対応して予め
保持する係数および定数は、散気装置の数に対応してそ
れぞれ最適な値が設定される。なお、散気装置の数が変
わっても装置構成は同様である。
In the first to third embodiments, the case where the BOD concentration is used as an index as the pollutant concentration of the water to be treated has been described. However, the same effect can be obtained when the nitrogen concentration or the phosphorus concentration is targeted. Play. In addition, although an example is shown in which the BOD concentration of the inflowing pre-treatment water and the BOD concentration of the post-treatment water are measured by separate BOD concentration meters, it is also possible to measure with a single sensor. In that case, the measurement periods of both may be shifted. Further, these BOD densitometers do not necessarily need to be attached to pipes, and may be installed in any location as long as they can sample and measure water before or after treatment. Also,
In order to measure the BOD concentration of the water after treatment, an example was shown in which the water was attached to the pipe b for discharging the water after treatment from the biological reaction tank or sampling was performed from the pipe b. The same effect can be obtained by attaching to the pipe c for sampling or sampling from the pipe c. Furthermore, the case where four diffusers are provided has been described. However, this is merely an example, and the number of diffusers is arbitrary. Coefficients and constants to be held in advance corresponding to each diffuser are The optimum value is set in accordance with the number of air diffusers. Note that the device configuration is the same even if the number of air diffusers changes.

【0026】[0026]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下のような効果を奏する。
The present invention is configured as described above, and has the following effects.

【0027】浄化処理する前の処理前水の汚濁物濃度S
INを計測する手段、該処理前水の流量QINを計測す
る手段、排出される処理後水の汚濁物濃度SOUTを計
測する手段、反応槽内で被処理水に空気を散気するため
の空気供給手段、および上記計測された処理前水の汚濁
物濃度SINと該処理前水の流量QINとの積で得られ
る該処理前水の汚濁物量と上記計測された処理後水の汚
濁物濃度SOUTとに応じて、上記空気供給手段から散
気する空気供給量を調節する手段を備えたので、排出さ
れる処理後水の汚濁物濃度を精緻に制御できる。また、
過不足のない空気供給量で効率よく処理水質を制御でき
る。
Contaminant concentration S of pre-treatment water before purification treatment
Means for measuring IN , means for measuring the flow rate Q IN of the pre-treatment water, means for measuring the contaminant concentration S OUT of the post-treatment water discharged, and for diffusing air into the water to be treated in the reaction tank. Air supply means, and the amount of contaminants in the pre-treatment water obtained by the product of the measured contaminant concentration S IN of the pre-treatment water and the flow rate Q IN of the pre-treatment water and the measured post-treatment water Since there is provided a means for adjusting the amount of air diffused from the air supply means in accordance with the concentration S OUT of the contaminants, the concentration of contaminants in the post-treatment water discharged can be precisely controlled. Also,
The quality of the treated water can be controlled efficiently with an adequate amount of air supply.

【0028】また、空気供給手段を被処理水が流下する
方向に沿って複数個(n個)設け、空気供給量を調節す
る手段は、処理後水の汚濁物濃度の目標値Sと各空気
供給手段ごとに予め定められた第1の係数ki1,第2
の係数ki2および定数kとを保持し、各空気供給手
段から散気する空気供給量Gを次式 G=ki1・SIN・QIN+ki2・(SOUT
)+k (i=1,・・,n) によって算出するので、各空気供給手段の反応槽内での
位置に従って、適切な空気供給量を設定でき、効率のよ
い水質制御が行える。
A plurality (n) of air supply means are provided along the direction in which the water to be treated flows down, and the means for adjusting the air supply amount includes a target value S 0 of the concentration of contaminants in the treated water and each of the air supply means. A first coefficient k i1 , a second coefficient
Coefficient k i2 and constants k and i holds, the following equation air supply amount G i to air diffusion from the air supply means G i = k i1 · S IN · Q IN + k i2 · (S OUT of the -
Since S 0) + k i (i = 1, ··, calculated by n), according to the position in the reaction vessel of the air supply means, to set the appropriate air supply amount, can be performed better water quality control efficiency.

【0029】また、各空気供給手段ごとに定められた第
1の係数ki1は、反応槽の流入部に近い空気供給手段
ほど大きく、排出部に近い空気供給手段ほど小さい値で
あり(k11>k21>・・・>kn1)、第2の係数k
i2は、上記反応槽の流入部に近い空気供給手段ほど小
さく、排出部に近い空気供給手段ほど大きい値とする
(k12<k22<・・・<kn2)ので、反応槽の流入
部に近い空気供給手段からは主として流入する処理前水
の汚濁物量に応じて、また反応槽の排出部に近い空気供
給手段からは主として処理後水の汚濁物濃度とその目標
値との差に応じてそれぞれ空気が供給されるので、流入
する被処理水中の汚濁物量が変動しても反応槽の各空気
供給手段から適切な量の空気供給を実現でき、排出され
る処理後水の汚濁物濃度をより目標値に近づけることが
できる。
The first coefficient k i1 determined for each air supply means is larger as the air supply means is closer to the inflow portion of the reaction tank, and smaller as the air supply means is closer to the discharge portion (k 11). > K 21 >...> k n1 ), the second coefficient k
i2, the more air supply means close to the inlet of the reactor reduced, since the larger value air supply means close to the discharge unit (k 12 <k 22 <··· <k n2), the inflow of the reaction vessel From the air supply means close to the reactor mainly depends on the amount of contaminants in the pre-treatment water, and from the air supply means close to the outlet of the reaction tank mainly depends on the difference between the concentration of the contaminants in the post-treatment water and its target value. Respectively, so that even if the amount of pollutants in the incoming treated water fluctuates, an appropriate amount of air can be supplied from each air supply means of the reaction tank, and the concentration of Can be brought closer to the target value.

【0030】また、浄化処理する前の処理前水の汚濁物
濃度SINを計測する手段、該処理前水の流量QIN
計測する手段、排出される処理後水の汚濁物濃度S
OUTを計測する手段、被処理水が流下する方向に沿っ
て設けられ、被処理水に空気を散気するための複数個
(n個)の空気供給手段、および上記計測された処理後
水の汚濁物濃度SOUTと、上記計測された処理前水の
汚濁物濃度SINと該処理前水の流量QINとの積で得
られる該処理前水の汚濁物量と、一つ上流側の空気供給
手段から散気される空気供給量とに応じて、上記各空気
供給手段から散気する空気供給量を調節する手段を備え
たので、その時点の被処理水中の汚濁物量にしたがって
より適切な空気量を供給することができる。
Means for measuring the contaminant concentration S IN of the pre-treatment water before the purification treatment; means for measuring the flow rate Q IN of the pre-treatment water;
OUT measuring means, a plurality of (n) air supply means provided along the direction in which the water to be treated flows down to diffuse air into the water to be treated, and the measured water after treatment The concentration of contaminants S OUT , the amount of contaminants of the pre-treatment water obtained by the product of the measured contaminant concentration S IN of the pre-treatment water and the flow rate Q IN of the pre-treatment water; In accordance with the air supply amount diffused from the supply unit, the air supply amount is diffused from each of the air supply units, and the air supply amount is adjusted. Air volume can be supplied.

【0031】また、空気供給量を調節する手段は、処理
後水の汚濁物濃度の目標値Sと各空気供給手段ごとに
予め定められた第1の係数ki1,第2の係数ki2,お
よび定数kとを保持し、各空気供給手段から散気する
空気供給量Gを次式 G=Gi1+Gi2+k 但し i=1のとき G11=k11・SIN12=k12・(SOUT−S) i=2,・・・,nのとき Gi1=ki1・G(i−1)1i2=ki2・G(i−1)2 によって算出するので、各空気供給手段の生物反応槽内
での位置に従って、適切な空気供給量を設定でき、効率
のよい水質制御が行える。
The means for adjusting the amount of air supply comprises a target value S 0 of the concentration of contaminants in the treated water and a first coefficient k i1 and a second coefficient k i2 predetermined for each air supply means. , And a constant k i , and the air supply amount G i diffused from each air supply means is expressed by the following equation: G i = G i1 + G i2 + k i where i = 1 G 11 = k 11 · S IN G 12 = k 12 · (S OUT -S 0) i = 2, ···, by G i1 = k i1 · G ( i1) 1 G i2 = k i2 · G (i1) 2 when n Since the calculation is performed, an appropriate air supply amount can be set according to the position of each air supply unit in the biological reaction tank, and efficient water quality control can be performed.

【0032】また、i=2,・・・,nのとき、各空気供給手
段に定められた第1の係数ki1は1よりも小さい値と
し、第2の係数ki2は1よりも大きい値とするので、
反応槽の流入部に近い空気供給手段からは主として流入
する処理前水の汚濁物量に応じて、また反応槽の排出部
に近い空気供給手段からは主として処理後水の汚濁物濃
度とその目標値とのされるのでに応じてそれぞれ空気が
供給されるので、流入する被処理水中の汚濁物量が変動
しても各空気供給手段から適切な量の空気供給を実現で
き、排出される処理後水の汚濁物濃度をより目標値に近
づけることができる。
When i = 2,..., N, the first coefficient k i1 defined for each air supply means is set to a value smaller than 1, and the second coefficient k i2 is larger than 1. Value.
Depending on the amount of contaminants of the pre-treatment water flowing in from the air supply means near the inlet of the reaction tank, and the concentration of the contaminants in the water after treatment mainly from the air supply means near the discharge part of the reaction tank and the target value Air is supplied according to the above, so that even if the amount of pollutants in the inflowing treated water fluctuates, an appropriate amount of air can be supplied from each air supply means, and the discharged treated water is discharged. Can be brought closer to the target value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による生物学的水処
理装置を示す構成図である。
FIG. 1 is a configuration diagram showing a biological water treatment apparatus according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2による生物学的水処
理装置を示す構成図である。
FIG. 2 is a configuration diagram showing a biological water treatment apparatus according to Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3による生物学的水処
理装置を示す構成図である。
FIG. 3 is a configuration diagram showing a biological water treatment apparatus according to Embodiment 3 of the present invention.

【図4】 従来の生物学的水処理装置を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a conventional biological water treatment apparatus.

【符号の説明】[Explanation of symbols]

1 生物反応槽、2 流量計、41〜44 空気供給手
段としての散気装置、51〜54 空気供給手段として
の空気供給装置、7 処理前水の汚濁物濃度計測手段と
してのBOD濃度計、91〜94 空気供給量の調節手
段としてのコントローラ、10 処理後水の汚濁物濃度
計測手段としてのBOD濃度計。
DESCRIPTION OF SYMBOLS 1 Biological reaction tank, 2 Flow meter, 41-44 Air diffuser as air supply means, 51-54 Air supply apparatus as air supply means, 7 BOD concentration meter as contaminant concentration measurement means of pre-treatment water, 91 -94 Controller as means for adjusting air supply amount, 10 BOD concentration meter as means for measuring contaminant concentration of treated water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 久雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 4D028 CA09 CB03 CB05 CC01 CC02 CC05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisao Tanaka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Mitsubishi Electric Corporation 4D028 CA09 CB03 CB05 CC01 CC02 CC05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反応槽に流入する被処理水を活性汚泥お
よび空気と混合することにより浄化処理し、該浄化処理
後の被処理水を上記反応槽から排出する生物学的水処理
装置において、 上記浄化処理する前の被処理水(以下、処理前水と称
す)の汚濁物濃度SINを計測する手段、該処理前水の
流量QINを計測する手段、上記排出される被処理水
(以下、処理後水と称す)の汚濁物濃度SOUTを計測
する手段、上記反応槽内で上記被処理水に空気を散気す
るための空気供給手段、および上記計測された処理前水
の汚濁物濃度SINと該処理前水の流量QINとの積で
得られる該処理前水の汚濁物量と上記計測された処理後
水の汚濁物濃度SOUTとに応じて、上記空気供給手段
から散気する空気供給量を調節する手段を備えたことを
特徴とする生物学的水処理装置。
1. A biological water treatment apparatus for purifying water to be treated flowing into a reaction tank by mixing it with activated sludge and air, and discharging the treated water after the purification treatment from the reaction tank. A means for measuring the contaminant concentration S IN of the water to be treated (hereinafter referred to as pre-treatment water) before the purification treatment, a means for measuring a flow rate Q IN of the treatment water, (Hereinafter, referred to as post-treatment water) means for measuring the contaminant concentration S OUT , air supply means for diffusing air into the water to be treated in the reaction tank, and the measured contamination of the pre-treatment water. From the air supply means in accordance with the contaminant amount of the pre-treatment water obtained by multiplying the contaminant concentration S IN and the flow rate Q IN of the pre-treatment water and the measured contaminant concentration S OUT of the post-treatment water. It is characterized by having a means for adjusting the air supply amount to diffuse. To biological water treatment equipment.
【請求項2】 空気供給手段を被処理水が流下する方向
に沿って複数個(n個)設け、空気供給量を調節する手
段は、処理後水の汚濁物濃度の目標値Sと各空気供給
手段ごとに予め定められた第1の係数ki1,第2の係
数ki2および定数kとを保持し、各空気供給手段か
ら散気する空気供給量Gを次式 G=ki1・SIN・QIN+ki2・(SOUT
)+k (i=1,・・,n) によって算出することを特徴とする請求項1記載の生物
学的水処理装置。
Wherein provided a plurality of air supply means along a direction in which water to be treated flows down (n pieces), means for adjusting the air supply quantity, the target value S 0 of the pollutant concentration of the processed water each first coefficient k i1 predetermined for each air supply means, the second to hold the coefficient k i2, and constant k i, the following equation the air supply amount G i to air diffusion from the air supply means G i = k i1 · S IN · Q IN + k i2 · (S OUT -
S 0) + k i (i = 1, ··, n) biological water treatment apparatus according to claim 1, wherein the calculating the.
【請求項3】 各空気供給手段ごとに定められた第1の
係数ki1は、反応槽の流入部に近い空気供給手段ほど
大きく、排出部に近い空気供給手段ほど小さい値であり
(k11>k21>・・・>kn1)、第2の係数ki2
は、上記反応槽の流入部に近い空気供給手段ほど小さ
く、排出部に近い空気供給手段ほど大きい値とする(k
12<k22<・・・<kn2)ことを特徴とする請求項
2記載の生物学的水処理装置。
3. The first coefficient k i1 determined for each air supply means is larger as the air supply means is closer to the inflow portion of the reaction tank, and smaller as the air supply means is closer to the discharge portion (k 11). > K 21 >...> k n1 ), the second coefficient k i2
Is smaller as the air supply means is closer to the inflow portion of the reaction tank, and larger as the air supply means is closer to the discharge portion (k
12 <k 22 <··· <k n2) that biological water treatment apparatus according to claim 2, wherein.
【請求項4】 反応槽に流入する被処理水を活性汚泥お
よび空気と混合することにより浄化処理し、該浄化処理
後の被処理水を上記反応槽から排出する生物学的水処理
装置において、 上記浄化処理する前の処理前水の汚濁物濃度SINを計
測する手段、該処理前水の流量QINを計測する手段、
上記排出される処理後水の汚濁物濃度SOUTを計測す
る手段、被処理水が流下する方向に沿って設けられ、被
処理水に空気を散気するための複数個(n個)の空気供
給手段、および上記計測された処理後水の汚濁物濃度S
OUTと、上記計測された処理前水の汚濁物濃度SIN
と該処理前水の流量QINとの積で得られる該処理前水
の汚濁物量と、一つ上流側の空気供給手段から散気され
る空気供給量とに応じて、上記各空気供給手段から散気
する空気供給量を調節する手段を備えたことを特徴とす
る生物学的水処理装置。
4. A biological water treatment apparatus for purifying water to be treated flowing into a reaction tank by mixing it with activated sludge and air, and discharging the water to be treated after the purification treatment from the reaction tank. Means for measuring the pollutant concentration S IN of the pre-treatment water before the purification treatment, means for measuring the flow rate Q IN of the pre-treatment water,
A means for measuring the concentration of contaminants S OUT of the discharged treated water, a plurality (n) of air provided along the direction in which the treated water flows, for diffusing air into the treated water; Supply means, and the measured contaminant concentration S of the treated water
OUT and the measured contaminant concentration S IN of the pre-treatment water.
And the flow rate Q IN of the pre-treatment water and the amount of contaminants of the pre-treatment water, and the amount of air supply diffused from the air supply means on one upstream side. A biological water treatment apparatus, comprising: means for adjusting a supply amount of air diffused from a biological water treatment apparatus.
【請求項5】 空気供給量を調節する手段は、処理後水
の汚濁物濃度の目標値Sと各空気供給手段ごとに予め
定められた第1の係数ki1,第2の係数k i2,および
定数kとを保持し、各空気供給手段から散気する空気
供給量Gを次式 G=Gi1+Gi2+k 但し i=1のとき G11=k11・SIN12=k12・(SOUT−S) i=2,・・・,nのとき Gi1=ki1・G(i−1)1i2=ki2・G(i−1)2 によって算出することを特徴とする請求項4記載の生物
学的水処理装置。
5. The means for adjusting the amount of air supply comprises water after treatment.
Target value S of pollutant concentration0And each air supply means in advance
The first coefficient k determinedi1, The second coefficient k i2,and
Constant kiAnd the air diffused from each air supply means
Supply GiIs given by the following equation Gi= Gi1+ Gi2+ Ki However, when i = 1, G11= K11・ SIN G12= K12・ (SOUT-S0) When i = 2, ..., n, Gi1= Ki1・ G(I-1) 1 Gi2= Ki2・ G(I-1) 2 The organism according to claim 4, wherein the creature is calculated by:
Water treatment equipment.
【請求項6】 i=2,・・・,nのとき、各空気供給手段に
定められた第1の係数ki1は1よりも小さい値とし、
第2の係数ki2は1よりも大きい値とすることを特徴
とする請求項5記載の生物学的水処理装置。
6. When i = 2,..., N, the first coefficient k i1 determined for each air supply means is a value smaller than 1.
The biological water treatment apparatus according to claim 5, wherein the second coefficient ki2 has a value larger than 1.
JP2001127107A 2001-04-25 2001-04-25 Biological water treatment equipment Expired - Fee Related JP4489990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127107A JP4489990B2 (en) 2001-04-25 2001-04-25 Biological water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127107A JP4489990B2 (en) 2001-04-25 2001-04-25 Biological water treatment equipment

Publications (2)

Publication Number Publication Date
JP2002320989A true JP2002320989A (en) 2002-11-05
JP4489990B2 JP4489990B2 (en) 2010-06-23

Family

ID=18976036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127107A Expired - Fee Related JP4489990B2 (en) 2001-04-25 2001-04-25 Biological water treatment equipment

Country Status (1)

Country Link
JP (1) JP4489990B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159277A (en) * 2015-03-05 2016-09-05 株式会社東芝 Aeration air quantity controller and aeration air quantity control system
WO2020161825A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Water treatment device and water treatment method
JP2022027846A (en) * 2019-02-06 2022-02-14 三菱電機株式会社 Water treatment apparatus and water treatment method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS539058A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Process for controlling water quality in sewage treating process
JPS53148848A (en) * 1977-05-31 1978-12-25 Hitachi Ltd Method for controlling effluent quality in sewage disposal system
JPS5712890A (en) * 1980-06-26 1982-01-22 Mitsubishi Electric Corp Controller of aeration amount in aeration vessel
JPS57132593A (en) * 1981-02-10 1982-08-16 Mitsubishi Heavy Ind Ltd Partial aeration method in sewage and night soil treatment
JPS58216785A (en) * 1982-06-11 1983-12-16 Toshiba Corp Controlling device of aeration rate
JPS60102996A (en) * 1983-11-09 1985-06-07 Takaoka Ind Ltd Air quantity controller for aerating tank
JPS60251995A (en) * 1984-05-11 1985-12-12 リンデ・アクチエンゲゼルシヤフト Biological purifying method of waste water
JPH01199694A (en) * 1988-02-01 1989-08-11 Ajinomoto Co Inc Waste water treatment by activated sludge method
JPH04363197A (en) * 1990-11-07 1992-12-16 Ajinomoto Co Inc Waste water treatment by activated sludge method
JPH06296987A (en) * 1993-04-20 1994-10-25 Takenaka Komuten Co Ltd Waste water treating system
JP2000325980A (en) * 1999-05-21 2000-11-28 Nissin Electric Co Ltd Sewage treatment method and apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS539058A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Process for controlling water quality in sewage treating process
JPS53148848A (en) * 1977-05-31 1978-12-25 Hitachi Ltd Method for controlling effluent quality in sewage disposal system
JPS5712890A (en) * 1980-06-26 1982-01-22 Mitsubishi Electric Corp Controller of aeration amount in aeration vessel
JPS57132593A (en) * 1981-02-10 1982-08-16 Mitsubishi Heavy Ind Ltd Partial aeration method in sewage and night soil treatment
JPS58216785A (en) * 1982-06-11 1983-12-16 Toshiba Corp Controlling device of aeration rate
JPS60102996A (en) * 1983-11-09 1985-06-07 Takaoka Ind Ltd Air quantity controller for aerating tank
JPS60251995A (en) * 1984-05-11 1985-12-12 リンデ・アクチエンゲゼルシヤフト Biological purifying method of waste water
JPH01199694A (en) * 1988-02-01 1989-08-11 Ajinomoto Co Inc Waste water treatment by activated sludge method
JPH04363197A (en) * 1990-11-07 1992-12-16 Ajinomoto Co Inc Waste water treatment by activated sludge method
JPH06296987A (en) * 1993-04-20 1994-10-25 Takenaka Komuten Co Ltd Waste water treating system
JP2000325980A (en) * 1999-05-21 2000-11-28 Nissin Electric Co Ltd Sewage treatment method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159277A (en) * 2015-03-05 2016-09-05 株式会社東芝 Aeration air quantity controller and aeration air quantity control system
WO2020161825A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Water treatment device and water treatment method
JPWO2020161825A1 (en) * 2019-02-06 2021-04-30 三菱電機株式会社 Water treatment equipment and water treatment method
JP2022027846A (en) * 2019-02-06 2022-02-14 三菱電機株式会社 Water treatment apparatus and water treatment method
JP7282149B2 (en) 2019-02-06 2023-05-26 三菱電機株式会社 Water treatment device and water treatment method
JP7424997B2 (en) 2019-02-06 2024-01-30 三菱電機株式会社 water treatment equipment

Also Published As

Publication number Publication date
JP4489990B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
JP6532397B2 (en) Operation support device and operation support method of sewage treatment plant
JP6974795B2 (en) Aeration air volume control method and equipment for aeration tanks in sewage treatment equipment
JP2001353496A (en) Sewage disposal system and measuring system
AU2022270622A1 (en) Systems and methods of gas infusion for wastewater treatment
JP2002320989A (en) Biological water treatment equipment
WO2015072207A1 (en) Organic waste water treatment apparatus, organic waste water treatment method, and control program for organic waste water treatment apparatus
WO2020170364A1 (en) Water treatment apparatus and water treatment method
KR100978706B1 (en) Apparatus for treating waste water
JP6375257B2 (en) Water treatment equipment
JPH0757353B2 (en) Wastewater treatment equipment
JP2002177980A (en) Fuzzy controller for activated sludge treatment and method for the same
JP7424997B2 (en) water treatment equipment
JP7282149B2 (en) Water treatment device and water treatment method
JP3213657B2 (en) Wastewater treatment method and apparatus
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JPH11290888A (en) Method for biological water treatment and its control device
CN206538258U (en) A kind of control device of step feed technology
JP2001219183A (en) Water quality control apparatus of sewerage equipment
JP2002210484A (en) Method and apparatus for treating organic waste water
JP2023096041A (en) Water treatment apparatus and water treatment method
CN106843298A (en) A kind of control device and method of step feed technology
Roman Aeration control of nitrification process based on the ammonium concentration in the aeration tank
JPH04277086A (en) Automatic control device for return sludge in activated sludge treating equipment
JP2023030661A (en) Double layer type processing tank and sewage processing system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees