JP2002313440A - Battery cooling device for electric automobile - Google Patents

Battery cooling device for electric automobile

Info

Publication number
JP2002313440A
JP2002313440A JP2001115566A JP2001115566A JP2002313440A JP 2002313440 A JP2002313440 A JP 2002313440A JP 2001115566 A JP2001115566 A JP 2001115566A JP 2001115566 A JP2001115566 A JP 2001115566A JP 2002313440 A JP2002313440 A JP 2002313440A
Authority
JP
Japan
Prior art keywords
battery cell
cell chamber
battery
cooling
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001115566A
Other languages
Japanese (ja)
Other versions
JP3744376B2 (en
Inventor
Manabu Sato
学 佐藤
Takuya Fukuda
卓弥 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001115566A priority Critical patent/JP3744376B2/en
Publication of JP2002313440A publication Critical patent/JP2002313440A/en
Application granted granted Critical
Publication of JP3744376B2 publication Critical patent/JP3744376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling efficiency for battery cells in a battery case. SOLUTION: In a battery cell chamber 4 on the upstream side parted in the battery case 1, an air current is contracted by a contracted vein part 8 immediately before a cooling fan 10 to reduce reduction of flow velocity of cooling blow, so that stagnation of the cooling blow is prevented. A duct area is quickly enlarged immediately after the cooling fan 10 in a static pressure chamber 9, and a velocity component of the cooling air is converted into static pressure, so that cooling blow quantity and blow velocity in a downstream side battery cell chamber 5 are equalized. All the battery cells 2 in the battery case 1 can thus be equally cooled, thereby cooling efficiency to the battery cells 2 can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気自動車のバッテ
リ冷却装置に関する。
The present invention relates to a battery cooling device for an electric vehicle.

【0002】[0002]

【従来の技術】電気自動車は周知のように複数個のバッ
テリセルを収容したバッテリケースを搭載して、このバ
ッテリセルを電気エネルギー供給源としているが、バッ
テリセルがその充放電時の発生熱で高温化するとエネル
ギー効率が低下するため、例えば特開平11−6717
8号公報、特開2000−67934号公報等に示され
ているようなバッテリセルの冷却装置が提案されてい
る。
2. Description of the Related Art As is well known, an electric vehicle mounts a battery case containing a plurality of battery cells and uses the battery cells as an electric energy supply source. Since the energy efficiency decreases when the temperature is increased, for example, JP-A-11-6717
No. 8, JP-A-2000-67934 and the like have proposed battery cell cooling devices.

【0003】[0003]

【発明が解決しようとする課題】前記何れの冷却装置に
あっても、冷却風を動圧によって供給するため、バッテ
リケース内の冷却風通路に滞留が生じ易く、バッテリセ
ルを効率よく冷却することができなくなってしまう。
In any of the above cooling devices, the cooling air is supplied by dynamic pressure, so that the cooling air passage in the battery case is liable to stagnate and the battery cells are efficiently cooled. Will not be able to do.

【0004】そこで、本発明はバッテリケース内のバッ
テリセルの冷却の偏りを解消できて、バッテリセルの冷
却効率を一段と高めることができる電気自動車のバッテ
リ冷却装置を提供するものである。
Accordingly, the present invention is to provide a battery cooling device for an electric vehicle, which can eliminate the bias in cooling the battery cells in the battery case and can further improve the cooling efficiency of the battery cells.

【0005】[0005]

【課題を解決するための手段】請求項1の発明にあって
は、複数個のバッテリセルを収容するバッテリケース内
を隔壁によって、最上流部に空気取入口を備えて複数個
のバッテリセルを収容した上流側バッテリセル室と、最
下流部に空気排出口を備えて複数個のバッテリセルを収
容した下流側バッテリセル室と、に並列に隣接して隔成
すると共に前記上流側バッテリセル室の最下流部に、空
気取入口から流入した空気流を縮流する縮流部を設け、
前記上流側バッテリセル室と下流側バッテリセル室との
間には、前記縮流部に連設配置した冷却ファンを備え
て、該冷却ファン後流の冷却風の速度成分を静圧に変換
する容積の大きな静圧チャンバを設けると共に、該静圧
チャンバと下流側バッテリセル室とを連通して静圧チャ
ンバ内から下流側バッテリセル室に冷却風を供給する連
通口を設けたことを特徴としている。
According to the first aspect of the present invention, the inside of a battery case accommodating a plurality of battery cells is provided with an air inlet at the most upstream portion by a partition wall. The upstream battery cell chamber, which is adjacently arranged in parallel to the accommodated upstream battery cell chamber and the downstream battery cell chamber having an air discharge port at the most downstream portion and accommodates a plurality of battery cells, and In the lowermost part of the, a contraction part for contracting the air flow flowing from the air intake is provided,
A cooling fan is provided between the upstream battery cell chamber and the downstream battery cell chamber so as to be connected to the contraction portion, and converts a velocity component of cooling air downstream of the cooling fan into static pressure. A static pressure chamber having a large volume is provided, and a communication port is provided for communicating the static pressure chamber with the downstream battery cell chamber and supplying cooling air from inside the static pressure chamber to the downstream battery cell chamber. I have.

【0006】請求項2の発明にあっては、請求項1に記
載の下流側バッテリセル室を上流側バッテリセル室より
も管路長を短かく設定したことを特徴としている。
According to a second aspect of the present invention, the downstream battery cell chamber according to the first aspect is set to have a shorter pipe length than the upstream battery cell chamber.

【0007】請求項3の発明にあっては、請求項1,2
に記載の下流側バッテリセル室を上流側バッテリセル室
よりも冷却風の流れに対して垂直方向の断面積を大きく
設定したことを特徴としている。
[0007] In the invention of claim 3, claims 1 and 2
The cross-sectional area in the direction perpendicular to the flow of the cooling air in the downstream battery cell chamber described in (1) is set larger than that in the upstream battery cell chamber.

【0008】請求項4の発明にあっては、請求項1〜3
に記載の電気自動車のバッテリ冷却装置であって、静圧
チャンバに配設した冷却ファンが、そのインレットとア
ウトレットとで冷却風の速度ベクトルを略直角に偏向す
る遠心ファンであることを特徴としている。
[0008] In the invention of claim 4, claims 1 to 3 are provided.
Wherein the cooling fan disposed in the static pressure chamber is a centrifugal fan that deflects the velocity vector of the cooling air at substantially right angles at its inlet and outlet. .

【0009】請求項5の発明にあっては、請求項1〜4
に記載の電気自動車のバッテリ冷却装置であって、静圧
チャンバと下流側バッテリセル室とを連通する連通口
を、冷却ファンのアウトレットと対向しない位置に設け
たことを特徴としている。
In the invention of claim 5, claims 1 to 4 are provided.
The battery cooling device for an electric vehicle according to (1), characterized in that a communication port for communicating the static pressure chamber and the downstream battery cell chamber is provided at a position not facing the outlet of the cooling fan.

【0010】請求項6の発明にあっては、請求項1〜5
に記載の電気自動車のバッテリ冷却装置であって、静圧
チャンバの内壁を吸音構造としたことを特徴としてい
る。
According to the invention of claim 6, claims 1 to 5 are provided.
Wherein the inner wall of the static pressure chamber has a sound absorbing structure.

【0011】[0011]

【発明の効果】請求項1に記載の発明によれば、冷却フ
ァンによって空気取入口から上流側バッテリセル室に空
気が流入すると、該上流側バッテリセル室の最下流部に
設けた縮流部により冷却ファンの直前で空気流が縮流さ
れて、冷却風の流速低下を該縮流部のオリフィス効果に
よって低減することができ、該上流側バッテリセル室内
で冷却風が滞留するのを防止して上流側バッテリセル室
に収容したバッテリセルの個々に冷却風を行き渡らせる
ことができる。
According to the first aspect of the present invention, when air flows into the upstream battery cell chamber from the air intake by the cooling fan, the contraction section provided at the most downstream portion of the upstream battery cell chamber. As a result, the air flow is reduced immediately before the cooling fan, and the decrease in the flow velocity of the cooling air can be reduced by the orifice effect of the reduced flow portion, thereby preventing the cooling air from remaining in the upstream battery cell chamber. Thus, the cooling air can be distributed to each of the battery cells housed in the upstream battery cell chamber.

【0012】そして、静圧チャンバでは冷却ファンのア
ウトレット直後で急激に管路面積が拡大しているため、
該静圧チャンバで冷却ファンにより送風される冷却風の
速度成分が静圧に変換されて、該静圧チャンバ内から連
通口を介して下流側バッテリセル室に冷却風が供給さ
れ、該下流側バッテリセル室ではその最上流側の連通口
部分と最下流側の空気排出口部分との圧力差が略一定に
確保されて、該下流側バッテリセル室に収容したバッテ
リセルの個々に均等な冷却風量、風速の冷却風を供給す
ることができる。
In the static pressure chamber, the pipe area is rapidly increased immediately after the outlet of the cooling fan.
The velocity component of the cooling air blown by the cooling fan in the static pressure chamber is converted to static pressure, and the cooling air is supplied from the inside of the static pressure chamber to the downstream battery cell chamber via the communication port, and In the battery cell chamber, the pressure difference between the communication port on the most upstream side and the air discharge port on the most downstream side is maintained substantially constant, so that the individual battery cells housed in the downstream battery cell chamber are uniformly cooled. Cooling air of the air volume and wind speed can be supplied.

【0013】この結果、バッテリケース内の全てのバッ
テリセルを均等に冷却することができて、バッテリセル
の冷却効率を一段と高めることができる。
As a result, all the battery cells in the battery case can be cooled uniformly, and the cooling efficiency of the battery cells can be further improved.

【0014】また、前述のように静圧チャンバで気流音
の主要因である流体速度を一旦大きく低下させるため、
騒音を低減することができる。つまり、静圧チャンバで
は空気流に微少な渦が発生しても、それを成長させる程
の大きな主流が存在しないため、渦による騒音を低減す
ることができる。
Further, as described above, in order to temporarily reduce the fluid velocity which is a main factor of the airflow noise in the static pressure chamber once,
Noise can be reduced. In other words, even if a small vortex is generated in the air flow in the static pressure chamber, there is no main flow large enough to grow the vortex, so that noise due to the vortex can be reduced.

【0015】請求項2に記載の発明によれば、請求項1
の発明の効果に加えて、下流側バッテリセル室の管路長
を上流側バッテリセル室の管路長よりも短かく設定し
て、該下流側バッテリセル室の冷却風の圧力損失を小さ
く抑制できるようにしてあるため、該下流側バッテリセ
ル室の冷却風量、風速の減少を抑えてバッテリセル個々
のより均一な冷却性を図ることができる。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention, the pipe length of the downstream battery cell chamber is set shorter than the pipe length of the upstream battery cell chamber, and the pressure loss of the cooling air in the downstream battery cell chamber is suppressed to a small value. Since it is possible to reduce the cooling air volume and the air velocity in the downstream battery cell chamber, more uniform cooling of each battery cell can be achieved.

【0016】請求項3に記載の発明によれば、請求項
1,2の発明の効果に加えて、下流側バッテリセル室の
冷却風流れに対して垂直方向の断面積を上流側バッテリ
セル室の同方向の断面積よりも大きく設定することによ
って、該上流側バッテリセル室の管路幅を狭められて縮
流部の管路縮小比、つまり、縮流部の大径部と小径部と
の比率を小さくできて該縮流部の縮管長さを短縮でき、
従って縮流部での管路抵抗を小さく抑えて冷却ファンの
ファン効率を高めることができる。
According to the third aspect of the present invention, in addition to the effects of the first and second aspects of the present invention, the sectional area of the downstream battery cell chamber in the direction perpendicular to the cooling air flow is changed to the upstream battery cell chamber. By setting larger than the cross-sectional area in the same direction, the conduit width of the upstream battery cell chamber is reduced, and the conduit contraction ratio of the contraction part, that is, the large diameter part and the small diameter part of the contraction part Can be reduced, and the length of the contraction tube of the contraction section can be reduced,
Therefore, it is possible to increase the fan efficiency of the cooling fan by suppressing the pipe resistance at the flow reducing portion.

【0017】請求項4に記載の発明によれば、請求項1
〜3の発明の効果に加えて、遠心ファンによって管路抵
抗を生じることなく冷却風の流れ方向を略直角に偏向し
て冷却風を下流側バッテリセル室に向かわせることがで
きて、冷却ファンのファン効率を高めることができる。
According to the invention described in claim 4, according to claim 1,
In addition to the effects of the inventions of (1) to (3), it is possible to deflect the flow direction of the cooling air at a substantially right angle without causing a line resistance by the centrifugal fan and to direct the cooling air toward the downstream battery cell chamber, thereby providing the cooling fan. Fan efficiency can be increased.

【0018】請求項5に記載の発明によれば、請求項1
〜4の発明の効果に加えて、冷却ファンから送風された
冷却風の動圧が連通口および下流側バッテリセル室に影
響するのを回避できるため、下流側バッテリセル室の冷
却風量、風速の均一化をより一層高めることができる。
According to the invention described in claim 5, according to claim 1,
In addition to the effects of the present invention, the dynamic pressure of the cooling air blown from the cooling fan can be prevented from affecting the communication port and the downstream battery cell chamber. Uniformity can be further enhanced.

【0019】請求項6に記載の発明によれば、請求項1
〜5の発明の効果に加えて、静圧チャンバの内壁を吸音
構造としてあるため、静圧チャンバで気流音が生じても
これを吸収することができて、ファン騒音を大幅に低減
することができる。
According to the invention described in claim 6, according to claim 1,
In addition to the effects of the fifth to fifth aspects, since the inner wall of the static pressure chamber has a sound absorbing structure, even if air flow noise is generated in the static pressure chamber, it can be absorbed and the fan noise can be greatly reduced. it can.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態を図面と
共に詳述する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】図1において、1は複数個のバッテリセル
2を収容するバッテリケースを示し、該バッテリケース
1内を隔壁3によって、複数個のバッテリセル2を収容
した上流側バッテリセル室4と、複数個のバッテリセル
2を収容した下流側バッテリセル室5と、に並列に隣接
して隔成してある。
In FIG. 1, reference numeral 1 denotes a battery case for accommodating a plurality of battery cells 2, and an inside of the battery case 1 is separated by a partition wall 3 into an upstream battery cell chamber 4 for accommodating the plurality of battery cells 2. A plurality of battery cells 2 are accommodated in parallel and separated from each other in a downstream battery cell chamber 5.

【0022】上流側バッテリセル室4の最上流部には空
気取入口6を形成してある一方、下流側バッテリセル室
5の最下流部には空気排出口7を形成してある。
An air inlet 6 is formed at the most upstream part of the upstream battery cell chamber 4, while an air outlet 7 is formed at the most downstream part of the downstream battery cell chamber 5.

【0023】また、上流側バッテリセル室4の最下流部
には、該上流側バッテリセル室4の開口面積を漸次縮小
して、空気取入口6から流入した空気流を縮流する縮流
部8を設けてある。
In the most downstream part of the upstream battery cell chamber 4, a contraction section for gradually reducing the opening area of the upstream battery cell chamber 4 to reduce the flow of air flowing in from the air inlet 6 is provided. 8 is provided.

【0024】バッテリケース1の一側部には、前記上流
側バッテリセル室4と下流側バッテリセル室5とを中継
し、前記縮流部8に連設配置した冷却ファン10を備え
て、該冷却ファン10の後流の冷却風の速度成分を静圧
に変換する容積の大きな静圧チャンバ9を設けてある。
One side of the battery case 1 is provided with a cooling fan 10 which relays the upstream battery cell chamber 4 and the downstream battery cell chamber 5 and is disposed in a continuous manner with the flow reducing section 8. A large static pressure chamber 9 for converting the velocity component of the cooling air downstream of the cooling fan 10 into static pressure is provided.

【0025】また、前記下流側バッテリセル室5はその
最上流部において連通口11を介して前記静圧チャンバ
9に連通している。
The downstream battery cell chamber 5 communicates with the static pressure chamber 9 via a communication port 11 at the most upstream portion thereof.

【0026】この静圧チャンバ9は、その内壁9aを例
えば粗面に形成して吸音構造としてある。
The static pressure chamber 9 has a sound absorbing structure in which an inner wall 9a is formed, for example, on a rough surface.

【0027】また、前記冷却ファン10として本実施形
態にあっては、インレット10aとアウトレット10b
とで冷却風の速度ベクトルを略直角に偏向する遠心ファ
ンを用いている。
In this embodiment, the cooling fan 10 has an inlet 10a and an outlet 10b.
A centrifugal fan that deflects the velocity vector of the cooling air at a substantially right angle is used.

【0028】更に、本実施形態にあってはバッテリケー
ス1の他側部には、上流側バッテリセル室4に収容した
バッテリセル2の作動を制御するセルコントローラ12
Aと、下流側バッテリセル室5に収容したバッテリセル
2の作動を制御するセルコントローラ12Bと、これら
バッテリセル2からの電流を供給制御するジャンクショ
ンボックス13とを隔成して搭載してある。
Further, in this embodiment, a cell controller 12 for controlling the operation of the battery cells 2 housed in the upstream battery cell chamber 4 is provided on the other side of the battery case 1.
A, a cell controller 12B for controlling the operation of the battery cells 2 housed in the downstream battery cell chamber 5, and a junction box 13 for controlling the supply of current from these battery cells 2 are separately mounted.

【0029】以上の実施形態の構造によれば、冷却ファ
ン10を作動すると、空気取入口6より上流側バッテリ
セル室4内に空気が流入し、該上流側バッテリセル室4
内を冷却風となって矢印A1で示すように流通し、縮流
部8および該冷却ファン10を経由して矢印A2で示す
ように静圧チャンバ9に流入し、そして該静圧チャンバ
9を中継として連通口11から下流側バッテリセル室5
に導入されて矢印A3で示すように該下流側バッテリ室
5を流通し、空気排出口7よりバッテリケース1外へ排
出される。
According to the structure of the above embodiment, when the cooling fan 10 is operated, air flows into the upstream battery cell chamber 4 from the air intake 6 and the upstream battery cell chamber 4
The inner becomes cooling air flows as indicated by arrows A 1, flows into the static pressure chamber 9 as indicated by the vena contracta 8 and an arrow A 2 via the cooling fan 10, and the static pressure chamber 9 as a relay, from the communication port 11 to the downstream battery cell chamber 5
It is introduced flows through the downstream-side battery chamber 5 as shown by arrow A 3 to be discharged from the air outlet 7 into the battery case 1 outside.

【0030】ここで、前述のように冷却ファン10によ
って空気取入口6から上流側バッテリセル室4に空気が
流入すると、該上流側バッテリセル室4の最下流部に設
けた縮流部8により冷却ファン10の直前で空気流が縮
流されて、冷却風の流速低下を該縮流部8のオリフィス
効果によって低減し、該上流側バッテリセル室4内で冷
却風が滞留するのを防止して上流側バッテリセル室4に
収容したバッテリセル2の個々に冷却風を行き渡らせ
る。
Here, as described above, when air flows from the air inlet 6 into the upstream battery cell chamber 4 by the cooling fan 10, the air flows into the upstream battery cell chamber 4 through the contraction section 8 provided at the most downstream portion of the upstream battery cell chamber 4. The air flow is compressed immediately before the cooling fan 10, and the decrease in the flow velocity of the cooling air is reduced by the orifice effect of the contraction section 8, thereby preventing the cooling air from staying in the upstream battery cell chamber 4. Thus, the cooling air is distributed to each of the battery cells 2 housed in the upstream battery cell chamber 4.

【0031】そして、静圧チャンバ9では冷却ファン1
0のアウトレット10bの直後で急激に管路面積が拡大
しているため、該静圧チャンバ9で冷却ファン10によ
り送風される冷却風の速度成分が静圧に変換されて、該
静圧チャンバ9内から前述のように連通口11を介して
下流側バッテリセル室5に冷却風が供給され、該下流側
バッテリセル室5ではその最上流側の連通口11の部分
と最下流側の空気排出口7の部分との圧力差が略一定に
確保されて、該下流側バッテリセル室5に収容したバッ
テリセル2の個々に均等な冷却風量、風速の冷却風を供
給することができる。
In the static pressure chamber 9, the cooling fan 1
The outlet of the cooling air blown by the cooling fan 10 in the static pressure chamber 9 is converted into a static pressure because the pipe area is rapidly increased immediately after the outlet 10b. Cooling air is supplied from the inside to the downstream battery cell chamber 5 through the communication port 11 as described above, and the downstream battery cell chamber 5 has the most upstream communication port 11 and the most downstream air exhaust port. The pressure difference between the outlet 7 and the outlet 7 is substantially constant, so that the cooling air having the same cooling air volume and the same wind speed can be supplied to each of the battery cells 2 housed in the downstream battery cell chamber 5.

【0032】この結果、バッテリケース1内の全てのバ
ッテリセル2を均等に冷却することができて、バッテリ
セル2の冷却効率を一段と高めることができる。
As a result, all the battery cells 2 in the battery case 1 can be cooled uniformly, and the cooling efficiency of the battery cells 2 can be further increased.

【0033】また、前述の静圧チャンバ9では冷却ファ
ン10直後の空気流は、管路面積の急拡大により多くの
渦を伴った流れとなり、この渦が気流音の原因となり得
るが、前述のように該静圧チャンバ9でこの気流音の主
要因である流体速度を一旦大きく低下させるため、騒音
を低減することができる。
In the above-described static pressure chamber 9, the air flow immediately after the cooling fan 10 becomes a flow accompanied by many vortices due to a sudden increase in the pipe area, and this vortex may cause airflow noise. As described above, since the fluid velocity, which is the main factor of the airflow noise, is once greatly reduced in the static pressure chamber 9, noise can be reduced.

【0034】つまり、静圧チャンバ9では空気流に微少
な渦が発生しても、それを成長させる程の大きな主流が
存在しないため、渦による騒音を低減することができ
る。
That is, even if a small vortex is generated in the air flow in the static pressure chamber 9, there is no main flow large enough to grow the vortex, so that noise due to the vortex can be reduced.

【0035】とりわけ、本実施形態では静圧チャンバ9
の内壁9aを粗面に形成して吸音構造としてあるため、
この内壁9aで渦流の消失を促進し、冷却風の流れの速
度成分を効率よく圧力成分に変換して下流側バッテリセ
ル室5のバッテリセル2の冷却効率を向上すると同時
に、該内壁9aで気流音自体をも吸収してファン騒音を
大幅に低減することができる。
In particular, in this embodiment, the static pressure chamber 9
The inner wall 9a is formed with a rough surface to have a sound absorbing structure,
This inner wall 9a promotes the disappearance of the vortex, efficiently converts the velocity component of the flow of the cooling air into a pressure component to improve the cooling efficiency of the battery cells 2 in the downstream battery cell chamber 5, and at the same time, the air flow is generated by the inner wall 9a. The fan itself can be greatly reduced by absorbing the sound itself.

【0036】また、冷却ファン10として遠心ファンを
用いているため、該遠心ファンによって管路抵抗を生じ
ることなく冷却風の流れ方向を矢印A2で示すように略
直角に偏向して冷却風を下流側バッテリセル室5に向か
わせることができて、冷却ファン10のファン効率を高
めることができる。
Further, because of the use of centrifugal fan as the cooling fan 10, the cooling air substantially deflected at a right angle to indicate the direction of flow of the cooling air without causing a pipeline resistance by centrifugal fans by the arrow A 2 The cooling fan 10 can be directed to the downstream battery cell chamber 5 and the fan efficiency of the cooling fan 10 can be increased.

【0037】しかも、この冷却ファン10として遠心フ
ァンを用いてそのアウトレット10bが連通口11と対
向しないような配置としてあるため、冷却ファン10か
ら送風された冷却風の動圧が連通口11および下流側バ
ッテリセル室5に影響するのを回避できるため、下流側
バッテリセル室5の冷却風量、風速の均一化をより一層
高めることができる。
In addition, a centrifugal fan is used as the cooling fan 10 so that the outlet 10b is arranged so as not to face the communication port 11, so that the dynamic pressure of the cooling air blown from the cooling fan 10 is applied to the communication port 11 and the downstream. Since the influence on the side battery cell chamber 5 can be avoided, the cooling air volume and the air velocity of the downstream battery cell chamber 5 can be made more uniform.

【0038】図2は本発明の第2実施形態を示すもの
で、本実施形態にあっては、前記第1実施形態における
上流側バッテリセル室4をバッテリケース1の中央部に
配設し、その左右両側部に下流側バッテリセル室5,5
を並列に隣接して隔成してある。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the upstream battery cell chamber 4 in the first embodiment is disposed at the center of the battery case 1. Downstream battery cell chambers 5, 5 are located on both left and right sides.
Are arranged adjacently in parallel.

【0039】また、下流側バッテリセル室5はその管路
長を上流側バッテリセル室4の管路長よりも短かく設定
してある。
The downstream battery cell chamber 5 is set to have a shorter pipe length than the upstream battery cell chamber 4.

【0040】従って、この第2の実施形態の構造によれ
ば前記第1実施形態と同様の効果が得られる他、下流側
バッテリセル室5を複数にして、該下流側バッテリセル
5,5の冷却風の流れに対して垂直方向の総断面積を、
上流側バッテリセル室4の同方向の断面積よりも大きく
設定することにより、該上流側バッテリセル室4の管路
幅を狭められて縮流部8の管路縮小比、つまり、縮流部
8の大径部WO と小径部W1 との比率を小さくできて、
該縮流部8の縮管長さLを短縮でき、従って、縮流部8
での管路抵抗を小さく抑えて冷却ファン10のファン効
率を高めることができる。
Therefore, according to the structure of the second embodiment, the same effects as those of the first embodiment can be obtained. The total cross-sectional area in the vertical direction with respect to the flow of cooling air,
By setting the cross-sectional area of the upstream battery cell chamber 4 to be larger than the cross-sectional area in the same direction, the pipe width of the upstream battery cell chamber 4 is narrowed, and the pipe contraction ratio of the contraction section 8, that is, the contraction section 8, the ratio between the large diameter portion W O and the small diameter portion W 1 can be reduced,
The contraction length L of the contraction section 8 can be shortened, so that the contraction section 8
Therefore, it is possible to increase the fan efficiency of the cooling fan 10 by suppressing the pipeline resistance at the same time.

【0041】また、下流側バッテリセル室5の管路長を
上流側バッテリセル室4の管路長よりも短かく設定し
て、該下流側バッテリセル室5の冷却風の圧力損失を小
さく抑制できるようにしてあるため、該下流側バッテリ
セル室5の冷却風量、風速の減少を抑えてバッテリセル
2の個々のより均一な冷却性を図ることができる。
Further, the pipe length of the downstream battery cell chamber 5 is set shorter than the pipe length of the upstream battery cell chamber 4, so that the pressure loss of the cooling air in the downstream battery cell chamber 5 is suppressed to be small. Since it is possible to reduce the cooling air volume and the air velocity in the downstream battery cell chamber 5, it is possible to achieve more uniform cooling of the battery cells 2 individually.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す略示的平面説明
図。
FIG. 1 is a schematic plan explanatory view showing a first embodiment of the present invention.

【図2】本発明の第2の実施形態を示す略示的平面説明
図。
FIG. 2 is a schematic plan explanatory view showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…バッテリケース 2…バッテリセル 3…隔壁 4…上流側バッテリセル室 5…下流側バッテリセル室 6…空気取入口 7…空気排出口 8…縮流部 9…静圧チャンバ 9a…内壁 10…冷却ファン 11…連通口 DESCRIPTION OF SYMBOLS 1 ... Battery case 2 ... Battery cell 3 ... Partition wall 4 ... Upstream battery cell room 5 ... Downstream battery cell room 6 ... Air intake 7 ... Air discharge port 8 ... Contraction part 9 ... Static pressure chamber 9a ... Inner wall 10 ... Cooling fan 11: communication port

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3D035 AA03 5H031 KK06 KK08 5H115 PC06 PG04 PI14 PI29 PU01 UI29 UI35 UI40  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3D035 AA03 5H031 KK06 KK08 5H115 PC06 PG04 PI14 PI29 PU01 UI29 UI35 UI40

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数個のバッテリセルを収容するバッテ
リケース内を隔壁によって、最上流部に空気取入口を備
えて複数個のバッテリセルを収容した上流側バッテリセ
ル室と、最下流部に空気排出口を備えて複数個のバッテ
リセルを収容した下流側バッテリセル室と、に並列に隣
接して隔成すると共に前記上流側バッテリセル室の最下
流部に、空気取入口から流入した空気流を縮流する縮流
部を設け、前記上流側バッテリセル室と下流側バッテリ
セル室との間には、前記縮流部に連設配置した冷却ファ
ンを備えて、該冷却ファン後流の冷却風の速度成分を静
圧に変換する容積の大きな静圧チャンバを設けると共
に、該静圧チャンバと下流側バッテリセル室とを連通し
て静圧チャンバ内から下流側バッテリセル室に冷却風を
供給する連通口を設けたことを特徴とする電気自動車の
バッテリ冷却装置。
A battery case accommodating a plurality of battery cells is separated by a partition into an upstream battery cell chamber having an air inlet at an uppermost stream portion and accommodating a plurality of battery cells, and air at a most downstream portion. A downstream battery cell chamber having a plurality of battery cells provided with an outlet, and separated in parallel and adjacent to the downstream battery cell chamber, and an air flow flowing from an air inlet into the most downstream portion of the upstream battery cell chamber. A cooling fan is provided between the upstream battery cell chamber and the downstream battery cell chamber. A static pressure chamber having a large capacity for converting the velocity component of wind into static pressure is provided, and the static pressure chamber communicates with the downstream battery cell chamber to supply cooling air from the static pressure chamber to the downstream battery cell chamber. Communication port A battery cooling device for an electric vehicle.
【請求項2】 下流側バッテリセル室を上流側バッテリ
セル室よりも管路長を短かく設定したことを特徴とする
請求項1に記載の電気自動車のバッテリ冷却装置。
2. The battery cooling device for an electric vehicle according to claim 1, wherein the downstream battery cell chamber has a shorter pipe length than the upstream battery cell chamber.
【請求項3】 下流側バッテリセル室を上流側バッテリ
セル室よりも冷却風の流れに対して垂直方向の断面積を
大きく設定したことを特徴とする請求項1,2に記載の
電気自動車のバッテリ冷却装置。
3. The electric vehicle according to claim 1, wherein the downstream battery cell chamber has a larger cross-sectional area in a direction perpendicular to the flow of the cooling air than the upstream battery cell chamber. Battery cooling device.
【請求項4】 静圧チャンバに配設した冷却ファンが、
そのインレットとアウトレットとで冷却風の速度ベクト
ルを略直角に偏向する遠心ファンであることを特徴とす
る請求項1〜3の何れかに記載の電気自動車のバッテリ
冷却装置。
4. A cooling fan disposed in the static pressure chamber,
The battery cooling device for an electric vehicle according to any one of claims 1 to 3, wherein the cooling device is a centrifugal fan that deflects a velocity vector of cooling air at substantially right angles at the inlet and the outlet.
【請求項5】 静圧チャンバと下流側バッテリセル室と
を連通する連通口を、冷却ファンのアウトレットと対向
しない位置に設けたことを特徴とする請求項1〜4の何
れかに記載の電気自動車のバッテリ冷却装置。
5. The electric device according to claim 1, wherein a communication port for communicating the static pressure chamber with the downstream battery cell chamber is provided at a position not facing the outlet of the cooling fan. Automotive battery cooling device.
【請求項6】 静圧チャンバの内壁を吸音構造としたこ
とを特徴とする請求項1〜5の何れかに記載の電気自動
車のバッテリ冷却装置。
6. The battery cooling device for an electric vehicle according to claim 1, wherein an inner wall of the static pressure chamber has a sound absorbing structure.
JP2001115566A 2001-04-13 2001-04-13 Battery cooling system for electric vehicles Expired - Fee Related JP3744376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115566A JP3744376B2 (en) 2001-04-13 2001-04-13 Battery cooling system for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115566A JP3744376B2 (en) 2001-04-13 2001-04-13 Battery cooling system for electric vehicles

Publications (2)

Publication Number Publication Date
JP2002313440A true JP2002313440A (en) 2002-10-25
JP3744376B2 JP3744376B2 (en) 2006-02-08

Family

ID=18966441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115566A Expired - Fee Related JP3744376B2 (en) 2001-04-13 2001-04-13 Battery cooling system for electric vehicles

Country Status (1)

Country Link
JP (1) JP3744376B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019231A (en) * 2003-06-26 2005-01-20 Toyota Motor Corp Cooling structure of battery pack
JP2006318820A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Cooling structure of battery box
JP2006339048A (en) * 2005-06-02 2006-12-14 Honda Motor Co Ltd Battery-cooling structure
JP2010015788A (en) * 2008-07-02 2010-01-21 Sanyo Electric Co Ltd Battery pack for vehicle
WO2010109293A1 (en) * 2009-03-23 2010-09-30 Toyota Jidosha Kabushiki Kaisha Temperature adjustment structure of electricity storage apparatus
KR101013835B1 (en) * 2008-11-25 2011-02-14 현대자동차일본기술연구소 Battery cooling device for vehicle
JP2011138730A (en) * 2010-01-04 2011-07-14 Mitsubishi Heavy Ind Ltd Battery pack
WO2012157332A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Battery pack structure for electric vehicles
WO2012157331A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Battery pack structure for electric vehicles
JP2013220674A (en) * 2012-04-13 2013-10-28 Mazda Motor Corp Air conditioning structure for vehicular battery unit
JP2013244861A (en) * 2012-05-28 2013-12-09 Mazda Motor Corp Air conditioning structure of vehicular battery unit
JP2014500590A (en) * 2010-11-17 2014-01-09 エルジー・ケム・リミテッド Battery pack with improved uniformity in refrigerant distribution
JP2014053279A (en) * 2012-09-07 2014-03-20 Hyundai Motor Company Co Ltd Battery system
JP2014058254A (en) * 2012-09-18 2014-04-03 Mazda Motor Corp Battery temperature regulator
JP2014203600A (en) * 2013-04-02 2014-10-27 株式会社デンソー Battery pack
US9012056B2 (en) 2011-09-26 2015-04-21 Hyundai Motor Company High voltage battery pack apparatus for vehicle
JP2015130301A (en) * 2014-01-08 2015-07-16 株式会社デンソー Battery cooling device
JP2017037750A (en) * 2015-08-07 2017-02-16 株式会社デンソー Battery pack
EP3782835A1 (en) * 2019-08-08 2021-02-24 Suzuki Motor Corporation Vehicle battery pack
JP2021536103A (en) * 2018-08-30 2021-12-23 ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. Reformer container and fuel cell system
DE112015006567B4 (en) 2015-05-27 2023-05-25 Mitsubishi Electric Corporation energy storage device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019231A (en) * 2003-06-26 2005-01-20 Toyota Motor Corp Cooling structure of battery pack
JP2006318820A (en) * 2005-05-13 2006-11-24 Honda Motor Co Ltd Cooling structure of battery box
JP2006339048A (en) * 2005-06-02 2006-12-14 Honda Motor Co Ltd Battery-cooling structure
JP2010015788A (en) * 2008-07-02 2010-01-21 Sanyo Electric Co Ltd Battery pack for vehicle
KR101013835B1 (en) * 2008-11-25 2011-02-14 현대자동차일본기술연구소 Battery cooling device for vehicle
WO2010109293A1 (en) * 2009-03-23 2010-09-30 Toyota Jidosha Kabushiki Kaisha Temperature adjustment structure of electricity storage apparatus
JP2010225344A (en) * 2009-03-23 2010-10-07 Toyota Motor Corp Temperature adjustment structure of electricity storage apparatus
CN102362389A (en) * 2009-03-23 2012-02-22 丰田自动车株式会社 Temperature adjustment structure of electricity storage apparatus
JP2011138730A (en) * 2010-01-04 2011-07-14 Mitsubishi Heavy Ind Ltd Battery pack
US8703317B2 (en) 2010-01-04 2014-04-22 Mitsubishi Heavy Industries, Ltd. Battery pack
JP2014500590A (en) * 2010-11-17 2014-01-09 エルジー・ケム・リミテッド Battery pack with improved uniformity in refrigerant distribution
US9203124B2 (en) 2010-11-17 2015-12-01 Lg Chem, Ltd. Battery pack providing improved distribution uniformity of coolant
US9118094B2 (en) 2011-05-17 2015-08-25 Nissan Motor Co., Ltd. Battery pack structure for electric vehicles
WO2012157331A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Battery pack structure for electric vehicles
JP2012243449A (en) * 2011-05-17 2012-12-10 Nissan Motor Co Ltd Battery pack structure of electric automobile
WO2012157332A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Battery pack structure for electric vehicles
US10109894B2 (en) 2011-05-17 2018-10-23 Nissan Motor Co., Ltd. Battery pack structure for electric vehicles
US9012056B2 (en) 2011-09-26 2015-04-21 Hyundai Motor Company High voltage battery pack apparatus for vehicle
JP2013220674A (en) * 2012-04-13 2013-10-28 Mazda Motor Corp Air conditioning structure for vehicular battery unit
JP2013244861A (en) * 2012-05-28 2013-12-09 Mazda Motor Corp Air conditioning structure of vehicular battery unit
JP2014053279A (en) * 2012-09-07 2014-03-20 Hyundai Motor Company Co Ltd Battery system
JP2014058254A (en) * 2012-09-18 2014-04-03 Mazda Motor Corp Battery temperature regulator
JP2014203600A (en) * 2013-04-02 2014-10-27 株式会社デンソー Battery pack
JP2015130301A (en) * 2014-01-08 2015-07-16 株式会社デンソー Battery cooling device
DE112015006567B4 (en) 2015-05-27 2023-05-25 Mitsubishi Electric Corporation energy storage device
JP2017037750A (en) * 2015-08-07 2017-02-16 株式会社デンソー Battery pack
WO2017026312A1 (en) * 2015-08-07 2017-02-16 株式会社デンソー Battery pack
US10950907B2 (en) 2015-08-07 2021-03-16 Denso Corporation Battery pack
JP2021536103A (en) * 2018-08-30 2021-12-23 ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. Reformer container and fuel cell system
JP7185960B2 (en) 2018-08-30 2022-12-08 ワット・フューエル・セル・コーポレイション Reformer vessel and fuel cell system
EP3782835A1 (en) * 2019-08-08 2021-02-24 Suzuki Motor Corporation Vehicle battery pack

Also Published As

Publication number Publication date
JP3744376B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP2002313440A (en) Battery cooling device for electric automobile
JP4035059B2 (en) Diffuser for ground or aviation gas turbine
KR100326609B1 (en) Clean Room Equipment
CN104425854A (en) Traction battery cooling system
JP2001164903A (en) Airfoil, wall capable of being cooled, and method of cooling the wall
CN101755129A (en) Centrifugal fan
US10598190B2 (en) Centrifugal blower
KR101469938B1 (en) Car seat having plural ventilation module
KR101745217B1 (en) Cooling air interface in a blower housing
WO2016119473A1 (en) Air conditioning indoor unit cooling exchange system
MY124543A (en) Cross flow blower
JPH11257003A (en) Impingement cooling device
JP2001204536A (en) Hair dryer
JPH11118233A (en) Structure of air outlet of air conditioner
CN104420960B (en) Structure for preventing from causing Active noise control loudspeaker thermal damage
JP2008076304A (en) Circulation flow type wind tunnel device
US20060011065A1 (en) Inlet nozzle for oxygen concentrator
CN113847735A (en) Device of making an uproar and have its air conditioner falls in wind channel
JPH10318191A (en) Suction casing for centrifugal compressor
JP2001304605A (en) Air conditioner
CN209013343U (en) Blower fan apparatus and air conditioner indoor unit equipped with it
CN112539467A (en) Machine and air conditioner in air conditioning
CN216204258U (en) Device of making an uproar and have its air conditioner falls in wind channel
JPH0599444A (en) Air conditioner
JP4791691B2 (en) Gas outlet unit for large blower assembly

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees