JP3744376B2 - Battery cooling system for electric vehicles - Google Patents

Battery cooling system for electric vehicles Download PDF

Info

Publication number
JP3744376B2
JP3744376B2 JP2001115566A JP2001115566A JP3744376B2 JP 3744376 B2 JP3744376 B2 JP 3744376B2 JP 2001115566 A JP2001115566 A JP 2001115566A JP 2001115566 A JP2001115566 A JP 2001115566A JP 3744376 B2 JP3744376 B2 JP 3744376B2
Authority
JP
Japan
Prior art keywords
battery cell
downstream
cell chamber
battery
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001115566A
Other languages
Japanese (ja)
Other versions
JP2002313440A (en
Inventor
学 佐藤
卓弥 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001115566A priority Critical patent/JP3744376B2/en
Publication of JP2002313440A publication Critical patent/JP2002313440A/en
Application granted granted Critical
Publication of JP3744376B2 publication Critical patent/JP3744376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気自動車のバッテリ冷却装置に関する。
【0002】
【従来の技術】
電気自動車は周知のように複数個のバッテリセルを収容したバッテリケースを搭載して、このバッテリセルを電気エネルギー供給源としているが、バッテリセルがその充放電時の発生熱で高温化するとエネルギー効率が低下するため、例えば特開平11−67178号公報、特開2000−67934号公報等に示されているようなバッテリセルの冷却装置が提案されている。
【0003】
【発明が解決しようとする課題】
前記何れの冷却装置にあっても、冷却風を動圧によって供給するため、バッテリケース内の冷却風通路に滞留が生じ易く、バッテリセルを効率よく冷却することができなくなってしまう。
【0004】
そこで、本発明はバッテリケース内のバッテリセルの冷却の偏りを解消できて、バッテリセルの冷却効率を一段と高めることができる電気自動車のバッテリ冷却装置を提供するものである。
【0005】
【課題を解決するための手段】
請求項1の発明にあっては、複数個のバッテリセルを収容するバッテリケース内を隔壁によって、最上流部に空気取入口を備えて複数個のバッテリセルを収容した上流側バッテリセル室と、最下流部に空気排出口を備えて複数個のバッテリセルを収容した下流側バッテリセル室と、に並列に隣接して隔成すると共に前記上流側バッテリセル室の最下流部に、空気取入口から流入した空気流を縮流する縮流部を設け、前記上流側バッテリセル室と下流側バッテリセル室との間には、前記縮流部に連設配置した冷却ファンを備えて、該冷却ファン後流の冷却風の速度成分を静圧に変換する容積の大きな静圧チャンバを設けると共に、該静圧チャンバと下流側バッテリセル室とを連通して静圧チャンバ内から下流側バッテリセル室に冷却風を供給する連通口を設けたことを特徴としている。
【0006】
請求項2の発明にあっては、請求項1に記載の下流側バッテリセル室を上流側バッテリセル室よりも管路長を短かく設定したことを特徴としている。
【0007】
請求項3の発明にあっては、請求項1,2に記載の下流側バッテリセル室を上流側バッテリセル室よりも冷却風の流れに対して垂直方向の断面積を大きく設定したことを特徴としている。
【0008】
請求項4の発明にあっては、請求項1〜3に記載の電気自動車のバッテリ冷却装置であって、静圧チャンバに配設した冷却ファンが、そのインレットとアウトレットとで冷却風の速度ベクトルを略直角に偏向する遠心ファンであることを特徴としている。
【0009】
請求項5の発明にあっては、請求項1〜4に記載の電気自動車のバッテリ冷却装置であって、静圧チャンバと下流側バッテリセル室とを連通する連通口を、冷却ファンのアウトレットと対向しない位置に設けたことを特徴としている。
【0010】
請求項6の発明にあっては、請求項1〜5に記載の電気自動車のバッテリ冷却装置であって、静圧チャンバの内壁を吸音構造としたことを特徴としている。
【0011】
【発明の効果】
請求項1に記載の発明によれば、冷却ファンによって空気取入口から上流側バッテリセル室に空気が流入すると、該上流側バッテリセル室の最下流部に設けた縮流部により冷却ファンの直前で空気流が縮流されて、冷却風の流速低下を該縮流部のオリフィス効果によって低減することができ、該上流側バッテリセル室内で冷却風が滞留するのを防止して上流側バッテリセル室に収容したバッテリセルの個々に冷却風を行き渡らせることができる。
【0012】
そして、静圧チャンバでは冷却ファンのアウトレット直後で急激に管路面積が拡大しているため、該静圧チャンバで冷却ファンにより送風される冷却風の速度成分が静圧に変換されて、該静圧チャンバ内から連通口を介して下流側バッテリセル室に冷却風が供給され、該下流側バッテリセル室ではその最上流側の連通口部分と最下流側の空気排出口部分との圧力差が略一定に確保されて、該下流側バッテリセル室に収容したバッテリセルの個々に均等な冷却風量、風速の冷却風を供給することができる。
【0013】
この結果、バッテリケース内の全てのバッテリセルを均等に冷却することができて、バッテリセルの冷却効率を一段と高めることができる。
【0014】
また、前述のように静圧チャンバで気流音の主要因である流体速度を一旦大きく低下させるため、騒音を低減することができる。つまり、静圧チャンバでは空気流に微少な渦が発生しても、それを成長させる程の大きな主流が存在しないため、渦による騒音を低減することができる。
【0015】
請求項2に記載の発明によれば、請求項1の発明の効果に加えて、下流側バッテリセル室の管路長を上流側バッテリセル室の管路長よりも短かく設定して、該下流側バッテリセル室の冷却風の圧力損失を小さく抑制できるようにしてあるため、該下流側バッテリセル室の冷却風量、風速の減少を抑えてバッテリセル個々のより均一な冷却性を図ることができる。
【0016】
請求項3に記載の発明によれば、請求項1,2の発明の効果に加えて、下流側バッテリセル室の冷却風流れに対して垂直方向の断面積を上流側バッテリセル室の同方向の断面積よりも大きく設定することによって、該上流側バッテリセル室の管路幅を狭められて縮流部の管路縮小比、つまり、縮流部の大径部と小径部との比率を小さくできて該縮流部の縮管長さを短縮でき、従って縮流部での管路抵抗を小さく抑えて冷却ファンのファン効率を高めることができる。
【0017】
請求項4に記載の発明によれば、請求項1〜3の発明の効果に加えて、遠心ファンによって管路抵抗を生じることなく冷却風の流れ方向を略直角に偏向して冷却風を下流側バッテリセル室に向かわせることができて、冷却ファンのファン効率を高めることができる。
【0018】
請求項5に記載の発明によれば、請求項1〜4の発明の効果に加えて、冷却ファンから送風された冷却風の動圧が連通口および下流側バッテリセル室に影響するのを回避できるため、下流側バッテリセル室の冷却風量、風速の均一化をより一層高めることができる。
【0019】
請求項6に記載の発明によれば、請求項1〜5の発明の効果に加えて、静圧チャンバの内壁を吸音構造としてあるため、静圧チャンバで気流音が生じてもこれを吸収することができて、ファン騒音を大幅に低減することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0021】
図1において、1は複数個のバッテリセル2を収容するバッテリケースを示し、該バッテリケース1内を隔壁3によって、複数個のバッテリセル2を収容した上流側バッテリセル室4と、複数個のバッテリセル2を収容した下流側バッテリセル室5と、に並列に隣接して隔成してある。
【0022】
上流側バッテリセル室4の最上流部には空気取入口6を形成してある一方、下流側バッテリセル室5の最下流部には空気排出口7を形成してある。
【0023】
また、上流側バッテリセル室4の最下流部には、該上流側バッテリセル室4の開口面積を漸次縮小して、空気取入口6から流入した空気流を縮流する縮流部8を設けてある。
【0024】
バッテリケース1の一側部には、前記上流側バッテリセル室4と下流側バッテリセル室5とを中継し、前記縮流部8に連設配置した冷却ファン10を備えて、該冷却ファン10の後流の冷却風の速度成分を静圧に変換する容積の大きな静圧チャンバ9を設けてある。
【0025】
また、前記下流側バッテリセル室5はその最上流部において連通口11を介して前記静圧チャンバ9に連通している。
【0026】
この静圧チャンバ9は、その内壁9aを例えば粗面に形成して吸音構造としてある。
【0027】
また、前記冷却ファン10として本実施形態にあっては、インレット10aとアウトレット10bとで冷却風の速度ベクトルを略直角に偏向する遠心ファンを用いている。
【0028】
更に、本実施形態にあってはバッテリケース1の他側部には、上流側バッテリセル室4に収容したバッテリセル2の作動を制御するセルコントローラ12Aと、下流側バッテリセル室5に収容したバッテリセル2の作動を制御するセルコントローラ12Bと、これらバッテリセル2からの電流を供給制御するジャンクションボックス13とを隔成して搭載してある。
【0029】
以上の実施形態の構造によれば、冷却ファン10を作動すると、空気取入口6より上流側バッテリセル室4内に空気が流入し、該上流側バッテリセル室4内を冷却風となって矢印A1で示すように流通し、縮流部8および該冷却ファン10を経由して矢印A2で示すように静圧チャンバ9に流入し、そして該静圧チャンバ9を中継として連通口11から下流側バッテリセル室5に導入されて矢印A3で示すように該下流側バッテリ室5を流通し、空気排出口7よりバッテリケース1外へ排出される。
【0030】
ここで、前述のように冷却ファン10によって空気取入口6から上流側バッテリセル室4に空気が流入すると、該上流側バッテリセル室4の最下流部に設けた縮流部8により冷却ファン10の直前で空気流が縮流されて、冷却風の流速低下を該縮流部8のオリフィス効果によって低減し、該上流側バッテリセル室4内で冷却風が滞留するのを防止して上流側バッテリセル室4に収容したバッテリセル2の個々に冷却風を行き渡らせる。
【0031】
そして、静圧チャンバ9では冷却ファン10のアウトレット10bの直後で急激に管路面積が拡大しているため、該静圧チャンバ9で冷却ファン10により送風される冷却風の速度成分が静圧に変換されて、該静圧チャンバ9内から前述のように連通口11を介して下流側バッテリセル室5に冷却風が供給され、該下流側バッテリセル室5ではその最上流側の連通口11の部分と最下流側の空気排出口7の部分との圧力差が略一定に確保されて、該下流側バッテリセル室5に収容したバッテリセル2の個々に均等な冷却風量、風速の冷却風を供給することができる。
【0032】
この結果、バッテリケース1内の全てのバッテリセル2を均等に冷却することができて、バッテリセル2の冷却効率を一段と高めることができる。
【0033】
また、前述の静圧チャンバ9では冷却ファン10直後の空気流は、管路面積の急拡大により多くの渦を伴った流れとなり、この渦が気流音の原因となり得るが、前述のように該静圧チャンバ9でこの気流音の主要因である流体速度を一旦大きく低下させるため、騒音を低減することができる。
【0034】
つまり、静圧チャンバ9では空気流に微少な渦が発生しても、それを成長させる程の大きな主流が存在しないため、渦による騒音を低減することができる。
【0035】
とりわけ、本実施形態では静圧チャンバ9の内壁9aを粗面に形成して吸音構造としてあるため、この内壁9aで渦流の消失を促進し、冷却風の流れの速度成分を効率よく圧力成分に変換して下流側バッテリセル室5のバッテリセル2の冷却効率を向上すると同時に、該内壁9aで気流音自体をも吸収してファン騒音を大幅に低減することができる。
【0036】
また、冷却ファン10として遠心ファンを用いているため、該遠心ファンによって管路抵抗を生じることなく冷却風の流れ方向を矢印A2で示すように略直角に偏向して冷却風を下流側バッテリセル室5に向かわせることができて、冷却ファン10のファン効率を高めることができる。
【0037】
しかも、この冷却ファン10として遠心ファンを用いてそのアウトレット10bが連通口11と対向しないような配置としてあるため、冷却ファン10から送風された冷却風の動圧が連通口11および下流側バッテリセル室5に影響するのを回避できるため、下流側バッテリセル室5の冷却風量、風速の均一化をより一層高めることができる。
【0038】
図2は本発明の第2実施形態を示すもので、本実施形態にあっては、前記第1実施形態における上流側バッテリセル室4をバッテリケース1の中央部に配設し、その左右両側部に下流側バッテリセル室5,5を並列に隣接して隔成してある。
【0039】
また、下流側バッテリセル室5はその管路長を上流側バッテリセル室4の管路長よりも短かく設定してある。
【0040】
従って、この第2の実施形態の構造によれば前記第1実施形態と同様の効果が得られる他、下流側バッテリセル室5を複数にして、該下流側バッテリセル5,5の冷却風の流れに対して垂直方向の総断面積を、上流側バッテリセル室4の同方向の断面積よりも大きく設定することにより、該上流側バッテリセル室4の管路幅を狭められて縮流部8の管路縮小比、つまり、縮流部8の大径部WO と小径部W1 との比率を小さくできて、該縮流部8の縮管長さLを短縮でき、従って、縮流部8での管路抵抗を小さく抑えて冷却ファン10のファン効率を高めることができる。
【0041】
また、下流側バッテリセル室5の管路長を上流側バッテリセル室4の管路長よりも短かく設定して、該下流側バッテリセル室5の冷却風の圧力損失を小さく抑制できるようにしてあるため、該下流側バッテリセル室5の冷却風量、風速の減少を抑えてバッテリセル2の個々のより均一な冷却性を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す略示的平面説明図。
【図2】本発明の第2の実施形態を示す略示的平面説明図。
【符号の説明】
1…バッテリケース
2…バッテリセル
3…隔壁
4…上流側バッテリセル室
5…下流側バッテリセル室
6…空気取入口
7…空気排出口
8…縮流部
9…静圧チャンバ
9a…内壁
10…冷却ファン
11…連通口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery cooling device for an electric vehicle.
[0002]
[Prior art]
As is well known, an electric vehicle is equipped with a battery case containing a plurality of battery cells, and this battery cell is used as an electric energy supply source. However, energy efficiency is increased when the battery cell is heated by heat generated during charging and discharging. Therefore, for example, battery cell cooling devices such as those disclosed in JP-A-11-67178 and JP-A-2000-67934 have been proposed.
[0003]
[Problems to be solved by the invention]
In any of the cooling devices, since the cooling air is supplied by dynamic pressure, the cooling air passage in the battery case is likely to stay and the battery cells cannot be efficiently cooled.
[0004]
Therefore, the present invention provides a battery cooling device for an electric vehicle that can eliminate the uneven cooling of the battery cells in the battery case and further increase the cooling efficiency of the battery cells.
[0005]
[Means for Solving the Problems]
In the invention of claim 1, an upstream battery cell chamber containing a plurality of battery cells with an air inlet at the most upstream part by a partition wall in a battery case that accommodates a plurality of battery cells; A downstream battery cell chamber having an air discharge port at the most downstream portion and accommodating a plurality of battery cells, and adjacent to and parallel to the downstream battery cell chamber, and an air intake port at the most downstream portion of the upstream battery cell chamber A constriction part for constricting the air flow flowing in from the battery is provided, and a cooling fan arranged continuously to the constriction part is provided between the upstream battery cell chamber and the downstream battery cell chamber. A static pressure chamber having a large volume for converting the speed component of the cooling air flow downstream of the fan into a static pressure is provided, and the static pressure chamber and the downstream battery cell chamber communicate with each other to communicate with the downstream battery cell chamber from the static pressure chamber. Supply cooling air to It is characterized in that a communicating port.
[0006]
The invention according to claim 2 is characterized in that the downstream battery cell chamber according to claim 1 is set to be shorter than the upstream battery cell chamber.
[0007]
In the invention of claim 3, the downstream battery cell chamber according to claims 1 and 2 is set to have a larger cross-sectional area in the direction perpendicular to the flow of cooling air than the upstream battery cell chamber. It is said.
[0008]
According to a fourth aspect of the present invention, there is provided a battery cooling apparatus for an electric vehicle according to any one of the first to third aspects, wherein the cooling fan disposed in the static pressure chamber has a cooling air velocity vector at its inlet and outlet. It is characterized by being a centrifugal fan that deflects at a substantially right angle.
[0009]
According to a fifth aspect of the present invention, there is provided a battery cooling device for an electric vehicle according to any one of the first to fourth aspects, wherein the communication port that communicates the static pressure chamber and the downstream battery cell chamber with the outlet of the cooling fan. It is characterized by being provided at a position that does not oppose.
[0010]
The invention according to claim 6 is the battery cooling apparatus for an electric vehicle according to any one of claims 1 to 5, wherein the inner wall of the static pressure chamber has a sound absorbing structure.
[0011]
【The invention's effect】
According to the first aspect of the present invention, when air flows into the upstream battery cell chamber from the air intake port by the cooling fan, it is immediately before the cooling fan by the contracted portion provided in the most downstream portion of the upstream battery cell chamber. In the upstream battery cell, the flow rate of the cooling air can be reduced by the orifice effect of the reduced flow portion to prevent the cooling air from staying in the upstream battery cell chamber. Cooling air can be distributed to each battery cell accommodated in the chamber.
[0012]
In the static pressure chamber, the pipe area suddenly increases immediately after the outlet of the cooling fan. Therefore, the velocity component of the cooling air blown by the cooling fan in the static pressure chamber is converted into static pressure, and the static pressure chamber Cooling air is supplied from the inside of the pressure chamber to the downstream battery cell chamber through the communication port, and in the downstream battery cell chamber, the pressure difference between the communication port portion on the most upstream side and the air discharge port portion on the most downstream side is reduced. It is ensured to be substantially constant, and it is possible to supply cooling air with an equal cooling air amount and air speed to each battery cell accommodated in the downstream battery cell chamber.
[0013]
As a result, all the battery cells in the battery case can be uniformly cooled, and the cooling efficiency of the battery cells can be further increased.
[0014]
Further, as described above, the fluid velocity, which is the main cause of the airflow noise, is once greatly reduced in the static pressure chamber, so that noise can be reduced. That is, in the static pressure chamber, even if a minute vortex is generated in the air flow, there is no main flow large enough to grow the vortex, so that noise caused by the vortex can be reduced.
[0015]
According to the invention of claim 2, in addition to the effect of the invention of claim 1, the pipe length of the downstream battery cell chamber is set shorter than the pipe length of the upstream battery cell chamber, Since the pressure loss of the cooling air in the downstream battery cell chamber can be suppressed to a small level, it is possible to suppress the decrease in the cooling air volume and the wind speed in the downstream battery cell chamber and achieve more uniform cooling performance of each battery cell. it can.
[0016]
According to the third aspect of the present invention, in addition to the effects of the first and second aspects of the invention, the cross-sectional area perpendicular to the cooling air flow in the downstream battery cell chamber is the same as that in the upstream battery cell chamber. Is set to be larger than the cross-sectional area, the pipe width of the upstream battery cell chamber is narrowed to reduce the pipe reduction ratio of the contracted portion, that is, the ratio between the large diameter portion and the small diameter portion of the contracted portion. Therefore, it is possible to reduce the length of the contraction pipe in the contraction section, and thus it is possible to increase the fan efficiency of the cooling fan by suppressing the pipe resistance in the contraction section.
[0017]
According to the fourth aspect of the present invention, in addition to the effects of the first to third aspects, the flow direction of the cooling air is deflected substantially perpendicularly without causing pipe resistance by the centrifugal fan, and the cooling air is made downstream. It can be directed to the side battery cell chamber, and the fan efficiency of the cooling fan can be increased.
[0018]
According to the fifth aspect of the invention, in addition to the effects of the first to fourth aspects of the invention, the dynamic pressure of the cooling air blown from the cooling fan is avoided from affecting the communication port and the downstream battery cell chamber. Therefore, it is possible to further increase the cooling air volume and the air speed in the downstream battery cell chamber.
[0019]
According to the sixth aspect of the present invention, in addition to the effects of the first to fifth aspects of the invention, the inner wall of the static pressure chamber has a sound absorbing structure, so even if air flow noise is generated in the static pressure chamber, it is absorbed. And fan noise can be greatly reduced.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0021]
In FIG. 1, reference numeral 1 denotes a battery case that houses a plurality of battery cells 2, and an upstream battery cell chamber 4 that houses a plurality of battery cells 2 by a partition wall 3 in the battery case 1, and a plurality of battery cells 2. A downstream battery cell chamber 5 in which the battery cell 2 is housed is adjacent to and separated in parallel.
[0022]
An air intake 6 is formed in the most upstream part of the upstream battery cell chamber 4, while an air discharge port 7 is formed in the most downstream part of the downstream battery cell chamber 5.
[0023]
In addition, a downstream portion of the upstream battery cell chamber 4 is provided with a contracted portion 8 that gradually reduces the opening area of the upstream battery cell chamber 4 and contracts the air flow flowing in from the air intake 6. It is.
[0024]
One side of the battery case 1 is provided with a cooling fan 10 that relays the upstream battery cell chamber 4 and the downstream battery cell chamber 5 and is arranged continuously to the contracted flow portion 8. A static pressure chamber 9 having a large volume for converting the velocity component of the cooling air in the downstream flow into static pressure is provided.
[0025]
The downstream battery cell chamber 5 communicates with the static pressure chamber 9 through a communication port 11 at the most upstream portion.
[0026]
The static pressure chamber 9 has a sound absorbing structure with its inner wall 9a formed, for example, in a rough surface.
[0027]
In the present embodiment, the cooling fan 10 is a centrifugal fan that deflects the velocity vector of the cooling air at a substantially right angle between the inlet 10a and the outlet 10b.
[0028]
Furthermore, in the present embodiment, the other side of the battery case 1 is housed in the cell controller 12A for controlling the operation of the battery cell 2 housed in the upstream battery cell chamber 4 and in the downstream battery cell chamber 5. A cell controller 12B that controls the operation of the battery cell 2 and a junction box 13 that controls supply of current from the battery cell 2 are mounted separately.
[0029]
According to the structure of the above embodiment, when the cooling fan 10 is actuated, air flows into the upstream battery cell chamber 4 from the air intake 6, and the inside of the upstream battery cell chamber 4 becomes cooling air as an arrow. It flows as shown by A 1 , flows into the static pressure chamber 9 as shown by arrow A 2 via the contraction part 8 and the cooling fan 10, and from the communication port 11 using the static pressure chamber 9 as a relay. It is introduced into the downstream battery cell chamber 5 and flows through the downstream battery chamber 5 as indicated by arrow A 3 , and is discharged out of the battery case 1 through the air discharge port 7.
[0030]
Here, when air flows from the air intake 6 into the upstream battery cell chamber 4 by the cooling fan 10 as described above, the cooling fan 10 is provided by the contracted portion 8 provided at the most downstream portion of the upstream battery cell chamber 4. Immediately before the air flow is reduced, and the flow velocity reduction of the cooling air is reduced by the orifice effect of the reduced flow portion 8 to prevent the cooling air from staying in the upstream battery cell chamber 4 and to the upstream side. Cooling air is distributed to each battery cell 2 accommodated in the battery cell chamber 4.
[0031]
In the static pressure chamber 9, the pipe area rapidly increases immediately after the outlet 10 b of the cooling fan 10, so that the velocity component of the cooling air blown by the cooling fan 10 in the static pressure chamber 9 becomes static pressure. After being converted, cooling air is supplied from the inside of the static pressure chamber 9 to the downstream battery cell chamber 5 via the communication port 11 as described above, and in the downstream battery cell chamber 5, the communication port 11 on the most upstream side thereof. The pressure difference between this portion and the portion of the air discharge port 7 on the most downstream side is ensured to be substantially constant, so that the cooling air of the battery cells 2 accommodated in the downstream battery cell chamber 5 is evenly and uniformly cooled. Can be supplied.
[0032]
As a result, all the battery cells 2 in the battery case 1 can be uniformly cooled, and the cooling efficiency of the battery cells 2 can be further enhanced.
[0033]
In the static pressure chamber 9 described above, the air flow immediately after the cooling fan 10 becomes a flow with many vortices due to the rapid expansion of the pipe area, and this vortex may cause airflow noise. In the static pressure chamber 9, the fluid velocity, which is the main factor of the air flow noise, is once greatly reduced, so that noise can be reduced.
[0034]
That is, in the static pressure chamber 9, even if a minute vortex is generated in the air flow, there is no main flow large enough to grow it, so that noise caused by the vortex can be reduced.
[0035]
In particular, in this embodiment, since the inner wall 9a of the static pressure chamber 9 is formed into a rough surface to form a sound absorbing structure, the disappearance of the vortex flow is promoted by the inner wall 9a, and the velocity component of the cooling air flow is efficiently converted to the pressure component. The cooling efficiency of the battery cell 2 in the downstream battery cell chamber 5 can be improved by conversion, and at the same time, the air flow noise itself can be absorbed by the inner wall 9a to greatly reduce the fan noise.
[0036]
The downstream side battery due to the use of centrifugal fan, cooling air substantially perpendicularly deflected as indicated by the arrow A 2 cooling air flow direction without causing pipeline resistance by centrifugal fan as the cooling fan 10 It can be directed to the cell chamber 5, and the fan efficiency of the cooling fan 10 can be increased.
[0037]
In addition, since a centrifugal fan is used as the cooling fan 10 and the outlet 10b does not face the communication port 11, the dynamic pressure of the cooling air blown from the cooling fan 10 is changed to the communication port 11 and the downstream battery cell. Since the influence on the chamber 5 can be avoided, it is possible to further increase the amount of cooling air and the air speed in the downstream battery cell chamber 5.
[0038]
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the upstream battery cell chamber 4 in the first embodiment is disposed at the center of the battery case 1, and both left and right sides thereof are arranged. The downstream battery cell chambers 5 and 5 are adjacent to each other in parallel.
[0039]
The downstream battery cell chamber 5 is set to have a pipe length shorter than that of the upstream battery cell chamber 4.
[0040]
Therefore, according to the structure of the second embodiment, the same effect as that of the first embodiment can be obtained, and the downstream battery cell chamber 5 can be divided into a plurality of cooling air flows of the downstream battery cells 5 and 5. By setting the total cross-sectional area in the direction perpendicular to the flow to be larger than the cross-sectional area in the same direction of the upstream battery cell chamber 4, the pipe width of the upstream battery cell chamber 4 can be narrowed, thereby 8, that is, the ratio of the large diameter portion W O and the small diameter portion W 1 of the contracted portion 8 can be reduced, and the contracted tube length L of the contracted portion 8 can be shortened. It is possible to increase the fan efficiency of the cooling fan 10 by reducing the pipe line resistance in the section 8.
[0041]
Further, the pipe length of the downstream battery cell chamber 5 is set to be shorter than the pipe length of the upstream battery cell chamber 4 so that the pressure loss of the cooling air in the downstream battery cell chamber 5 can be suppressed to be small. Therefore, it is possible to achieve a more uniform cooling performance of each battery cell 2 by suppressing the decrease in the cooling air volume and the wind speed in the downstream battery cell chamber 5.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a first embodiment of the present invention.
FIG. 2 is a schematic plan view illustrating a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Battery case 2 ... Battery cell 3 ... Partition wall 4 ... Upstream battery cell chamber 5 ... Downstream battery cell chamber 6 ... Air intake 7 ... Air exhaust port 8 ... Constriction part 9 ... Static pressure chamber 9a ... Inner wall 10 ... Cooling fan 11 ... Communication port

Claims (6)

複数個のバッテリセルを収容するバッテリケース内を隔壁によって、最上流部に空気取入口を備えて複数個のバッテリセルを収容した上流側バッテリセル室と、最下流部に空気排出口を備えて複数個のバッテリセルを収容した下流側バッテリセル室と、に並列に隣接して隔成すると共に前記上流側バッテリセル室の最下流部に、空気取入口から流入した空気流を縮流する縮流部を設け、前記上流側バッテリセル室と下流側バッテリセル室との間には、前記縮流部に連設配置した冷却ファンを備えて、該冷却ファン後流の冷却風の速度成分を静圧に変換する容積の大きな静圧チャンバを設けると共に、該静圧チャンバと下流側バッテリセル室とを連通して静圧チャンバ内から下流側バッテリセル室に冷却風を供給する連通口を設けたことを特徴とする電気自動車のバッテリ冷却装置。A battery case that accommodates a plurality of battery cells is provided with a partition wall, an upstream battery cell chamber that accommodates a plurality of battery cells with an air intake port at the most upstream portion, and an air discharge port at the most downstream portion. A downstream battery cell chamber containing a plurality of battery cells is formed adjacent to and parallel to the downstream battery cell chamber, and the air flow flowing from the air intake port is contracted to the most downstream portion of the upstream battery cell chamber. A cooling fan is provided between the upstream battery cell chamber and the downstream battery cell chamber, the cooling fan being connected to the contracted flow section, and a speed component of cooling air downstream of the cooling fan is provided. A static pressure chamber having a large volume for converting into static pressure is provided, and a communication port is provided for communicating the static pressure chamber and the downstream battery cell chamber to supply cooling air from the static pressure chamber to the downstream battery cell chamber. Characterized by Electric vehicle battery cooling device for. 下流側バッテリセル室を上流側バッテリセル室よりも管路長を短かく設定したことを特徴とする請求項1に記載の電気自動車のバッテリ冷却装置。2. The battery cooling apparatus for an electric vehicle according to claim 1, wherein the downstream battery cell chamber is set to have a pipe length shorter than that of the upstream battery cell chamber. 下流側バッテリセル室を上流側バッテリセル室よりも冷却風の流れに対して垂直方向の断面積を大きく設定したことを特徴とする請求項1,2に記載の電気自動車のバッテリ冷却装置。The battery cooling apparatus for an electric vehicle according to claim 1 or 2, wherein the downstream battery cell chamber has a larger cross-sectional area in the direction perpendicular to the flow of cooling air than the upstream battery cell chamber. 静圧チャンバに配設した冷却ファンが、そのインレットとアウトレットとで冷却風の速度ベクトルを略直角に偏向する遠心ファンであることを特徴とする請求項1〜3の何れかに記載の電気自動車のバッテリ冷却装置。The electric vehicle according to any one of claims 1 to 3, wherein the cooling fan disposed in the static pressure chamber is a centrifugal fan that deflects a velocity vector of cooling air at a substantially right angle between an inlet and an outlet thereof. Battery cooling device. 静圧チャンバと下流側バッテリセル室とを連通する連通口を、冷却ファンのアウトレットと対向しない位置に設けたことを特徴とする請求項1〜4の何れかに記載の電気自動車のバッテリ冷却装置。The battery cooling device for an electric vehicle according to any one of claims 1 to 4, wherein a communication port for communicating the static pressure chamber and the downstream battery cell chamber is provided at a position not facing the outlet of the cooling fan. . 静圧チャンバの内壁を吸音構造としたことを特徴とする請求項1〜5の何れかに記載の電気自動車のバッテリ冷却装置。6. The battery cooling apparatus for an electric vehicle according to claim 1, wherein an inner wall of the static pressure chamber has a sound absorbing structure.
JP2001115566A 2001-04-13 2001-04-13 Battery cooling system for electric vehicles Expired - Fee Related JP3744376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115566A JP3744376B2 (en) 2001-04-13 2001-04-13 Battery cooling system for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115566A JP3744376B2 (en) 2001-04-13 2001-04-13 Battery cooling system for electric vehicles

Publications (2)

Publication Number Publication Date
JP2002313440A JP2002313440A (en) 2002-10-25
JP3744376B2 true JP3744376B2 (en) 2006-02-08

Family

ID=18966441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115566A Expired - Fee Related JP3744376B2 (en) 2001-04-13 2001-04-13 Battery cooling system for electric vehicles

Country Status (1)

Country Link
JP (1) JP3744376B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374925B2 (en) * 2003-06-26 2009-12-02 トヨタ自動車株式会社 Battery pack cooling structure
JP4791076B2 (en) * 2005-05-13 2011-10-12 本田技研工業株式会社 Battery box cooling structure
JP5253711B2 (en) * 2005-06-02 2013-07-31 本田技研工業株式会社 Battery cooling structure
JP5362269B2 (en) * 2008-07-02 2013-12-11 三洋電機株式会社 Battery pack for vehicles
KR101013835B1 (en) * 2008-11-25 2011-02-14 현대자동차일본기술연구소 Battery cooling device for vehicle
JP4947075B2 (en) * 2009-03-23 2012-06-06 トヨタ自動車株式会社 Temperature control structure of power storage device
JP5433427B2 (en) * 2010-01-04 2014-03-05 三菱重工業株式会社 Battery pack
KR101338258B1 (en) 2010-11-17 2013-12-06 주식회사 엘지화학 Battery Pack Providing Improved Distribution Uniformity of Coolant
WO2012157332A1 (en) * 2011-05-17 2012-11-22 日産自動車株式会社 Battery pack structure for electric vehicles
JP5853417B2 (en) * 2011-05-17 2016-02-09 日産自動車株式会社 Battery pack structure for electric vehicles
KR101252211B1 (en) 2011-09-26 2013-04-05 기아자동차주식회사 High voltage battery pack apparatus for vehicle
JP5962163B2 (en) * 2012-04-13 2016-08-03 マツダ株式会社 Air conditioning structure for vehicle battery unit
JP5924130B2 (en) * 2012-05-28 2016-05-25 マツダ株式会社 Air conditioning structure for vehicle battery unit
KR101371739B1 (en) * 2012-09-07 2014-03-12 기아자동차(주) Battery system
JP5950111B2 (en) * 2012-09-18 2016-07-13 マツダ株式会社 Battery temperature control device
JP6024570B2 (en) * 2013-04-02 2016-11-16 株式会社デンソー Battery pack
JP6291847B2 (en) * 2014-01-08 2018-03-14 株式会社デンソー Battery cooling device
JP6289752B2 (en) 2015-05-27 2018-03-07 三菱電機株式会社 Power storage device
JP6330757B2 (en) * 2015-08-07 2018-05-30 株式会社デンソー Battery pack
EP3844832A4 (en) * 2018-08-30 2022-07-06 Watt Fuel Cell Corp. Container for reformer and fuel cell system
JP7314705B2 (en) * 2019-08-08 2023-07-26 スズキ株式会社 vehicle battery pack

Also Published As

Publication number Publication date
JP2002313440A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP3744376B2 (en) Battery cooling system for electric vehicles
JP2948199B2 (en) Suction elbow with guide vanes
KR101469938B1 (en) Car seat having plural ventilation module
JPH09507549A (en) Gas turbine airfoil
CN208010446U (en) A kind of positive displacement silencer and exhaust silencer system
CN85102410B (en) Exhaust silencer for internal-combustion engine
JP2009107613A (en) Air flow mixing device
WO2011158309A1 (en) Indoor unit for air conditioner, and air conditioner
JPH11257003A (en) Impingement cooling device
US6644355B1 (en) Diffusing corner for fluid flow
US7249614B2 (en) Structure and method for improving flow uniformity and reducing turbulence
CN104420960B (en) Structure for preventing from causing Active noise control loudspeaker thermal damage
JPS61291714A (en) Noise converter
CN112539467A (en) Machine and air conditioner in air conditioning
KR20150002315U (en) Air exhaust device of emergency generator radiator
CN113847735B (en) Air duct noise reduction device and air conditioner with same
JPH0589848U (en) Gas turbine intake system
CN210343454U (en) Split type water-cooling smoke exhaust and noise elimination system for diesel power station
CN114027607B (en) Air duct structure and blower
JPH0732636Y2 (en) Silencer
CN218511094U (en) A two air intakes of EPP fall fan machine casees of making an uproar for pipeline new trend system
CN113847735A (en) Device of making an uproar and have its air conditioner falls in wind channel
JP2010015846A (en) Exhaust device of fuel cell system
JP2530291B2 (en) Air conditioner for hall
CN206797064U (en) A kind of air-conditioner of engineering machinery warm air system using waste gas residual heat

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees