JP2002308697A - Silicon carbide single crystal ingot, production method therefor and method for mounting seed crystal for growing silicon carbide single crystal - Google Patents
Silicon carbide single crystal ingot, production method therefor and method for mounting seed crystal for growing silicon carbide single crystalInfo
- Publication number
- JP2002308697A JP2002308697A JP2001107302A JP2001107302A JP2002308697A JP 2002308697 A JP2002308697 A JP 2002308697A JP 2001107302 A JP2001107302 A JP 2001107302A JP 2001107302 A JP2001107302 A JP 2001107302A JP 2002308697 A JP2002308697 A JP 2002308697A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- seed crystal
- silicon carbide
- crystal
- carbide single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化珪素単結晶及
びその製造方法に係わり、特に、青色発光ダイオードや
電子デバイスなどの基板ウエハとなる良質で大型の単結
晶インゴット及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide single crystal and a method of manufacturing the same, and more particularly, to a high-quality large-sized single crystal ingot to be used as a substrate wafer for a blue light emitting diode or an electronic device, and a method of manufacturing the same. is there.
【0002】[0002]
【従来の技術】炭化珪素(SiC)は、耐熱性及び機械
的強度に優れ、放射線に強いなどの物理的、化学的性質
から耐環境性半導体材料として注目されている。また、
近年、青色から紫外にかけての短波長光デバイス、高周
波高耐圧電子デバイス等の基板ウエハとしてSiC単結
晶ウエハの需要が高まっている。しかしながら、大面積
を有する高品質のSiC単結晶を、工業的規模で安定に
供給し得る結晶成長技術は、いまだ確立されていない。
それゆえ、SiCは、上述のような多くの利点及び可能
性を有する半導体材料にもかかわらず、その実用化が阻
まれていた。2. Description of the Related Art Silicon carbide (SiC) has attracted attention as an environment-resistant semiconductor material because of its physical and chemical properties such as excellent heat resistance and mechanical strength and resistance to radiation. Also,
In recent years, there has been an increasing demand for SiC single crystal wafers as substrate wafers for short-wavelength optical devices from blue to ultraviolet, high-frequency high-voltage electronic devices, and the like. However, a crystal growth technique capable of stably supplying a high-quality SiC single crystal having a large area on an industrial scale has not yet been established.
Therefore, SiC has been hampered in practical use despite the semiconductor material having many advantages and possibilities as described above.
【0003】従来、研究室程度の規模では、例えば、昇
華再結晶法(レーリー法)でSiC単結晶を成長させ、
半導体素子の作製が可能なサイズのSiC単結晶を得て
いた。しかしながら、この方法では、得られた単結晶の
面積が小さく、その寸法及び形状を高精度に制御するこ
とは困難である。また、SiCが有する結晶多形及び不
純物キャリア濃度の制御も容易ではない。また、化学気
相成長法(CVD法)を用いて珪素(Si)などの異種
基板上にヘテロエピタキシャル成長させることにより立
方晶のSiC単結晶を成長させることも行われている。
この方法では、大面積の単結晶は得られるが、基板との
格子不整合が約20%もあること等により多くの欠陥
(〜107cm-2)を含むSiC単結晶しか成長させる
ことができず、高品質のSiC単結晶を得ることは容易
でない。これらの問題点を解決するために、SiC単結
晶{0001}ウエハを種結晶として用いて昇華再結晶
を行う改良型のレーリー法が提案されている(Yu.
M.Tairov and V.F.Tsvetko
v,Journal of Crystal Grow
th,vol.52(1981)pp.146−15
0)。この方法では、種結晶を用いているため、結晶の
核形成過程が制御でき、また、不活性ガスにより雰囲気
圧力を100Paから15kPa程度に制御することに
より、結晶の成長速度等を再現性良くコントロールでき
る。改良レーリー法の原理を図1を用いて説明する。種
結晶となるSiC単結晶と原料となるSiC結晶粉末は
蓋付き坩堝(通常黒鉛あるいはタンタル等の高融点金属
製)の中に収納され、アルゴン等の不活性ガス雰囲気中
(133Pa〜13.3kPa)、摂氏2000〜24
00度に加熱される。この際、原料粉末に比べ種結晶が
やや低温になるように温度勾配が設定される。原料は、
昇華後、濃度勾配(温度勾配により形成される)によ
り、種結晶方向へ拡散、輸送される。単結晶成長は、種
結晶に到着した原料ガスが種結晶上で再結晶化すること
により、実現される。この際、結晶の抵抗率は、不活性
ガスからなる雰囲気中に不純物ガスを添加する、あるい
はSiC原料粉末中に不純物元素又はその化合物を混合
することにより、制御可能である。SiC単結晶中の置
換型不純物として代表的なものに、窒素(n型)、ホウ
素、アルミニウム(p型)がある。改良レーリー法を用
いれば、SiC単結晶の結晶多形(6H型、4H型、1
5R型等)及び形状、キャリア型及び濃度を制御しなが
ら、SiC単結晶を成長させることができる。Conventionally, on a laboratory scale, a SiC single crystal is grown by, for example, a sublimation recrystallization method (Rayleigh method).
An SiC single crystal of a size that allows the manufacture of a semiconductor device has been obtained. However, in this method, the area of the obtained single crystal is small, and it is difficult to control the size and shape with high precision. Further, it is not easy to control the crystal polymorphism and impurity carrier concentration of SiC. Further, a cubic SiC single crystal is also grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method).
According to this method, a large area single crystal can be obtained, but only a SiC single crystal containing many defects ((10 7 cm −2 ) can be grown due to a lattice mismatch with the substrate of about 20%. Therefore, it is not easy to obtain a high-quality SiC single crystal. In order to solve these problems, an improved Rayleigh method for performing sublimation recrystallization using a SiC single crystal {0001} wafer as a seed crystal has been proposed (Yu.
M. Tairov and V.S. F. Tsvetko
v, Journal of Crystal Grow
th, vol. 52 (1981) pp. 146-15
0). In this method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the growth rate of the crystal can be controlled with good reproducibility by controlling the atmospheric pressure from about 100 Pa to about 15 kPa with an inert gas. it can. The principle of the improved Rayleigh method will be described with reference to FIG. The SiC single crystal serving as a seed crystal and the SiC crystal powder serving as a raw material are housed in a crucible with a lid (usually made of a high melting point metal such as graphite or tantalum) and placed in an inert gas atmosphere (133 Pa to 13.3 kPa) such as argon. ) 2000 to 24 degrees Celsius
Heated to 00 degrees. At this time, the temperature gradient is set so that the seed crystal is slightly lower in temperature than the raw material powder. Raw materials are
After sublimation, it is diffused and transported in the seed crystal direction by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has reached the seed crystal on the seed crystal. At this time, the resistivity of the crystal can be controlled by adding an impurity gas into an atmosphere composed of an inert gas, or by mixing an impurity element or its compound into the SiC raw material powder. Typical examples of the substitutional impurities in the SiC single crystal include nitrogen (n-type), boron, and aluminum (p-type). If the improved Rayleigh method is used, the polymorphs (6H type, 4H type,
The SiC single crystal can be grown while controlling the shape, the carrier type, and the concentration.
【0004】現在、上記の改良レーリー法で作製したS
iC単結晶から口径2インチ(50mm)から3インチ
(75mm)のSiC単結晶ウエハが切り出され、エピ
タキシャル薄膜成長、デバイス作製に供されている。し
かしながら、これらの結晶には、ボイド状のマクロ欠陥
がしばしば観測される。特に、このボイド欠陥は、成長
結晶中の種結晶近傍に多く、線状に種結晶裏面から成長
方向に向かって伸びている。At present, S produced by the above-mentioned modified Rayleigh method is used.
From an iC single crystal, a SiC single crystal wafer having a diameter of 2 inches (50 mm) to 3 inches (75 mm) is cut out and provided for epitaxial thin film growth and device fabrication. However, void-like macro defects are often observed in these crystals. In particular, the void defects are mostly present in the vicinity of the seed crystal in the grown crystal, and extend linearly from the back surface of the seed crystal in the growth direction.
【0005】[0005]
【発明が解決しようとする課題】上記したように、従来
の技術で作られたSiC単結晶には、線状のボイド欠陥
が存在している。このボイド欠陥は、R.A.Stei
n,Physica B,vol.185(1993)
pp.211−216に記載されているように(この文
献中ではchannelと表現されている)、種結晶裏
面からの、SiC単結晶の不均一な分解・昇華現象に起
因している。また、上記文献では、この分解・昇華現象
の原因として、種結晶と坩堝蓋部の不均一な接触を挙げ
ている。種結晶と坩堝蓋部の接触が不均一であると、接
触が不充分な領域では、成長結晶から坩堝蓋部への抜熱
が不充分となり、結果として成長結晶、特に種結晶近傍
に大きな温度勾配が生じる。このような大きな温度勾配
が生じた領域では、種結晶裏面からのSiC単結晶の分
解・昇華現象が促進され、線状ボイド欠陥が発生・伸長
する。また、接触の不均一により種結晶と坩堝蓋部の間
に空隙が形成されると、この空隙へ、あるいは空隙を通
してさらに系外へ昇華ガスが抜け易くなり、やはりこの
空隙に接する部分のSiC単結晶の分解・昇華が促進さ
れ、線状ボイド欠陥が発生・伸長する。このような線状
ボイド欠陥は、SiC単結晶の分解・昇華の際にSi原
子が選択的に脱離していくため、その内壁が通常炭化し
て黒色になっている場合が多い。As described above, linear void defects exist in the SiC single crystal produced by the conventional technique. This void defect is described by R.S. A. Stei
n, Physica B, vol. 185 (1993)
pp. As described in 211-216 (expressed as channel in this document), it is caused by an uneven decomposition / sublimation phenomenon of the SiC single crystal from the back surface of the seed crystal. Further, in the above-mentioned literature, as a cause of the decomposition / sublimation phenomenon, non-uniform contact between a seed crystal and a crucible lid is cited. If the contact between the seed crystal and the crucible lid is not uniform, in regions where contact is insufficient, heat removal from the grown crystal to the crucible lid is insufficient, resulting in a large temperature near the grown crystal, especially near the seed crystal. A gradient occurs. In a region where such a large temperature gradient occurs, decomposition and sublimation of the SiC single crystal from the back surface of the seed crystal is promoted, and linear void defects are generated and elongated. If a gap is formed between the seed crystal and the crucible lid due to non-uniform contact, sublimation gas is liable to escape into the gap or through the gap to the outside of the system. Decomposition and sublimation of crystals are promoted, and linear void defects are generated and elongated. In such a linear void defect, since Si atoms are selectively desorbed during decomposition and sublimation of the SiC single crystal, the inner wall is usually carbonized and black in many cases.
【0006】これら線状ボイド欠陥は、成長結晶をウエ
ハ状に加工した際には、ウエハを厚さ方向に貫通する中
空欠陥となる。当然のことながら、このような貫通中空
欠陥上に薄膜をエピタキシャル成長させることは困難で
あり、さらに、このような中空欠陥上に作製したデバイ
スの特性劣化は免れない。線状ボイド欠陥は、種結晶近
傍にのみ存在するので、成長結晶の上部からウエハを切
り出せば、貫通中空欠陥の存在しないウエハを得ること
ができるが、成長結晶から取り出せる良品ウエハの歩留
りが大きく低下する。すなわち、改良レーリー法による
SiC単結晶製造において、種結晶近傍の線状ボイド欠
陥は、SiC単結晶ウエハの高品質化、低コスト化にと
って極めて重要な問題である。[0006] These linear void defects become hollow defects penetrating the wafer in the thickness direction when the grown crystal is processed into a wafer. Naturally, it is difficult to epitaxially grow a thin film on such a penetrating hollow defect, and furthermore, the characteristics of a device fabricated on such a hollow defect are deteriorated. Since linear void defects are present only in the vicinity of the seed crystal, if a wafer is cut out from the upper part of the grown crystal, a wafer without through-hole hollow defects can be obtained, but the yield of good wafers that can be taken out from the grown crystal is greatly reduced. I do. That is, in the production of a SiC single crystal by the improved Rayleigh method, the linear void defect near the seed crystal is an extremely important problem for improving the quality and cost of the SiC single crystal wafer.
【0007】従来、種結晶の坩堝蓋部への装着は、液状
あるいはペースト状(融解状態も含む)の有機物を接着
剤として行われてきた。これらの接着剤は、種結晶を坩
堝蓋部に接着させた後、高温の結晶成長プロセスに耐え
うるように、摂氏200〜400度の加熱により炭化さ
せてから、結晶成長に用いられていた。通常、この際、
種結晶と坩堝蓋部の密着性を高めるために、適当な圧力
を種結晶及び坩堝蓋部に印加しながら加熱が行われる
が、加熱中(炭化過程中)に、接着剤より発生するガス
により、種結晶と坩堝蓋部の間の接着剤層中には数多く
の気泡が発生する。このようにして発生した接着剤層中
の気泡は、種結晶と坩堝蓋部間の不均一な熱的接触をも
たらし、その結果、接着剤による種結晶装着法を用いた
SiC単結晶成長においては、成長したSiC単結晶の
種結晶近傍に、数多くの伸長した線状ボイド欠陥が発生
してしまっていた。Heretofore, the seed crystal has been mounted on the crucible lid portion using a liquid or paste-like (including a molten state) organic substance as an adhesive. These adhesives are used for crystal growth after bonding the seed crystal to the crucible lid and then carbonizing by heating at 200 to 400 degrees Celsius so as to withstand the high temperature crystal growth process. Usually,
In order to enhance the adhesion between the seed crystal and the crucible lid, heating is performed while applying an appropriate pressure to the seed crystal and the crucible lid. During the heating (during the carbonization process), the gas is generated from the adhesive. Many bubbles are generated in the adhesive layer between the seed crystal and the crucible lid. The bubbles in the adhesive layer generated in this manner cause non-uniform thermal contact between the seed crystal and the crucible lid, and as a result, in the growth of a SiC single crystal using the seed crystal mounting method with an adhesive, Many elongated linear void defects have been generated near the seed crystal of the grown SiC single crystal.
【0008】本発明は、上記事情に鑑みてなされたもの
であり、線状ボイド欠陥の少ない良質の大口径インゴッ
トと、それを再現性良く製造し得るSiC単結晶の製造
方法を提供するものである。The present invention has been made in view of the above circumstances, and provides a high-quality large-diameter ingot with few linear void defects and a method for producing a SiC single crystal capable of producing the same with good reproducibility. is there.
【0009】[0009]
【課題を解決するための手段】本発明のSiC単結晶の
製造方法は、SiCからなる原材料を加熱昇華させ、S
iC単結晶からなる種結晶上に供給し、この種結晶上に
SiC単結晶を成長させる方法に関するものであって、
(1) 昇華再結晶法により種結晶上に炭化珪素単結晶
を成長させる工程を包含するSiC単結晶インゴットの
製造方法であって、前記種結晶裏面及び前記種結晶が装
着される坩堝蓋部表面を平坦化処理し、両者を物理的に
密着させることにより前記種結晶を装着することを特徴
とするSiC単結晶インゴットの製造方法、(2) 前
記平坦化処理を施した種結晶裏面及び前記坩堝蓋部表面
の平均粗さ(Ra)が5μm以下である(1)に記載の
SiC単結晶インゴットの製造方法、(3) 前記平坦
化処理を施した種結晶裏面及び前記坩堝蓋部表面の平均
粗さ(Ra)が1μm以下である(2)に記載のSiC
単結晶インゴットの製造方法、(4) 昇華再結晶法に
用いられる炭化珪素単結晶育成用種結晶を坩堝蓋部表面
に装着する方法であって、前記種結晶裏面及び前記種結
晶が装着される坩堝蓋部表面の平均粗さ(Ra)を5μ
m以下とし、両者を物理的に密着させることにより種結
晶を装着する炭化珪素単結晶育成用種結晶の装着方法、
(5) 前記種結晶裏面及び前記種結晶が装着される坩
堝蓋部表面の平均粗さ(Ra)を1μm以下とする
(4)に記載のSiC単結晶育成用種結晶の装着方法、
(6) (1)〜(3)の何れか1項に記載の製造方法
により得られたSiC単結晶インゴットであって、該イ
ンゴットの口径が50mm以上であることを特徴とする
SiC単結晶インゴット、(7) (6)に記載の炭化
珪素単結晶インゴットを切断、研磨してなる炭化珪素単
結晶基板、(8) (7)に記載の炭化珪素単結晶基板
にエピタキシャル成長させてなる炭化珪素単結晶エピタ
キシャルウエハ、である。According to the method for producing a SiC single crystal of the present invention, a raw material composed of SiC is heated and sublimated, and
The present invention relates to a method of supplying an iC single crystal on a seed crystal and growing the SiC single crystal on the seed crystal,
(1) A method for producing a SiC single crystal ingot, comprising a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the back surface of the seed crystal and the surface of a crucible lid on which the seed crystal is mounted A method for producing a SiC single crystal ingot, wherein the seed crystal is attached by physically flattening the two and physically bringing them into close contact with each other, (2) the seed crystal back surface subjected to the flattening and the crucible The method for producing a SiC single crystal ingot according to (1), wherein the average roughness (Ra) of the lid surface is 5 μm or less, (3) the average of the back surface of the seed crystal subjected to the planarization treatment and the surface of the crucible lid. SiC according to (2), wherein the roughness (Ra) is 1 μm or less.
(4) A method for mounting a seed crystal for growing a silicon carbide single crystal used in a sublimation recrystallization method on the surface of a crucible lid, wherein the seed crystal rear surface and the seed crystal are mounted. Average roughness (Ra) of crucible lid surface is 5μ
m or less, a method of mounting a seed crystal for growing a silicon carbide single crystal, in which a seed crystal is mounted by physically adhering the two,
(5) The method for mounting a seed crystal for growing a SiC single crystal according to (4), wherein the average roughness (Ra) of the back surface of the seed crystal and the surface of the crucible lid on which the seed crystal is mounted is 1 μm or less.
(6) A SiC single crystal ingot obtained by the method according to any one of (1) to (3), wherein the diameter of the ingot is 50 mm or more. (7) A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot according to (6), and (8) a silicon carbide single crystal substrate epitaxially grown on the silicon carbide single crystal substrate according to (7). A crystalline epitaxial wafer.
【0010】[0010]
【発明の実施の形態】本発明の製造方法では、種結晶裏
面及び種結晶が装着される坩堝蓋部表面を平坦化処理
し、両者を物理的に密着させることにより、線状ボイド
欠陥の発生を防止し、良質の大口径のSiC単結晶ウエ
ハを得ることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the manufacturing method of the present invention, the generation of linear void defects is performed by flattening the back surface of a seed crystal and the surface of a crucible lid on which the seed crystal is mounted, and by bringing them into close contact with each other. And a high-quality large-diameter SiC single crystal wafer can be obtained.
【0011】図2を用いて、本発明の効果を説明する。
図2は、改良レーリー法(図1)における種結晶と坩堝
蓋部(通常、黒鉛あるいはタンタル等の高融点金属製)
の接触面を拡大したものである。まず図2(a)は、従
来の液状あるいはペースト状(融解状態も含む)の有機
物を接着剤として用いた場合の、種結晶と坩堝蓋部の接
着状態を模式的に表わしたものである。接着剤の炭化の
際に生じた接着剤層中の気泡のために、種結晶と坩堝蓋
部との間には不均一な熱的接触がもたらされ、その結
果、成長したSiC単結晶の種結晶近傍には、伸長した
線状ボイド欠陥が数多く発生してしまう。次に、このよ
うな接着剤を用いず、物理的な接触により種結晶を坩堝
蓋部に装着した場合を、図2(b)と図2(c)に示
す。図2(b)は、種結晶、坩堝蓋部共に、接触面の鏡
面加工が不充分な場合(平均粗さ(Ra)が5μm超)
であって、この場合も種結晶と坩堝蓋部との間の熱的接
触が不均一になってしまっている。図2(a)、図2
(b)に示したように種結晶の坩堝蓋部への接触が不均
一であると、接触が不充分な領域では、成長結晶から坩
堝蓋部への抜熱が不充分となり、成長結晶、特に種結晶
近傍に大きな温度勾配が生じ、結果として、種結晶裏面
から成長結晶への線状ボイド欠陥の発生・伸長が促進さ
れる。また、接触の不均一により種結晶と坩堝蓋部の間
に空隙が形成されると、空隙へ、あるいは空隙を通して
さらに系外へ昇華ガスが抜け易くなり、やはり線状ボイ
ド欠陥の発生・伸長が促進される。The effect of the present invention will be described with reference to FIG.
Fig. 2 shows the seed crystal and the crucible lid (usually made of high melting point metal such as graphite or tantalum) in the modified Rayleigh method (Fig. 1).
The contact surface of FIG. First, FIG. 2A schematically shows a bonding state between a seed crystal and a crucible lid when a conventional liquid or paste-like (including a molten state) organic substance is used as an adhesive. Bubbles in the adhesive layer generated during carbonization of the adhesive result in non-uniform thermal contact between the seed crystal and the crucible lid, resulting in the growth of the grown SiC single crystal. Many elongated linear void defects occur near the seed crystal. Next, FIGS. 2B and 2C show a case where the seed crystal is mounted on the crucible lid by physical contact without using such an adhesive. FIG. 2 (b) shows the case where the contact surface of both the seed crystal and the crucible lid is not sufficiently mirror-finished (average roughness (Ra) exceeds 5 μm).
However, also in this case, the thermal contact between the seed crystal and the crucible lid becomes uneven. FIG. 2 (a), FIG.
As shown in (b), if the contact of the seed crystal with the crucible lid is not uniform, in the region where the contact is insufficient, the heat removal from the grown crystal to the crucible lid becomes insufficient, and the growth crystal, In particular, a large temperature gradient is generated in the vicinity of the seed crystal, and as a result, generation and extension of linear void defects from the back surface of the seed crystal to the grown crystal are promoted. In addition, if a gap is formed between the seed crystal and the crucible lid due to non-uniform contact, the sublimation gas can easily escape into the gap or through the gap to the outside of the system, and the generation and elongation of linear void defects also occur. Promoted.
【0012】図2(c)は、本発明の種結晶装着法を示
したものである。この場合、種結晶、坩堝蓋部共に、接
触面が鏡面加工されており(平均粗さ(Ra)が5μm
以下、より望ましくは1μm以下)、充分な接触面積を
得ることができる。このように充分な接触面積が得られ
れば、種結晶と坩堝蓋部との間の熱的接触が充分且つ均
一となり、種結晶近傍に大きな温度勾配は生じない、ま
た、接触面積が大きければ、昇華ガスの抜け道となる種
結晶裏面と坩堝蓋部間の空隙も存在しなくなり、結果と
して、種結晶近傍の線状ボイド欠陥の発生・伸長が抑制
される。FIG. 2 (c) shows the seed crystal mounting method of the present invention. In this case, the contact surfaces of both the seed crystal and the crucible lid are mirror-finished (average roughness (Ra) is 5 μm).
Below, more preferably 1 μm or less), and a sufficient contact area can be obtained. If a sufficient contact area is obtained in this way, thermal contact between the seed crystal and the crucible lid becomes sufficient and uniform, and a large temperature gradient does not occur near the seed crystal, and if the contact area is large, There is no gap between the back surface of the seed crystal and the crucible lid, which serves as a passage for the sublimation gas. As a result, the generation and elongation of linear void defects near the seed crystal are suppressed.
【0013】種結晶の機械的な押さえ付けは、種結晶を
ほぼ均等な力で押さえ付けられれば、どのような方法で
も構わない。また、この際、種結晶裏面及び坩堝蓋部表
面が鏡面に加工されていれば、僅かな押さえ付けでも充
分な密着性が得られるので、却って、この固定により余
分な応力が種結晶に加わらないように注意する必要があ
る。また、種結晶裏面の研磨の際、深い研磨損傷が研磨
面に残らないように注意する必要がある。1μm以上の
深い研磨損傷が残っていると、その部分から選択的に種
結晶の昇華・分解現象が起こり易くなり、線状ボイド欠
陥の原因となる。The seed crystal can be mechanically pressed by any method as long as the seed crystal can be pressed with a substantially uniform force. Also, at this time, if the back surface of the seed crystal and the surface of the crucible lid are mirror-finished, sufficient adhesion can be obtained even with a slight pressing, so that no excessive stress is applied to the seed crystal by this fixing. You need to be careful. When polishing the back surface of the seed crystal, care must be taken so that deep polishing damage does not remain on the polished surface. If deep polishing damage of 1 μm or more remains, the sublimation / decomposition phenomenon of the seed crystal is likely to occur selectively from that portion, which causes linear void defects.
【0014】発明者らは、種結晶裏面及び種結晶が装着
される坩堝蓋部表面をどの程度まで平坦化すれば線状ボ
イド欠陥を抑制できるか、を実験的に調べた。当然、こ
れらの部位の平坦度が高ければ高いほど、充分且つ均一
な熱的接触が可能となるが、その分、加工コストは高く
なる。従って、SiC単結晶の製造コスト低減上、本発
明の効果が充分に得られる限界の粗さを知ることが必要
となる。発明者らは、数多くの実験から、両者の粗さが
5μm以下であれば、線状ボイド欠陥を充分抑制できる
ことを実験的に見出した。The inventors experimentally examined how much the flattening of the back surface of the seed crystal and the surface of the crucible lid on which the seed crystal is mounted can suppress the linear void defect. Of course, the higher the flatness of these parts, the more sufficient and uniform thermal contact is possible, but the higher the processing cost. Therefore, in order to reduce the production cost of the SiC single crystal, it is necessary to know the limit roughness at which the effect of the present invention can be sufficiently obtained. The present inventors have experimentally found from a number of experiments that linear void defects can be sufficiently suppressed if both have a roughness of 5 μm or less.
【0015】本発明の製造方法を用いることにより、5
0mm以上の大口径を有し、且つSiC単結晶ウエハの
製造歩留り低下をもたらす線状ボイド欠陥が極めて少な
いSiC単結晶インゴットを製造することが可能とな
る。By using the manufacturing method of the present invention, 5
It is possible to manufacture a SiC single crystal ingot having a large diameter of 0 mm or more and having very few linear void defects which lower the production yield of a SiC single crystal wafer.
【0016】このようにして製造したSiC単結晶イン
ゴットを切断、研磨してなるSiC単結晶ウエハは、5
0mm以上の口径を有しているので、このウエハを用い
て各種デバイスを製造する際、工業的に確立されている
従来の半導体(Si、GaAs等)ウエハ用の製造ライ
ンを使用することができ、量産に適している。また、こ
のような貫通中空欠陥が極めて少ないSiC単結晶ウエ
ハ、及びその上にCVD法等によりエピタキシャル薄膜
を成長してなるSiC単結晶エピタキシャルウエハは、
貫通中空欠陥に起因したデバイス製造歩留りの低下が極
めて少ないという特徴を有する。The SiC single crystal wafer obtained by cutting and polishing the SiC single crystal ingot thus manufactured is
Since it has a diameter of 0 mm or more, when manufacturing various devices using this wafer, it is possible to use an industrially established conventional production line for semiconductor (Si, GaAs, etc.) wafers. Suitable for mass production. In addition, such a SiC single crystal wafer having extremely few through hollow defects, and a SiC single crystal epitaxial wafer formed by growing an epitaxial thin film thereon by a CVD method or the like,
It is characterized in that the reduction in device manufacturing yield due to through-hole defects is extremely small.
【0017】[0017]
【実施例】以下に、本発明の実施例を述べる。図3は、
本発明に用いられる製造装置であり、種結晶を用いた改
良型レーリー法によって、SiC単結晶を成長させる装
置の一例である。まず、この単結晶成長装置について簡
単に説明する。結晶成長は、種結晶として用いたSiC
単結晶1の上に、原料であるSiC粉末3を昇華再結晶
化させることにより行われる。種結晶のSiC単結晶1
は、坩堝4(黒鉛製)の蓋部5(黒鉛製)の内面に取り
付けられる。原料のSiC粉末3は、黒鉛製坩堝4の内
部に充填されている。このような黒鉛製坩堝4は、二重
石英管6の内部に、黒鉛の支持棒7により設置される。
黒鉛製坩堝4の周囲には、熱シールドのための黒鉛製フ
ェルト8が設置されている。二重石英管6は、真空排気
装置により高真空排気(10-3Pa以下)することがで
き、かつ内部雰囲気をArガスにより圧力制御すること
ができる。また、二重石英管6の外周には、ワークコイ
ル9が設置されており、高周波電流を流すことにより黒
鉛製坩堝4を加熱し、原料及び種結晶を所望の温度に加
熱することができる。坩堝温度の計測は、坩堝上部及び
下部を覆うフェルトの中央部に直径2〜4mmの光路を
設け坩堝上部及び下部からの光を取りだし、二色温度計
を用いて行うことができる。坩堝下部の温度を原料温
度、坩堝上部の温度を種温度とする。Embodiments of the present invention will be described below. FIG.
The manufacturing apparatus used in the present invention is an example of an apparatus for growing a SiC single crystal by an improved Rayleigh method using a seed crystal. First, the single crystal growth apparatus will be briefly described. Crystal growth was performed using SiC used as a seed crystal.
This is performed by sublimating and recrystallizing the SiC powder 3 as a raw material on the single crystal 1. Seed SiC single crystal 1
Is attached to the inner surface of the lid 5 (made of graphite) of the crucible 4 (made of graphite). The raw material SiC powder 3 is filled in a graphite crucible 4. Such a graphite crucible 4 is installed inside a double quartz tube 6 by a graphite support rod 7.
Around the graphite crucible 4, a graphite felt 8 for heat shielding is provided. The double quartz tube 6 can be evacuated to a high vacuum (10 −3 Pa or less) by a vacuum evacuation device, and the internal atmosphere can be pressure-controlled by Ar gas. A work coil 9 is provided around the outer periphery of the double quartz tube 6, and the graphite crucible 4 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to desired temperatures. The temperature of the crucible can be measured using a two-color thermometer by providing an optical path having a diameter of 2 to 4 mm at the center of the felt covering the upper and lower portions of the crucible, extracting light from the upper and lower portions of the crucible. The temperature at the bottom of the crucible is the raw material temperature, and the temperature at the top of the crucible is the seed temperature.
【0018】(実施例)まず、種結晶として、口径50
mmの(0001)面を有した六方晶系のSiC単結晶
ウエハを用意した。この種結晶1の裏面を、ダイヤモン
ド砥粒を用いた機械的研磨により、平均粗さ(Ra)が
0.1μm以下になるまで鏡面研磨した。次に、黒鉛製
坩堝蓋部5の種結晶装着面を機械的研磨により、平均粗
さが1.0μm以下になるように鏡面研磨した後、裏面
を平坦化した種結晶1を装着した。互いの研磨面が向き
合うように接触させ、種結晶端部を機械的に押さえつけ
るようにして固定した。本実施例では、黒鉛製のネジ2
により種結晶端部を3箇所固定した。(Embodiment) First, a seed crystal having a diameter of 50 was used.
A hexagonal SiC single crystal wafer having a (0001) plane of mm was prepared. The back surface of this seed crystal 1 was mirror-polished by mechanical polishing using diamond abrasive grains until the average roughness (Ra) became 0.1 μm or less. Next, the seed crystal mounting surface of the graphite crucible lid 5 was mirror-polished by mechanical polishing so that the average roughness was 1.0 μm or less, and then the seed crystal 1 having a flattened back surface was mounted. The polished surfaces were brought into contact with each other, and the seed crystal end was fixed by mechanical pressing. In this embodiment, the screw 2 made of graphite is used.
Thus, the seed crystal ends were fixed at three places.
【0019】次に、このようにして種結晶を固定した黒
鉛製坩堝蓋部5で、黒鉛製坩堝4を閉じた後、黒鉛製フ
ェルト8で被覆した。黒鉛製坩堝4の内部には、原料3
が充填されている。これらを黒鉛製支持棒7の上に乗
せ、二重石英管6の内部に設置した。そして、石英管の
内部を真空排気した後、ワークコイルに電流を流し、原
料温度を摂氏2000度まで上げた。その後、雰囲気ガ
スとしてArガスを流入させ、石英管内圧力を約80k
Paに保ちながら、原料温度を目標温度である摂氏24
00度まで上昇させた。成長圧力である1.3kPaに
は約30分かけて減圧し、その後約20時間成長を続け
た。この際の坩堝内の温度勾配は摂氏15度/cmで、
成長速度は約0.7mm/時であった。得られた結晶の
口径は51.5mmで、高さは14mm程度であった。Next, the graphite crucible 4 was closed with the graphite crucible lid 5 to which the seed crystal was fixed as described above, and then covered with a graphite felt 8. The raw material 3 is placed inside the graphite crucible 4.
Is filled. These were placed on a graphite support rod 7 and placed inside a double quartz tube 6. Then, after evacuating the inside of the quartz tube, an electric current was applied to the work coil to raise the temperature of the raw material to 2000 degrees Celsius. After that, Ar gas was introduced as an atmospheric gas, and the pressure in the quartz tube was reduced to about 80 k.
The raw material temperature is set to the target temperature of 24 degrees Celsius while maintaining
It was raised to 00 degrees. The pressure was reduced to a growth pressure of 1.3 kPa over about 30 minutes, and then growth was continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 degrees Celsius / cm,
The growth rate was about 0.7 mm / hour. The diameter of the obtained crystal was 51.5 mm, and the height was about 14 mm.
【0020】こうして得られたSiC単結晶を、X線回
折及びラマン散乱により分析したところ、六方晶系のS
iC単結晶が成長したことを確認できた。また、線状ボ
イド欠陥を評価する目的で、成長した単結晶インゴット
を成長方向に切断、研磨することにより、{11−2
0}面ウエハを取り出した。このウエハを光学顕微鏡で
透過光観察することにより、線状ボイド欠陥の個数、長
さを調べたところ、1cm当り2〜3個で、長さも1m
m程度であった。The SiC single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering.
It was confirmed that the iC single crystal grew. Further, for the purpose of evaluating the linear void defect, the grown single crystal ingot is cut and polished in the growth direction to obtain {11-2}.
The 0 ° plane wafer was taken out. The number and length of the linear void defects were examined by observing the wafer with transmitted light using an optical microscope.
m.
【0021】次に、同様の条件で別途製造したSiC単
結晶インゴットを切断、研磨して、厚さ300μm、口
径51mmのSiC単結晶{0001}面ウエハを、同
一インゴットから12枚作製した。ウエハの面方位は、
(0001)面から<11−20>方向に3.5度オフ
とした。これらのウエハを光学顕微鏡で観察したとこ
ろ、種結晶側から2枚目までは、ウエハを貫通する中空
欠陥の存在が認められたが、その後の10枚では、中空
欠陥が全く観測されず、非常に良質なウエハであった。Next, a SiC single crystal ingot separately manufactured under the same conditions was cut and polished to prepare 12 SiC single crystal {0001} plane wafers having a thickness of 300 μm and a diameter of 51 mm from the same ingot. The plane orientation of the wafer is
It was turned off 3.5 degrees in the <11-20> direction from the (0001) plane. When these wafers were observed with an optical microscope, the presence of hollow defects penetrating the wafers was observed up to the second wafer from the seed crystal side, but no hollow defects were observed in the subsequent 10 wafers. The wafer was of good quality.
【0022】さらに、この51mm口径のSiC単結晶
ウエハ(種結晶側から4枚目のもの)を基板として用い
て、SiCのエピタキシャル成長を行った。SiCエピ
タキシャル薄膜の成長条件は、成長温度摂氏1500
度、シラン(SiH4)、プロパン(C3H8)、水素
(H2)の流量が、それぞれ5.0×10-9m3/se
c、3.3×10-9m3/sec、5.0×10-5m3/
secであった。成長圧力は大気圧とした。成長時間は
2時間で、膜厚としては約5μm成長した。Further, SiC was epitaxially grown using this 51 mm-diameter SiC single crystal wafer (fourth from the seed crystal side) as a substrate. The growth condition of the SiC epitaxial thin film is a growth temperature of 1500 degrees Celsius.
And the flow rates of silane (SiH 4 ), propane (C 3 H 8 ) and hydrogen (H 2 ) are 5.0 × 10 −9 m 3 / sec, respectively.
c, 3.3 × 10 -9 m 3 /sec,5.0×10 -5 m 3 /
sec. The growth pressure was atmospheric pressure. The growth time was 2 hours, and the film was grown to a thickness of about 5 μm.
【0023】エピタキシャル薄膜成長後、ノマルスキー
光学顕微鏡により、得られたエピタキシャル薄膜の表面
モフォロジーを観察したところ、ウエハ全面に渡って、
非常に平坦で、ピット等の表面欠陥の非常に少ない、良
好な表面モフォロジーを有するSiCエピタキシャル薄
膜が成長されているのが分かった。After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope.
It was found that a SiC epitaxial thin film having a very flat surface and very few surface defects such as pits and a good surface morphology was grown.
【0024】(比較例)比較例として、平坦性の悪い種
結晶と黒鉛製坩堝蓋を用いて、成長実験を行った。ま
ず、種結晶として、口径50mmの(0001)面を有
した六方晶系のSiC単結晶ウエハを用意した。この種
結晶1の裏面を、粗めのダイヤモンド砥粒を用いて機械
的研磨し、平均粗さ(Ra)が10μm以上となるよう
にした。次に、黒鉛製坩堝蓋の種結晶装着面も機械的研
磨により、平均粗さが10μm以上になるように研磨し
た後、互いの研磨面が向き合うように接触させ、種結晶
端部を黒鉛製ネジで3箇所、機械的に押さえつけるよう
にして固定した。Comparative Example As a comparative example, a growth experiment was performed using a seed crystal having poor flatness and a crucible lid made of graphite. First, a hexagonal SiC single crystal wafer having a (0001) plane with a diameter of 50 mm was prepared as a seed crystal. The back surface of the seed crystal 1 was mechanically polished using coarse diamond abrasive grains so that the average roughness (Ra) became 10 μm or more. Next, the seed crystal mounting surface of the graphite crucible lid is also polished by mechanical polishing so that the average roughness is 10 μm or more, and then the surfaces are brought into contact with each other so that the polished surfaces face each other. It was fixed by mechanically pressing it at three places with screws.
【0025】このようにして種結晶を固定した黒鉛製坩
堝蓋部5を用いて、実施例と同様の手順で成長実験を行
い、口径51.5mmのSiC単結晶を得た。成長速度
は約0.6mm/時で、高さは12mm程度であった。Using the graphite crucible lid 5 to which the seed crystal was fixed as described above, a growth experiment was performed in the same procedure as in the example, and a SiC single crystal having a diameter of 51.5 mm was obtained. The growth rate was about 0.6 mm / hour and the height was about 12 mm.
【0026】得られたSiC単結晶を、X線回折及びラ
マン散乱により分析し、六方晶系のSiC単結晶が成長
できたことを確認した。また、線状ボイド欠陥を評価す
る目的で、成長した単結晶インゴットを成長方向に切
断、研磨することにより、{11−20}面ウエハを取
り出した。このウエハを光学顕微鏡で透過光観察するこ
とにより、線状ボイド欠陥の個数、長さを調べたとこ
ろ、1cm当り9〜10個で、長さも3〜7mmと伸長
していた。The obtained SiC single crystal was analyzed by X-ray diffraction and Raman scattering, and it was confirmed that a hexagonal SiC single crystal could be grown. For the purpose of evaluating linear void defects, the grown {11-20} plane wafer was taken out by cutting and polishing the grown single crystal ingot in the growth direction. The number and length of linear void defects were examined by observing the wafer with transmitted light using an optical microscope. As a result, the number and length of linear void defects were 9 to 10 per cm, and the length was extended to 3 to 7 mm.
【0027】次に、同様の条件で別途製造したSiC単
結晶インゴットを切断、研磨して、厚さ300μm、口
径51mmのSiC単結晶{0001}面ウエハを、同
一インゴットからの10枚作製した。ウエハの面方位
は、(0001)面から<11−20>方向に3.5度
オフとした。これらのウエハを光学顕微鏡で観察したと
ころ、種結晶側から6枚目まで内壁面の炭化を伴なった
貫通中空欠陥が存在し、良質なウエハは、結晶上部の4
枚に留まった。Next, the SiC single crystal ingot separately manufactured under the same conditions was cut and polished to produce 10 SiC single crystal {0001} plane wafers having a thickness of 300 μm and a diameter of 51 mm from the same ingot. The plane orientation of the wafer was 3.5 degrees off from the (0001) plane in the <11-20> direction. Observation of these wafers with an optical microscope showed that through-hole defects with carbonization of the inner wall surface existed from the seed crystal side to the sixth sheet, and good-quality wafers showed
Stayed on the sheet.
【0028】さらに、この51mm口径のSiC単結晶
ウエハ(種結晶側から4枚目のもの)を基板として用い
て、SiCのエピタキシャル成長を行った。SiCエピ
タキシャル薄膜の成長条件は、成長温度摂氏1500
度、シラン(SiH4)、プロパン(C3H8)、水素
(H2)の流量が、それぞれ5.0×10-9m3/se
c、3.3×10-9m3/sec、5.0×10-5m3/
secであった。成長圧力は大気圧とした。成長時間は
2時間で、膜厚としては約5μm成長した。Further, SiC was epitaxially grown using the 51 mm-diameter SiC single crystal wafer (fourth from the seed crystal side) as a substrate. The growth condition of the SiC epitaxial thin film is a growth temperature of 1500 degrees Celsius.
And the flow rates of silane (SiH 4 ), propane (C 3 H 8 ) and hydrogen (H 2 ) are 5.0 × 10 −9 m 3 / sec, respectively.
c, 3.3 × 10 -9 m 3 /sec,5.0×10 -5 m 3 /
sec. The growth pressure was atmospheric pressure. The growth time was 2 hours, and the film was grown to a thickness of about 5 μm.
【0029】エピタキシャル薄膜成長後、ノマルスキー
光学顕微鏡により、得られたエピタキシャル薄膜の表面
モフォロジーを観察したところ、基板であるSiC単結
晶ウエハ中に存在していた貫通中空欠陥上には、薄膜は
成長しておらず、貫通中空欠陥は、そのままエピタキシ
ャル薄膜に引き継がれているのが分かった。After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. However, it was found that the through-hole defect was inherited by the epitaxial thin film as it was.
【0030】[0030]
【発明の効果】以上説明したように、本発明によれば、
種結晶を用いた改良型レーリー法により、線状ボイド欠
陥が少ない良質のSiC単結晶を再現性良く成長させる
ことができる。このような結晶から切り出したSiC単
結晶ウエハを用いれば、光学的特性の優れた青色発光素
子、電気的特性の優れた高耐圧・耐環境性電子デバイス
を低価格で製作することができる。As described above, according to the present invention,
By the improved Rayleigh method using a seed crystal, a high-quality SiC single crystal having few linear void defects can be grown with good reproducibility. By using a SiC single crystal wafer cut from such a crystal, a blue light emitting element having excellent optical characteristics and a high withstand voltage / environmentally resistant electronic device having excellent electrical characteristics can be manufactured at low cost.
【図1】 改良レーリー法の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of the improved Rayleigh method.
【図2】 本発明の効果を説明する図である。FIG. 2 is a diagram illustrating an effect of the present invention.
【図3】 本発明の製造方法に用いられる単結晶成長装
置の一例を示す構成図である。FIG. 3 is a configuration diagram showing an example of a single crystal growth apparatus used in the manufacturing method of the present invention.
1 種結晶(SiC単結晶) 2 種結晶固定ネジ(黒鉛製) 3 SiC粉末原料 4 黒鉛製坩堝 5 黒鉛製坩堝蓋部 6 二重石英管 7 支持棒 8 断熱材(黒鉛製フェルト) 9 ワークコイル 10 Arガス配管 11 Arガス用マスフローコントローラ 12 真空排気装置 Reference Signs List 1 seed crystal (SiC single crystal) 2 seed crystal fixing screw (made of graphite) 3 SiC powder raw material 4 graphite crucible 5 graphite crucible lid 6 double quartz tube 7 support rod 8 heat insulating material (graphite felt) 9 work coil Reference Signs List 10 Ar gas pipe 11 Mass flow controller for Ar gas 12 Vacuum exhaust device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 辰雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 藍郷 崇 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 矢代 弘克 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4G077 AA02 BE08 DA18 EG11 TF02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuo Fujimoto 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Takashi Aigo 20-1 Shintomi, Futtsu City, Chiba Prefecture New Japan (72) Inventor Hirokatsu Yashiro 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division of Nippon Steel Corporation (reference) 4G077 AA02 BE08 DA18 EG11 TF02
Claims (8)
単結晶を成長させる工程を包含する炭化珪素単結晶イン
ゴットの製造方法であって、前記種結晶裏面及び前記種
結晶が装着される坩堝蓋部表面を平坦化処理し、両者を
物理的に密着させることにより前記種結晶を装着するこ
とを特徴とする炭化珪素単結晶インゴットの製造方法。1. A method for producing a silicon carbide single crystal ingot, comprising a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the seed crystal rear surface and the crucible to which the seed crystal is mounted are provided. A method for producing a silicon carbide single crystal ingot, comprising: flattening a surface of a lid portion; and attaching the seed crystal by physically bringing both surfaces into close contact with each other.
前記坩堝蓋部表面の平均粗さ(Ra)が5μm以下であ
る請求項1に記載の炭化珪素単結晶インゴットの製造方
法。2. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein an average roughness (Ra) of the back surface of the seed crystal and the surface of the crucible lid portion subjected to the flattening treatment is 5 μm or less.
前記坩堝蓋部表面の平均粗さ(Ra)が1μm以下であ
る請求項2に記載の炭化珪素単結晶インゴットの製造方
法。3. The method for producing a silicon carbide single crystal ingot according to claim 2, wherein an average roughness (Ra) of the back surface of the seed crystal and the surface of the crucible lid portion subjected to the flattening treatment is 1 μm or less.
晶育成用種結晶を坩堝蓋部表面に装着する方法であっ
て、前記種結晶裏面及び前記種結晶が装着される坩堝蓋
部表面の平均粗さ(Ra)を5μm以下とし、両者を物
理的に密着させることにより種結晶を装着する炭化珪素
単結晶育成用種結晶の装着方法。4. A method for mounting a seed crystal for growing a silicon carbide single crystal used in a sublimation recrystallization method on a surface of a crucible lid, wherein a back surface of the seed crystal and a surface of the crucible lid on which the seed crystal is mounted are mounted. A method for mounting a seed crystal for growing a silicon carbide single crystal, in which an average roughness (Ra) is 5 μm or less and a seed crystal is mounted by physically adhering the two.
れる坩堝蓋部表面の平均粗さ(Ra)を1μm以下とす
る請求項4に記載の炭化珪素単結晶育成用種結晶の装着
方法。5. The method for mounting a seed crystal for growing a silicon carbide single crystal according to claim 4, wherein the average roughness (Ra) of the back surface of the seed crystal and the surface of the crucible lid on which the seed crystal is mounted is 1 μm or less. .
方法により得られた炭化珪素単結晶インゴットであっ
て、該インゴットの口径が50mm以上であることを特
徴とする炭化珪素単結晶インゴット。6. A silicon carbide single crystal ingot obtained by the production method according to claim 1, wherein the diameter of the ingot is 50 mm or more. Crystal ingot.
ットを切断、研磨してなる炭化珪素単結晶基板。7. A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot according to claim 6.
エピタキシャル成長させてなる炭化珪素単結晶エピタキ
シャルウエハ。8. A silicon carbide single crystal epitaxial wafer formed by epitaxial growth on the silicon carbide single crystal substrate according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001107302A JP4523733B2 (en) | 2001-04-05 | 2001-04-05 | Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001107302A JP4523733B2 (en) | 2001-04-05 | 2001-04-05 | Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002308697A true JP2002308697A (en) | 2002-10-23 |
JP4523733B2 JP4523733B2 (en) | 2010-08-11 |
Family
ID=18959640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001107302A Expired - Lifetime JP4523733B2 (en) | 2001-04-05 | 2001-04-05 | Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4523733B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005003413A1 (en) * | 2003-07-03 | 2005-01-13 | Hitachi Chemical Co., Ltd. | Crucible and method of growing single crystal by using crucible |
JP2005314167A (en) * | 2004-04-28 | 2005-11-10 | Nippon Steel Corp | Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it |
JP2006151756A (en) * | 2004-11-30 | 2006-06-15 | Matsushita Electric Ind Co Ltd | Method for fixing seed crystal |
JP2008034464A (en) * | 2006-07-26 | 2008-02-14 | New Japan Radio Co Ltd | Method for manufacturing semiconductor device |
JP2008044802A (en) * | 2006-08-11 | 2008-02-28 | Shin Etsu Chem Co Ltd | Method for manufacturing susceptor to which silicon carbide seed crystal is fixed |
JP2011121815A (en) * | 2009-12-10 | 2011-06-23 | Sumitomo Electric Ind Ltd | Single crystal production method |
WO2011108587A1 (en) * | 2010-03-05 | 2011-09-09 | 昭和電工株式会社 | Method for affixing silicon carbide seed crystal and process for producing single-crystal silicon carbide |
JP2011190154A (en) * | 2010-03-16 | 2011-09-29 | Sumitomo Electric Ind Ltd | Method and apparatus for producing crystal and multilayer film |
JP2011219293A (en) * | 2010-04-07 | 2011-11-04 | Bridgestone Corp | Single crystal production apparatus and method for producing silicon carbide single crystal |
JP2013071870A (en) * | 2011-09-28 | 2013-04-22 | Kyocera Corp | Apparatus for growing crystal and method for growing crystal |
JP2014210687A (en) * | 2013-04-19 | 2014-11-13 | 新日鐵住金株式会社 | Seed crystal substrate for growing silicon carbide single crystal |
US9611167B2 (en) | 2010-07-16 | 2017-04-04 | Corning Incorporated | Methods for scribing and separating strengthened glass substrates |
JP2018058749A (en) * | 2016-10-04 | 2018-04-12 | 新日鐵住金株式会社 | Seed crystal substrate for growing silicon carbide single crystal, method for manufacturing the same and method for manufacturing silicon carbide single crystal |
EP2336399B1 (en) * | 2004-06-25 | 2018-08-08 | Cree, Inc. | Method of producing high quality silicon carbide single crystal in a seeded growth system |
JP2018165227A (en) * | 2017-03-28 | 2018-10-25 | 昭和電工株式会社 | Manufacturing method of ingot of silicon carbide single crystal |
JP2019127415A (en) * | 2018-01-24 | 2019-08-01 | 昭和電工株式会社 | Seed crystal for monocrystal 4h-sic growth and processing method for the same |
CN110306239A (en) * | 2019-07-16 | 2019-10-08 | 中国科学院上海硅酸盐研究所 | A kind of silicon carbide material seed crystal support |
JP7221363B1 (en) | 2021-09-15 | 2023-02-13 | 國家中山科學研究院 | Method for improving growth yield of silicon carbide single crystal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60136134U (en) * | 1984-02-17 | 1985-09-10 | 三洋電機株式会社 | Single crystal growth equipment |
JPH11157999A (en) * | 1997-11-20 | 1999-06-15 | Sumitomo Electric Ind Ltd | Growth of single crystal of ii-vi compound semiconductor |
JP2001181095A (en) * | 1999-12-22 | 2001-07-03 | Shikusuon:Kk | Silicon carbide single crystal and its growing method |
-
2001
- 2001-04-05 JP JP2001107302A patent/JP4523733B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60136134U (en) * | 1984-02-17 | 1985-09-10 | 三洋電機株式会社 | Single crystal growth equipment |
JPH11157999A (en) * | 1997-11-20 | 1999-06-15 | Sumitomo Electric Ind Ltd | Growth of single crystal of ii-vi compound semiconductor |
JP2001181095A (en) * | 1999-12-22 | 2001-07-03 | Shikusuon:Kk | Silicon carbide single crystal and its growing method |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005003413A1 (en) * | 2003-07-03 | 2005-01-13 | Hitachi Chemical Co., Ltd. | Crucible and method of growing single crystal by using crucible |
US7399360B2 (en) | 2003-07-03 | 2008-07-15 | Hitachi Chemical Company, Ltd. | Crucible and method of growing single crystal by using crucible |
US7785416B2 (en) | 2003-07-03 | 2010-08-31 | Hitachi Chemical Company, Ltd. | Crucible and single crystal growth method using crucible |
JP2005314167A (en) * | 2004-04-28 | 2005-11-10 | Nippon Steel Corp | Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it |
JP4494856B2 (en) * | 2004-04-28 | 2010-06-30 | 新日本製鐵株式会社 | Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same |
EP2336399B1 (en) * | 2004-06-25 | 2018-08-08 | Cree, Inc. | Method of producing high quality silicon carbide single crystal in a seeded growth system |
JP2006151756A (en) * | 2004-11-30 | 2006-06-15 | Matsushita Electric Ind Co Ltd | Method for fixing seed crystal |
JP4501657B2 (en) * | 2004-11-30 | 2010-07-14 | パナソニック株式会社 | Seed crystal fixing method for silicon carbide single crystal growth |
JP2008034464A (en) * | 2006-07-26 | 2008-02-14 | New Japan Radio Co Ltd | Method for manufacturing semiconductor device |
JP2008044802A (en) * | 2006-08-11 | 2008-02-28 | Shin Etsu Chem Co Ltd | Method for manufacturing susceptor to which silicon carbide seed crystal is fixed |
JP2011121815A (en) * | 2009-12-10 | 2011-06-23 | Sumitomo Electric Ind Ltd | Single crystal production method |
US20130000547A1 (en) * | 2010-03-05 | 2013-01-03 | Showa Denko K.K. | Method for fixing silicon carbide seed crystal and method for producing single crystal silicon carbide |
JP2011184224A (en) * | 2010-03-05 | 2011-09-22 | Showa Denko Kk | Method for fixing silicon carbide seed crystal and method for producing silicon carbide single crystal |
WO2011108587A1 (en) * | 2010-03-05 | 2011-09-09 | 昭和電工株式会社 | Method for affixing silicon carbide seed crystal and process for producing single-crystal silicon carbide |
JP2011190154A (en) * | 2010-03-16 | 2011-09-29 | Sumitomo Electric Ind Ltd | Method and apparatus for producing crystal and multilayer film |
JP2011219293A (en) * | 2010-04-07 | 2011-11-04 | Bridgestone Corp | Single crystal production apparatus and method for producing silicon carbide single crystal |
US9611167B2 (en) | 2010-07-16 | 2017-04-04 | Corning Incorporated | Methods for scribing and separating strengthened glass substrates |
JP2013071870A (en) * | 2011-09-28 | 2013-04-22 | Kyocera Corp | Apparatus for growing crystal and method for growing crystal |
JP2014210687A (en) * | 2013-04-19 | 2014-11-13 | 新日鐵住金株式会社 | Seed crystal substrate for growing silicon carbide single crystal |
JP2018058749A (en) * | 2016-10-04 | 2018-04-12 | 新日鐵住金株式会社 | Seed crystal substrate for growing silicon carbide single crystal, method for manufacturing the same and method for manufacturing silicon carbide single crystal |
JP2018165227A (en) * | 2017-03-28 | 2018-10-25 | 昭和電工株式会社 | Manufacturing method of ingot of silicon carbide single crystal |
JP2019127415A (en) * | 2018-01-24 | 2019-08-01 | 昭和電工株式会社 | Seed crystal for monocrystal 4h-sic growth and processing method for the same |
WO2019146336A1 (en) * | 2018-01-24 | 2019-08-01 | 昭和電工株式会社 | Seed crystal for 4h-sic single-crystal growth, and method for processing said seed crystal |
CN111630213A (en) * | 2018-01-24 | 2020-09-04 | 昭和电工株式会社 | Seed crystal for growing single crystal 4H-SiC and processing method thereof |
CN111630213B (en) * | 2018-01-24 | 2022-01-18 | 昭和电工株式会社 | Seed crystal for growing single crystal 4H-SiC and processing method thereof |
US11781244B2 (en) | 2018-01-24 | 2023-10-10 | Resonac Corporation | Seed crystal for single crystal 4H—SiC growth and method for processing the same |
CN110306239A (en) * | 2019-07-16 | 2019-10-08 | 中国科学院上海硅酸盐研究所 | A kind of silicon carbide material seed crystal support |
JP7221363B1 (en) | 2021-09-15 | 2023-02-13 | 國家中山科學研究院 | Method for improving growth yield of silicon carbide single crystal |
JP2023074614A (en) * | 2021-09-15 | 2023-05-30 | 國家中山科學研究院 | Method for improving growth yield of silicon carbide single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP4523733B2 (en) | 2010-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4964672B2 (en) | Low resistivity silicon carbide single crystal substrate | |
JP4523733B2 (en) | Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal | |
JP4818754B2 (en) | Method for producing silicon carbide single crystal ingot | |
CN111074338B (en) | Seed crystal with protective film, method of manufacturing the same, method of attaching the same, and method of manufacturing ingot using the same | |
JP2004099340A (en) | Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same | |
WO2006070480A1 (en) | Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same | |
CN110904509B (en) | Silicon carbide crystal, method and apparatus for growing the same, semiconductor device, and display device | |
JP5031651B2 (en) | Method for producing silicon carbide single crystal ingot | |
JP4733882B2 (en) | Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal | |
JP2008110907A (en) | Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot | |
JP4585359B2 (en) | Method for producing silicon carbide single crystal | |
JP2006143511A (en) | Seed crystal fixing part and method of fixing seed crystal | |
JP3637157B2 (en) | Method for producing silicon carbide single crystal and seed crystal used therefor | |
JP4054197B2 (en) | Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal ingot | |
JP4408247B2 (en) | Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
JP5614387B2 (en) | Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot | |
JP2005239496A (en) | Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same | |
JP4494856B2 (en) | Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same | |
JP4850807B2 (en) | Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
JP4374986B2 (en) | Method for manufacturing silicon carbide substrate | |
JP5146423B2 (en) | Silicon carbide single crystal manufacturing equipment | |
JP2003137694A (en) | Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same | |
JP2002121099A (en) | Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal wafer, and method for producing silicon carbide single crystal | |
JP4585137B2 (en) | Method for producing silicon carbide single crystal ingot | |
JP2011201755A (en) | Method for producing single crystal silicon carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100528 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4523733 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |