JP2018165227A - Manufacturing method of ingot of silicon carbide single crystal - Google Patents

Manufacturing method of ingot of silicon carbide single crystal Download PDF

Info

Publication number
JP2018165227A
JP2018165227A JP2017062663A JP2017062663A JP2018165227A JP 2018165227 A JP2018165227 A JP 2018165227A JP 2017062663 A JP2017062663 A JP 2017062663A JP 2017062663 A JP2017062663 A JP 2017062663A JP 2018165227 A JP2018165227 A JP 2018165227A
Authority
JP
Japan
Prior art keywords
seed crystal
crystal substrate
single crystal
substrate
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017062663A
Other languages
Japanese (ja)
Other versions
JP6785698B2 (en
Inventor
藤本 辰雄
Tatsuo Fujimoto
辰雄 藤本
勝野 正和
Masakazu Katsuno
正和 勝野
佐藤 信也
Shinya Sato
信也 佐藤
昌史 牛尾
Masashi Ushio
昌史 牛尾
正史 中林
Masashi Nakabayashi
正史 中林
弘志 柘植
Hiroshi Tsuge
弘志 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2017062663A priority Critical patent/JP6785698B2/en
Publication of JP2018165227A publication Critical patent/JP2018165227A/en
Application granted granted Critical
Publication of JP6785698B2 publication Critical patent/JP6785698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of manufacturing a high-quality SiC single crystal ingot having less defect by suppressing a generation of a micro crack while preventing a large stress applied to a grown crystal even in a case where a large diameter SiC single crystal of a diameter of 100 mm or more is grown.SOLUTION: Provided is a manufacturing method of an ingot of a silicon carbide single crystal by a sublimation recrystallization method in which the silicon carbide single crystal is grown on a crystal growth surface of a seed crystal substrate 1. In a central region of an attachment boundary between a substrate placing part of a crucible lid 3 and the seed crystal substrate 1, an adhesive 15 is used to bond them each other such that a bonding area ratio to the seed crystal substrate is 0.1 - 5%, in an outer peripheral region other than the central region they contact each other in a smooth plane with a surface roughness (Ra) of 1 μm or less, and furthermore, and an outer peripheral part of the seed crystal substrate 1 is mechanically fixed with a holding member 16 to the crucible lid 3.SELECTED DRAWING: Figure 2

Description

本発明は、炭化珪素単結晶インゴットの製造方法に関するものであり、詳しくは、いわゆる昇華再結晶法により炭化珪素単結晶インゴットを製造する際に、黒鉛製坩堝の坩堝蓋体に種結晶基板を取り付ける方法に関するものである。   The present invention relates to a method for manufacturing a silicon carbide single crystal ingot, and more specifically, when a silicon carbide single crystal ingot is manufactured by a so-called sublimation recrystallization method, a seed crystal substrate is attached to a crucible lid of a graphite crucible. It is about the method.

炭化珪素(SiC)は、優れた半導体特性を有するため、近年、大電力制御用パワーデバイスを製造するための基板用材料として大きな注目を集めている。特に、SiC単結晶基板から作製されるSiCショットキーバリアダイオードやMOSFET(Metal Oxide-Semiconductor Field Effect Transistor)をはじめとするSiCパワーデバイスの開発が進められており、耐電圧が1000Vを超え、かつ、導通時のオン抵抗が小さくできる長所を発揮できることから、変換時の電力損失が少ない大電力制御用インバーターをはじめとする各種の電力制御装置が開発されている。   Since silicon carbide (SiC) has excellent semiconductor characteristics, it has recently attracted much attention as a substrate material for manufacturing a power device for high power control. In particular, development of SiC power devices such as SiC Schottky barrier diodes and MOSFETs (Metal Oxide-Semiconductor Field Effect Transistors) fabricated from SiC single crystal substrates is underway, withstand voltage exceeding 1000V, and Various power control devices have been developed, including an inverter for large power control with low power loss at the time of conversion because it can exhibit the advantage of reducing the on-resistance during conduction.

SiC単結晶は、目下のところ、改良レーリー法と呼ばれる昇華再結晶法、あるいは技術的には同義であるが、昇華法と呼ばれる製造方法によって、作製されることが一般的である(非特許文献1参照)。すなわち、坩堝本体と坩堝蓋体とからなる黒鉛製坩堝の坩堝本体側にSiC原料が装填され、坩堝蓋体側にSiC単結晶からなる種結晶基板が取り付けられて、SiC原料を加熱昇華させて種結晶基板の結晶成長面にSiC単結晶を成長させる。   At present, SiC single crystals are generally produced by a sublimation recrystallization method called an improved Rayleigh method, or technically synonymous, but a manufacturing method called a sublimation method (non-patent literature). 1). That is, a SiC raw material is loaded on the crucible body side of a graphite crucible composed of a crucible body and a crucible lid body, a seed crystal substrate made of SiC single crystal is attached to the crucible lid body side, and the SiC raw material is heated and sublimated to seed. A SiC single crystal is grown on the crystal growth surface of the crystal substrate.

大きな耐電圧特性やデバイス長期動作信頼性に優れるSiCパワーデバイスを安定的に実現するためには、SiC単結晶の大口径化と並行して、小口径SiC単結晶で実現されている結晶品質を大口径結晶においても維持すること、すなわち、欠陥密度を十分に小さくすることが必要である。例えばパワーデバイス特性に影響を与えるSiC単結晶基板の欠陥として、(0001)基底面上の刃状転位である基底面転位などが挙げられる。SiC単結晶基板にSiCのエピタキシャル膜を成長させた際に、基底面転位がこのSiCエピタキシャル層に存在すると、デバイス順方向動作時に部分転位に拡張して積層欠陥を形成するため、オン動作時のデバイス電気抵抗、すなわちオン抵抗値が経時的に漸次増加し、変換損失が増大してしまうことが知られている(非特許文献2参照)。このように、SiC単結晶基板においては、欠陥密度をできる限り低減化することがパワーデバイスとして応用する上で重要となっている。   In order to stably realize SiC power devices with excellent withstand voltage characteristics and long-term operation reliability, in parallel with the increase in the diameter of SiC single crystals, the crystal quality realized with small-diameter SiC single crystals can be achieved. It is necessary to maintain even large-diameter crystals, that is, to reduce the defect density sufficiently. For example, basal plane dislocations that are edge dislocations on the (0001) basal plane are examples of defects in the SiC single crystal substrate that affect power device characteristics. When a SiC epitaxial film is grown on a SiC single crystal substrate, if basal plane dislocations are present in this SiC epitaxial layer, they are expanded to partial dislocations during device forward operation and form stacking faults. It is known that device electrical resistance, that is, on-resistance value gradually increases with time, and conversion loss increases (see Non-Patent Document 2). As described above, in the SiC single crystal substrate, it is important to reduce the defect density as much as possible for application as a power device.

上記のような欠陥の発生原因の一つとしては、SiC単結晶の内部応力が大きく増加することが挙げられる。高温で結晶内部の応力が大きくなると、結晶自体に塑性変形を誘起することになり、これが駆動力となって多量の転位欠陥を発生させる。例えば、昇華再結晶法で結晶成長を行う際に、種結晶基板を坩堝蓋体側に設けられた黒鉛製の台座に耐熱接着剤を用いて貼り付ける場合、種結晶基板の裏面、すなわち接着面からの熱分解によるボイド等の不要なマクロ欠陥の発生を抑制するために、できるだけ台座の表面に種結晶基板を密着させ、種結晶基板と台座の間に空隙を無くすことが必要であると考えられている(例えば特許文献1参照)。ところが、その結果、種結晶基板と台座が強固に固定されることになり、このような状況では、種結晶基板を構成するSiC単結晶と台座を構成する黒鉛とは、熱膨張率が一般的には異なるために成長温度では大きな熱膨張差が生じ、これが原因となって、かえって成長結晶に大きな応力を発生させてしまうことになる(非特許文献3参照)。   One of the causes of the occurrence of such defects is that the internal stress of the SiC single crystal is greatly increased. When the stress inside the crystal increases at a high temperature, plastic deformation is induced in the crystal itself, and this acts as a driving force to generate a large number of dislocation defects. For example, when crystal growth is performed by the sublimation recrystallization method, when a seed crystal substrate is attached to a graphite base provided on the crucible lid side using a heat-resistant adhesive, from the back surface of the seed crystal substrate, that is, the adhesive surface In order to suppress the occurrence of unnecessary macro defects such as voids due to thermal decomposition of the seed, it is considered necessary to make the seed crystal substrate as close as possible to the surface of the pedestal and eliminate the gap between the seed crystal substrate and the pedestal. (For example, see Patent Document 1). However, as a result, the seed crystal substrate and the pedestal are firmly fixed. In such a situation, the SiC single crystal constituting the seed crystal substrate and the graphite constituting the pedestal generally have a thermal expansion coefficient. Therefore, a large difference in thermal expansion occurs at the growth temperature, which causes a large stress on the grown crystal (see Non-Patent Document 3).

このような視点から、坩堝蓋体の基板取付け部となる台座と種結晶基板との熱膨張率差を起因とする応力の増加による欠陥発生を抑制するために、SiCとほぼ同じ熱膨張率を有する台座を用いることや(特許文献2参照)、あるいは接着剤からなる接着層を多層構造にする等の工夫を行うことにより熱膨張率差を小さくする(特許文献3参照)等の方法が行われている。   From such a viewpoint, in order to suppress the occurrence of defects due to an increase in stress caused by the difference in thermal expansion coefficient between the pedestal serving as the substrate mounting portion of the crucible lid and the seed crystal substrate, the thermal expansion coefficient is almost the same as that of SiC. A method of reducing the difference in thermal expansion coefficient by using a pedestal (see Patent Document 2) or by devising an adhesive layer made of an adhesive to have a multilayer structure is performed (see Patent Document 3). It has been broken.

前記した方法とは別に、接着剤を一切用いず、互いに平坦化処理した種結晶基板と坩堝蓋体とを黒鉛性ネジ等の保持部材を用いて、機械的に固定する方法が提案されている(特許文献4参照)。このような方法によれば、種結晶基板の裏面及び坩堝蓋体の両者の表面粗さ(Ra)を5μm以下にして密着させることにより、ボイド等の不要なマクロ欠陥が抑制できるというものである。すなわち、接着剤による接合も同時に避けることが可能になり、種結晶基板を構成するSiC単結晶と坩堝蓋体や台座を構成する黒鉛との熱膨張率差に起因する不要な応力の発生を回避できる。しかしながら、ネジ固定等で種結晶基板の外側周縁部を固定する方法では、種結晶基板の口径が大口径化した際に中央部分で自重等により高温で間隙が形成されてしまい、結果としてマクロ欠陥発生の問題が再燃してしまう。近年、昇華再結晶法によるSiC単結晶の成長技術開発が大きく進捗し、現在市場の主流は口径100mm基板となっており、趨勢としては口径が150mm以上に達すると同時に、更に大口径のSiC単結晶インゴットの開発も進められている。このような状況では、上記した問題はさらに顕現化することになる。   Aside from the above-described method, there has been proposed a method of mechanically fixing the seed crystal substrate and the crucible lid body flattened with each other using a holding member such as a graphite screw without using any adhesive. (See Patent Document 4). According to such a method, unnecessary macro defects such as voids can be suppressed by bringing the back surface of the seed crystal substrate and the surface roughness (Ra) of the crucible lid body into close contact with each other to 5 μm or less. . In other words, bonding with an adhesive can be avoided at the same time, and unnecessary stress caused by the difference in thermal expansion coefficient between the SiC single crystal constituting the seed crystal substrate and the graphite constituting the crucible lid or pedestal is avoided. it can. However, in the method of fixing the outer peripheral edge of the seed crystal substrate by screw fixing or the like, when the diameter of the seed crystal substrate is increased, a gap is formed at a high temperature due to its own weight or the like in the central portion, resulting in macro defects. The problem of occurrence will rekindle. In recent years, development of SiC single crystal growth technology by the sublimation recrystallization method has made great progress, and the mainstream of the current market is the substrate with a diameter of 100 mm. Crystal ingots are also being developed. In such a situation, the problem described above will become more apparent.

また、これら以外の方法として、口径150mmの大口径種結晶基板の周辺部に耐熱性の介設層をスパッタ法などにより形成することで、坩堝蓋体の基板取付け部となる台座と種結晶基板との固着を防ぎ、かつその状態で種結晶基板の中央部分のみを接着剤で固定する方法が提案されている(特許文献5参照)。しかしながら、この方法では耐熱性介設層の剥離を防ぐために介設層の厚さを約10μm以下に厳密に管理する必要があり、製造工数および管理負荷の増加を招いてしまうと同時に、高融点金属からなる介設層形成によって発生するコスト増等の製造上の課題が新たに発生する。また、中央部のみを接着固定した場合には、接着剤の厚みによりその外側周辺領域では種結晶基板と台座との間に隙間が生じてしまい、マクロ欠陥が発生する原因となってしまう。   Further, as a method other than these, a pedestal and a seed crystal substrate serving as a substrate mounting portion of the crucible lid are formed by forming a heat-resistant intervening layer around the large-diameter seed crystal substrate having a diameter of 150 mm by a sputtering method or the like. In this state, a method of fixing only the center portion of the seed crystal substrate with an adhesive has been proposed (see Patent Document 5). However, in this method, it is necessary to strictly control the thickness of the interposed layer to about 10 μm or less in order to prevent the heat-resistant interposed layer from being peeled off. New manufacturing problems such as cost increase caused by the formation of the intervening layer made of metal are newly generated. In addition, when only the central portion is bonded and fixed, a gap is formed between the seed crystal substrate and the pedestal in the outer peripheral region due to the thickness of the adhesive, which causes macro defects.

特開2001-139394号公報Japanese Patent Laid-Open No. 2001-139394 特開2012-46425号公報JP 2012-46425 A 特開2009-120419号公報JP 2009-120419 JP 特表2002-308697号公報Special table 2002-308697 gazette 特表2010-280547号公報Special table 2010-280547

Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) p.146Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, vol.52 (1981) p.146 M. Skowronski and S. Ha, Journal of Applied Physics, vol.99 (2006) p.011101.M. Skowronski and S. Ha, Journal of Applied Physics, vol.99 (2006) p.011101. R. Ma, H. Zhang, V. Prasad, M. Dudley, Crystal Growth & Design vol.2 (2002) p.213.R. Ma, H. Zhang, V. Prasad, M. Dudley, Crystal Growth & Design vol.2 (2002) p.213.

本発明は、上記の課題を解決するものであり、口径が100mm以上の大口径SiC単結晶を成長させるような場合でも、成長結晶に大きな応力が掛かるのを防ぎながら、マクロ欠陥の発生を抑制して、欠陥の少ない高品質なSiC単結晶インゴットを製造することができる方法を提供することを目的とするものである。   The present invention solves the above-mentioned problems and suppresses the occurrence of macro defects while preventing large stress from being applied to the grown crystal even when growing a large-diameter SiC single crystal having a diameter of 100 mm or more. An object of the present invention is to provide a method capable of producing a high-quality SiC single crystal ingot with few defects.

本発明者らは、上述した従来技術の問題を解決するために鋭意検討した結果、種結晶基板と坩堝蓋体の基板取付け部との取付け界面において、種結晶基板の中央部を接着剤で接合し、それ以外の外側周辺領域では、互いに所定の表面粗さを有する平滑面で接触させるようにして、しかも、種結晶基板の外側周縁部を保持部材によって機械的に固定することで、口径が100mm以上の大口径SiC単結晶を成長させる場合でも、成長結晶に大きな応力が発生するのを防ぐことができると共に、マクロ欠陥の発生を抑制して、欠陥密度が小さい高品質なSiC単結晶インゴットを製造することができることを見出し、本発明を完成した。
すなわち、本発明の要旨は、次のとおりである。
As a result of diligent studies to solve the above-described problems of the prior art, the inventors joined the central portion of the seed crystal substrate with an adhesive at the attachment interface between the seed crystal substrate and the substrate attachment portion of the crucible lid. In the other outer peripheral regions, the outer diameters of the seed crystal substrates are mechanically fixed by the holding member so as to be in contact with each other with smooth surfaces having a predetermined surface roughness. Even when growing a large-diameter SiC single crystal of 100 mm or more, it is possible to prevent a large stress from being generated in the grown crystal, and to suppress the generation of macro defects and to produce a high-quality SiC single crystal ingot with a low defect density. And the present invention was completed.
That is, the gist of the present invention is as follows.

(1)坩堝本体と坩堝蓋体とからなる黒鉛製坩堝の坩堝本体側に炭化珪素原料を装填し、坩堝蓋体側に炭化珪素単結晶からなる種結晶基板を取り付けて、炭化珪素原料を加熱昇華させて種結晶基板の結晶成長面に炭化珪素単結晶を成長させる炭化珪素単結晶インゴットの製造方法であって、
前記坩堝蓋体の基板取付け部と前記種結晶基板との取付け界面において、種結晶基板の中央部に相当する中央領域では、種結晶基板に対する面積比で0.1%以上5%以下の接合面積を有するように接着剤で互いに接合され、該中央領域以外の外側周辺領域は、それぞれ表面粗さ(Ra)1μm以下の平滑面で互いに接するようにして、かつ、種結晶基板の外側周縁部は、保持部材により前記坩堝蓋体に対して機械的に固定して、種結晶基板の結晶成長面に炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶インゴットの製造方法。
(2)前記坩堝蓋体の基板取付け部が円盤状の黒鉛製台座から形成され、該黒鉛製台座は、前記種結晶基板の中央部に相当する位置に貫通孔を備えると共に、表面粗さ(Ra)1μm以下の平滑面を有し、また、前記種結晶基板は、結晶成長面と反対側が表面粗さ(Ra)1μm以下の平滑面を有して、前記黒鉛製台座の貫通孔に充填された接着剤により、黒鉛製台座を介して種結晶基板と坩堝蓋体とが接合されて、かつ、種結晶基板の外側周縁部に取り付けられる前記保持部材により、黒鉛製台座と種結晶基板とを坩堝蓋体に対して一体的に固定する(1)に記載の炭化珪素単結晶インゴットの製造方法。
(3)口径100mm以上を有する炭化珪素単結晶インゴットを製造する(1)又は(2)に記載の炭化珪素単結晶インゴットの製造方法。
(1) A silicon carbide raw material is loaded on the crucible body side of a graphite crucible composed of a crucible body and a crucible lid, a seed crystal substrate made of a silicon carbide single crystal is attached to the crucible lid, and the silicon carbide raw material is heated and sublimated. A silicon carbide single crystal ingot for growing a silicon carbide single crystal on a crystal growth surface of a seed crystal substrate,
In the central region corresponding to the central portion of the seed crystal substrate at the interface between the substrate mounting portion of the crucible lid and the seed crystal substrate, the bonding area is 0.1% or more and 5% or less in terms of the area ratio to the seed crystal substrate. The outer peripheral regions other than the central region are in contact with each other with smooth surfaces having a surface roughness (Ra) of 1 μm or less, and the outer peripheral edge of the seed crystal substrate is A method for manufacturing a silicon carbide single crystal ingot, wherein the silicon carbide single crystal is grown on a crystal growth surface of a seed crystal substrate by mechanically fixing the crucible lid with a holding member.
(2) A substrate mounting portion of the crucible lid is formed from a disk-shaped graphite pedestal, and the graphite pedestal includes a through hole at a position corresponding to a central portion of the seed crystal substrate and has a surface roughness ( Ra) has a smooth surface of 1 μm or less, and the seed crystal substrate has a smooth surface with a surface roughness (Ra) of 1 μm or less on the side opposite to the crystal growth surface, and fills the through hole of the graphite base. By means of the adhesive, the seed crystal substrate and the crucible lid are joined via the graphite pedestal, and the holding member attached to the outer peripheral edge of the seed crystal substrate, the graphite pedestal and the seed crystal substrate (1) The manufacturing method of the silicon carbide single crystal ingot as described in (1).
(3) The method for producing a silicon carbide single crystal ingot according to (1) or (2), wherein a silicon carbide single crystal ingot having a diameter of 100 mm or more is produced.

本発明によれば、口径が100mm以上の大口径SiC単結晶を成長させるような場合でも、成長結晶に大きな応力が掛かるのを防ぎながら、マクロ欠陥の発生を抑制して、欠陥の少ない高品質なSiC単結晶インゴットをより簡便に製造することが可能になる。そのため、このような方法によって得られたSiC単結晶インゴットから切り出された大口径SiC単結晶基板を用いれば、極めて高性能かつ信頼性に優れた電力制御用パワーデバイスを高効率で作製することができる。   According to the present invention, even when a large-diameter SiC single crystal having a diameter of 100 mm or more is grown, the generation of macro defects is suppressed while preventing large stress from being applied to the grown crystal, and high quality with few defects. It becomes possible to manufacture a simple SiC single crystal ingot more easily. Therefore, if a large-diameter SiC single crystal substrate cut out from the SiC single crystal ingot obtained by such a method is used, a power device for power control with extremely high performance and excellent reliability can be produced with high efficiency. it can.

図1は、本発明において種結晶基板を坩堝蓋体側に取り付ける方法の手順の一例を説明する図である。FIG. 1 is a diagram illustrating an example of a procedure of a method for attaching a seed crystal substrate to the crucible lid body according to the present invention. 図2は、本発明において坩堝蓋体側に種結晶基板が取り付けられた様子の一例を説明する図である。FIG. 2 is a diagram illustrating an example of a state in which the seed crystal substrate is attached to the crucible lid body side in the present invention. 図3は、本発明において坩堝蓋体側に種結晶基板が取り付けられた様子の他の一例を説明する図である。FIG. 3 is a diagram for explaining another example of a state in which the seed crystal substrate is attached to the crucible lid body side in the present invention. 図4は、昇華再結晶法(改良レーリー法)成長装置の構成を説明する図である。FIG. 4 is a diagram for explaining the configuration of a sublimation recrystallization method (improved Rayleigh method) growth apparatus.

以下、本発明について詳しく説明する。
本発明においては、坩堝本体と坩堝蓋体とからなる黒鉛製坩堝の坩堝本体側に炭化珪素原料を装填し、坩堝蓋体側に炭化珪素単結晶からなる種結晶基板を取り付けて、炭化珪素原料を加熱昇華させて種結晶基板の結晶成長面に炭化珪素単結晶を成長させる種結晶基板を用いた昇華再結晶法により、例えば口径が100mm以上のSiC単結晶ウエハが取り出し可能なSiC単結晶インゴットを製造するにあたり、種結晶基板と坩堝蓋体の基板取付け部との取付け界面において、種結晶基板の中央部に相当する中央領域では、種結晶基板に対する面積比で0.1%以上5%以下の接合面積を有するように接着剤で互いに接合され、その中央領域以外の外側周辺領域では、それぞれ表面粗さ(Ra)が1μm以下の平滑面で互いに接するようにして、かつ、種結晶基板の外側周縁部は、保持部材により坩堝蓋体に対して機械的に固定して、種結晶基板の結晶成長面に炭化珪素単結晶を成長させるようにする。ここで、中央領域における接着剤以外には、種結晶基板と坩堝蓋体の基板取付け部との取付け界面に高融点金属やその炭化物等の耐熱性特殊材料等からなる介在層等が一切無く、両者が表面粗さ(Ra)が1μm以下の平滑面で互いに接した状態とすることが重要となる。
The present invention will be described in detail below.
In the present invention, a silicon carbide raw material is loaded on the crucible body side of a graphite crucible composed of a crucible body and a crucible lid, a seed crystal substrate made of a silicon carbide single crystal is attached to the crucible lid side, and the silicon carbide raw material is By sublimation recrystallization using a seed crystal substrate that is heated and sublimated to grow a silicon carbide single crystal on the crystal growth surface of the seed crystal substrate, for example, an SiC single crystal ingot from which an SiC single crystal wafer having a diameter of 100 mm or more can be taken out In manufacturing, in the central region corresponding to the central portion of the seed crystal substrate at the mounting interface between the seed crystal substrate and the substrate mounting portion of the crucible lid, the area ratio with respect to the seed crystal substrate is 0.1% or more and 5% or less. Bonded to each other with an adhesive so as to have a bonding area, and in the outer peripheral area other than the central area, the surface roughness (Ra) should be in contact with each other on a smooth surface of 1 μm or less. And the outer periphery of the seed crystal substrate is mechanically fixed to the crucible lid by holding member, so as to grow a silicon carbide single crystal on the crystal growth surface of the seed crystal substrate. Here, besides the adhesive in the central region, there is no intervening layer made of a heat-resistant special material such as a refractory metal or its carbide at the attachment interface between the seed crystal substrate and the substrate attachment part of the crucible lid, It is important that both are in contact with each other on a smooth surface having a surface roughness (Ra) of 1 μm or less.

すなわち、本発明者等は、種結晶基板が取り付けられる坩堝蓋体の基板取付け部と種結晶基板の裏面(結晶成長面の反対側)との両方の表面粗さ(Ra)を1μm以下にして互いに接触させると、種結晶基板の裏面が全面に均一に熱分解し、非常に薄い炭化層(推定数十μm以下程度)が形成されて、坩堝蓋体の基板取付け部との接着が抑制できることを見出した。従って、Raを1μm以下とした状態でこれらを密着させることにより、マクロ欠陥の発生が回避できると同時に、両者の密着が薄い炭化層を介することで、外側周辺領域における互いの接合を回避でき、僅かな熱膨張率差による不要な応力の発生を著しく低減できる。ここで、両者の表面粗さ(Ra)の少なくとも一方が1μm超になると炭化層の形成が不均一になり、種結晶基板と坩堝蓋体の基板取付け部との分離が不十分となって、基底面転位密度が大きく増加してしまう。なお、表面粗さRaは、JIS B0601:2013規定の算術平均粗さを表す。   That is, the present inventors set the surface roughness (Ra) of both the substrate mounting portion of the crucible lid body to which the seed crystal substrate is attached and the back surface (opposite side of the crystal growth surface) of the seed crystal substrate to 1 μm or less. When they are brought into contact with each other, the back surface of the seed crystal substrate is uniformly thermally decomposed over the entire surface, and a very thin carbonized layer (estimated about several tens of μm or less) is formed, thereby suppressing adhesion of the crucible lid to the substrate mounting portion I found. Therefore, by bringing them into close contact with each other in a state where Ra is 1 μm or less, the occurrence of macro defects can be avoided, and at the same time, the mutual adhesion in the outer peripheral region can be avoided through the thin carbonized layer, Generation of unnecessary stress due to a slight difference in thermal expansion coefficient can be significantly reduced. Here, when at least one of the surface roughness (Ra) of both exceeds 1 μm, the formation of the carbonized layer becomes non-uniform, and separation between the seed crystal substrate and the substrate mounting portion of the crucible lid becomes insufficient, The basal plane dislocation density is greatly increased. The surface roughness Ra represents the arithmetic average roughness defined in JIS B0601: 2013.

このように、種結晶基板と坩堝蓋体側との取付け界面において、中央領域以外の外側周辺領域がそれぞれ表面粗さ(Ra)1μm以下の平滑面で互いに接するようにするためには、中央領域での接着剤による接合状態がまた重要になる。つまり、両者を接合する接着剤からなる接着層がこれらの取付け界面で所定の厚みで存在すると、例えば、黒鉛製台座のような坩堝蓋体の基板取付け部と種結晶基板との間に隙間が形成されてしまい、外側周辺領域での平滑面での接触ができなくなる。そこで、本発明においては、例えば、以下のようにして坩堝蓋体側に種結晶基板を接着剤で接合するのがよい。   In this way, at the attachment interface between the seed crystal substrate and the crucible lid side, the outer peripheral regions other than the central region are in contact with each other with smooth surfaces having a surface roughness (Ra) of 1 μm or less. The bonding state by the adhesive is also important. In other words, if an adhesive layer made of an adhesive that joins the two is present at a predetermined thickness at these attachment interfaces, for example, there is a gap between the substrate attachment portion of the crucible lid such as a graphite pedestal and the seed crystal substrate. As a result, the contact with the smooth surface in the outer peripheral area becomes impossible. Therefore, in the present invention, for example, the seed crystal substrate is preferably bonded to the crucible lid side with an adhesive as follows.

先ず、図1に示したように、SiC単結晶インゴットの成長に使用する種結晶基板1と、この種結晶基板1を坩堝蓋体3側に取り付ける際の基板取付け部となる黒鉛製の台座13を準備する。その際、両者が接する側の表面は、それぞれ面研削盤あるいは両面研磨装置等を用いた機械加工により、予め表面粗さRaが1μm以下に仕上げられていることが必要である。また、この台座13には種結晶基板1の中央部に相当する位置に上下方向に貫通する貫通孔14があけられている。そこで、両者を密着させ(図1(a))、その状態で有機溶媒にフェノール樹脂等が溶解した接着剤14を流し込み、貫通孔14を接着剤15で充填させる(図1(b))。そして、種結晶基板1と台座13との密着面に隙間が生じないように留意しながら、種結晶基板1を密着させた面とは反対側の台座13の上面に坩堝蓋体3を配置して、その状態で接着剤14を固化(硬化)させることで、台座13を介して(台座13の貫通孔14を介して)種結晶基板1を坩堝蓋体3に接合させる(図1(c))。このときに、接着剤の固化を効率的に行うために適宜加熱してもよい。   First, as shown in FIG. 1, a seed crystal substrate 1 used for growing a SiC single crystal ingot, and a graphite pedestal 13 serving as a substrate attaching portion when the seed crystal substrate 1 is attached to the crucible lid 3 side. Prepare. At that time, the surface on the side where both are in contact with each other needs to be finished to a surface roughness Ra of 1 μm or less in advance by machining using a surface grinding machine or a double-side polishing apparatus. The pedestal 13 is provided with a through hole 14 penetrating in the vertical direction at a position corresponding to the central portion of the seed crystal substrate 1. Therefore, the two are brought into close contact (FIG. 1A), and in this state, an adhesive 14 in which a phenol resin or the like is dissolved is poured into the organic solvent, and the through hole 14 is filled with the adhesive 15 (FIG. 1B). The crucible lid 3 is disposed on the upper surface of the pedestal 13 opposite to the surface to which the seed crystal substrate 1 is in close contact, taking care not to create a gap in the contact surface between the seed crystal substrate 1 and the pedestal 13. Then, by solidifying (curing) the adhesive 14 in this state, the seed crystal substrate 1 is joined to the crucible lid 3 via the pedestal 13 (through the through hole 14 of the pedestal 13) (FIG. 1 (c) )). At this time, heating may be appropriately performed in order to efficiently solidify the adhesive.

このようにして坩堝蓋体3側に種結晶基板1を取り付けることで、種結晶基板1と黒鉛製台座13との取付け界面では、台座13の貫通孔14に相当する中央領域のみが接着剤で接合され、それ以外の外側周辺領域では、種結晶基板1と黒鉛製台座13とがそれぞれの平滑面で物理的に密着した状態が実現されて、種結晶基板1が坩堝蓋体3側に取り付けられる。このような黒鉛製台座13を用いずに、例えば、坩堝蓋体3に黒鉛製台座13の場合と同様の貫通孔を設けて、坩堝蓋体3に対して種結晶基板1を密着した上で接着剤を充填したり、貫通孔のかわりに接着剤を充填する凹部を設けて種結晶基板1を密着させて接着剤を固化(硬化)させることで、坩堝蓋体3の基板取付け部に対して、直接、種結晶基板を取り付けるようにすることでも本発明の規定する取付け界面を実現することは可能である。ただし、坩堝蓋体3に直接貫通孔を設けて種結晶基板1を取り付けたりすると、接着剤の成長温度での材料特性によっては、結晶成長中にその貫通孔から抜熱が生じて成長結晶の品質に影響を及ぼすことも考えられる。また、黒鉛製台座13が介在することで、種結晶基板1の裏面側で熱流の不均一化を回避することが可能になることから、好ましくは、図1に示したように、黒鉛製台座13を介して種結晶基板1を坩堝蓋体3側に取り付けるようにするのがよい。   By attaching the seed crystal substrate 1 to the crucible lid 3 in this manner, only the central region corresponding to the through hole 14 of the pedestal 13 is made of an adhesive at the attachment interface between the seed crystal substrate 1 and the graphite pedestal 13. In the other outer peripheral region, the seed crystal substrate 1 and the graphite pedestal 13 are physically in close contact with each other on the smooth surface, and the seed crystal substrate 1 is attached to the crucible lid 3 side. It is done. Without using such a graphite pedestal 13, for example, the crucible lid 3 is provided with the same through-hole as in the case of the graphite pedestal 13, and the seed crystal substrate 1 is adhered to the crucible lid 3. By filling the adhesive, or by providing a recess for filling the adhesive instead of the through-hole, the seed crystal substrate 1 is brought into close contact and the adhesive is solidified (cured), so that the substrate mounting portion of the crucible lid 3 is fixed. Thus, the attachment interface defined by the present invention can be realized by directly attaching the seed crystal substrate. However, when a through-hole is directly provided in the crucible lid 3 and the seed crystal substrate 1 is attached, depending on the material characteristics at the growth temperature of the adhesive, heat is generated from the through-hole during crystal growth, and the grown crystal It can also affect the quality. Further, since the graphite pedestal 13 is interposed, it is possible to avoid non-uniform heat flow on the back surface side of the seed crystal substrate 1. Therefore, preferably, as shown in FIG. The seed crystal substrate 1 is preferably attached to the crucible lid 3 side via 13.

この黒鉛製台座13の形状については特に制限はないが、黒鉛製坩堝の加熱を高周波誘導により行う場合には、特にその厚さについて、坩堝蓋体3の厚さとの和が概ね高周波誘導電磁波の進入深さ以上となるようにすることが好ましい。例えば周波数10kHzで誘導加熱を行う場合には、厚さの和を少なくとも15mm以上となるようにすれば十分である。15mmを大きく下回って薄くなる場合、高周波誘導加熱が効果的に作用しなくなり、成長温度に必要な温度まで加熱することが困難になる。また、形状についても、円周方向の温度分布不均一化を避ける目的から、好適には円盤状のものであることが望ましい。   The shape of the graphite pedestal 13 is not particularly limited. However, when the graphite crucible is heated by high frequency induction, the sum of the thickness and the thickness of the crucible lid 3 is generally the high frequency induction electromagnetic wave. It is preferable that the depth is not less than the penetration depth. For example, when induction heating is performed at a frequency of 10 kHz, it is sufficient that the sum of the thicknesses is at least 15 mm. When the thickness is much less than 15 mm and becomes thin, high-frequency induction heating does not work effectively, and it becomes difficult to heat to a temperature necessary for the growth temperature. In addition, the shape is preferably a disk shape for the purpose of avoiding uneven temperature distribution in the circumferential direction.

一方、種結晶基板と坩堝蓋体側との取付け界面において、接着剤で接合される中央領域については、接着剤による接合面積が種結晶基板の面積比で0.1%以上5%以下となるようにし、好ましくは0.1%以上2%以下、さらに好ましくは0.1%以上1%以下である。種結晶基板に対する面積比で0.1%未満では接着力が不十分となり、結晶成長時に接着が剥離してしまうおそれがある。その場合、種結晶基板1の外側周縁部が保持部材によって保持されてはいるものの、種結晶基板1と坩堝蓋体の基板取付け部との取付け界面に隙間が生じてしまうことから、種結晶基板1の熱分解が過度になり、マクロ欠陥が発生してしまう。反対に5%を超えると、黒鉛製台座のような坩堝蓋体側の基板取付け部との僅かな熱膨張率差の影響が顕現化し、応力が増加して基底面転位密度が増加する。なお、接着剤で接合される面積比の下限値であるが、応力の発生を回避する視点に限定するならば可能な限り小さいことが望ましいが、接着力確保を維持するためには0.1%以上とする必要がある。また、この中央領域は、種結晶基板と同心円の円形領域となるようにするのがよく、接合箇所はこの円形領域内で任意の形状に複数箇所以上に分割し、部分的に接着剤による接合を行ってもよい。ただし、実際に接着している接合部分の総面積が、上記のように種結晶基板の面積との面積比で0.1%以上5%以下となるようにする必要がある。   On the other hand, at the attachment region between the seed crystal substrate and the crucible lid body, with respect to the central region bonded with the adhesive, the bonding area by the adhesive is 0.1% or more and 5% or less in terms of the area ratio of the seed crystal substrate. Preferably, they are 0.1% or more and 2% or less, More preferably, they are 0.1% or more and 1% or less. If the area ratio with respect to the seed crystal substrate is less than 0.1%, the adhesive force is insufficient, and the adhesion may be peeled off during crystal growth. In this case, although the outer peripheral edge portion of the seed crystal substrate 1 is held by the holding member, a gap is generated at the attachment interface between the seed crystal substrate 1 and the substrate attachment portion of the crucible lid, so that the seed crystal substrate 1 is excessively decomposed and macro defects are generated. On the other hand, if it exceeds 5%, the influence of a slight difference in thermal expansion coefficient from the substrate mounting part on the crucible lid side such as a graphite pedestal becomes apparent, stress increases, and the basal plane dislocation density increases. The lower limit of the area ratio to be joined with the adhesive is preferably as small as possible if it is limited to the viewpoint of avoiding the generation of stress, but 0.1% in order to maintain the adhesive strength. % Or more is necessary. Also, this central region should be a circular region concentric with the seed crystal substrate, and the joint location is divided into a plurality of locations in an arbitrary shape within this circular region and partially joined by an adhesive. May be performed. However, it is necessary that the total area of the bonded portions actually bonded be 0.1% or more and 5% or less in the area ratio with the area of the seed crystal substrate as described above.

また、種結晶基板と坩堝蓋体の基板取付け部との間の接着に使用する接着剤については、昇華再結晶法による結晶成長のような高温で接着力が維持でき、かつ空隙等のマクロ欠陥発生要因を形成しないものであれば特に制約はない。例えば、市販されているカーボン接着剤を用いることができるほか、フェノール樹脂等の高分子材料をエチルアルコール等の有機溶媒に溶解した接着剤や、更に、これにカーボン粉末を混合させた接着剤等を用いることができる。また、接着力を増加するために、台座の貫通孔等に充填した状態で約200℃以上の加熱処理を行うようにしてもよい。   For the adhesive used for bonding between the seed crystal substrate and the substrate mounting part of the crucible lid, the adhesive force can be maintained at high temperatures such as crystal growth by sublimation recrystallization, and macro defects such as voids can be maintained. There is no particular limitation as long as it does not form an occurrence factor. For example, a commercially available carbon adhesive can be used, an adhesive in which a polymer material such as a phenol resin is dissolved in an organic solvent such as ethyl alcohol, and an adhesive in which carbon powder is further mixed with the adhesive. Can be used. Further, in order to increase the adhesive force, a heat treatment at about 200 ° C. or higher may be performed in a state where the through hole of the base is filled.

また、本発明においては、種結晶基板の外側周縁部は、保持部材により坩堝蓋体に対して機械的に固定するようにする。この種結晶基板の外側周縁部における機械的押さえ付け(固定)の方法については、種結晶基板に不要な応力が加わらないように留意すれば特にどのような方法でも構わない。例えば、図2に示したように、黒鉛製のネジ16からなる保持部材によって種結晶基板の外側周縁部を複数個所押さえ付けるようにして、坩堝蓋体に対して種結晶基板を固定するようにしてもよく、また、図3に示したように、種結晶基板の外周側面に凹溝を形成しておき、先端に爪状の突起部を有した黒鉛製の支持棒17のような保持部材の先端突起を挿入して種結晶基板1を係止すると共に、支持棒17の他端に雄ネジ部(図示外)を形成しておき、坩堝蓋体3に設けられた雌ネジ部(図示外)に螺合させるようにしてもよい。その際、黒鉛製台座等を介して種結晶基板を坩堝蓋体に取り付ける場合には、これら図2や図3で示したように、種結晶基板1の外側周縁部に取り付けられる保持部材(16、17)により、黒鉛製台座13と種結晶基板1とが一体的に坩堝蓋体3に対して固定されるようにすればよい。   In the present invention, the outer peripheral edge of the seed crystal substrate is mechanically fixed to the crucible lid by the holding member. As a method of mechanically pressing (fixing) the outer peripheral edge of the seed crystal substrate, any method may be used as long as care is taken so that unnecessary stress is not applied to the seed crystal substrate. For example, as shown in FIG. 2, the seed crystal substrate is fixed to the crucible lid by pressing a plurality of outer peripheral edges of the seed crystal substrate with holding members made of graphite screws 16. Also, as shown in FIG. 3, a holding member such as a graphite support rod 17 having a groove formed on the outer peripheral side surface of the seed crystal substrate and having a claw-like protrusion at the tip. Is inserted into the front end projection to lock the seed crystal substrate 1, and a male screw portion (not shown) is formed on the other end of the support rod 17, and a female screw portion (not shown) provided on the crucible lid 3 is shown. It may be screwed to the outside. At this time, when the seed crystal substrate is attached to the crucible lid through a graphite pedestal or the like, as shown in FIGS. 2 and 3, the holding member (16 17), the graphite pedestal 13 and the seed crystal substrate 1 may be fixed to the crucible lid 3 integrally.

本発明における炭化珪素単結晶インゴットの製造方法では、坩堝本体と坩堝蓋体とからなる黒鉛製坩堝の坩堝蓋体に対して、上記のようにして種結晶基板を取り付けるようにする以外は、公知の方法と同様にして炭化珪素単結晶インゴットを製造することができる。特に、本発明は、口径が100mm(4インチ)以上のSiC単結晶インゴットを昇華再結晶法によって成長する場合に有効であり、更には、口径が150mm(6インチ)以上のSiC単結晶インゴットを製造する場合に顕著な効果を発現する。   In the method for producing a silicon carbide single crystal ingot according to the present invention, a known method is provided except that a seed crystal substrate is attached to a crucible lid of a graphite crucible comprising a crucible body and a crucible lid. A silicon carbide single crystal ingot can be produced in the same manner as in this method. In particular, the present invention is effective when a SiC single crystal ingot having a diameter of 100 mm (4 inches) or more is grown by a sublimation recrystallization method. Further, an SiC single crystal ingot having a diameter of 150 mm (6 inches) or more is used. Produces significant effects when manufactured.

このような大口径のSiC単結晶インゴットを製造する場合には、種結晶基板の口径が大きくなることから種結晶基板の裏面でのマクロ欠陥の発生確率が増すことになり、また、当然のことながら、成長結晶自体が大きく(重く)なる。そのため、本発明のようにして黒鉛製坩堝の坩堝蓋体に種結晶基板を取り付ける方法は、大口径のSiC単結晶インゴットを製造する上で極めて重要であり、大口径SiC単結晶を成長させる場合でも、成長結晶に大きな応力が掛かるのを防ぎながら、マクロ欠陥の発生を抑制して、欠陥の少ない高品質なSiC単結晶インゴットをより簡便に製造することができるようになる。このようにして得られたSiC単結晶インゴットから切り出された100mm以上の直径を有する大口径SiC単結晶基板上には、例えば、化学気相蒸着法(CVD法)等によりSiC単結晶薄膜をエピタキシャル成長させることで、実質的に基板の全領域において、基底面転位のような欠陥が極めて少ないエピタキシャルウエハを作製することができるようになり、このようなエピタキシャルウエハを使用することで、電力変換特性に優れた各種のパワーデバイスを効率よく得ることが可能になる。   When manufacturing such a large-diameter SiC single crystal ingot, the diameter of the seed crystal substrate is increased, which increases the probability of occurrence of macro defects on the back surface of the seed crystal substrate. However, the grown crystal itself becomes larger (heavy). Therefore, the method of attaching the seed crystal substrate to the crucible lid of the graphite crucible as in the present invention is extremely important in producing a large-diameter SiC single crystal ingot, and when growing a large-diameter SiC single crystal However, it is possible to more easily manufacture a high-quality SiC single crystal ingot with few defects by suppressing the occurrence of macro defects while preventing a large stress from being applied to the grown crystal. An SiC single crystal thin film is epitaxially grown by, for example, chemical vapor deposition (CVD) on the large-diameter SiC single crystal substrate having a diameter of 100 mm or more cut out from the SiC single crystal ingot thus obtained. By doing so, it becomes possible to produce an epitaxial wafer with very few defects such as basal plane dislocations over substantially the entire region of the substrate. By using such an epitaxial wafer, the power conversion characteristics are improved. Various excellent power devices can be obtained efficiently.

以下、実施例に基づきながら本発明を具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to these contents.

(実施例1)
図4に示す昇華再結晶法単結晶成長装置を用いて、以下のようなSiC単結晶の成長を実施した。なお、図4は、種結晶基板1を用いた昇華再結晶法によってSiC単結晶を成長させる装置の一例であり、本発明の構成要件を限定するものではない。
Example 1
The following SiC single crystal was grown using the sublimation recrystallization single crystal growth apparatus shown in FIG. FIG. 4 is an example of an apparatus for growing a SiC single crystal by a sublimation recrystallization method using the seed crystal substrate 1, and does not limit the constituent requirements of the present invention.

先ず、この単結晶成長装置について簡単に説明する。結晶成長は、種結晶基板1として用いたSiC単結晶1の上に、原料であるSiC粉末(SiC原料)2を昇華再結晶化させ、更に種結晶上へ再結晶化させることにより行われる。種結晶基板1であるSiC単結晶1は、坩堝5を形成する黒鉛製の坩堝蓋体3の内壁面に取り付けられる。原料のSiC粉末2は、同じく坩堝5を形成する黒鉛製の坩堝本体4に充填されている。このような黒鉛製坩堝5は、二重石英管6の内部に設置され、円周方向の温度不均一性を解消するために、1rpm未満の回転速度で黒鉛製坩堝5を回転可能な機構になっており、結晶成長中はほぼ一定速度で常に回転できるようになっている。黒鉛製坩堝5の周囲には、熱シールドのための断熱保温材7が設置されている。二重石英管6は、真空排気装置8により高真空排気(10-3Pa以下)することができ、かつ内部雰囲気をアルゴンガスにより圧力制御することができる。また、二重石英管6の外周には、ワークコイル9が設置されており、高周波電流を流すことにより黒鉛製坩堝5を加熱し、SiC原料2及び種結晶基板1を所望の温度に加熱することができる。坩堝温度の計測は、成長装置の上部方向の中央部に直径2〜4mmの光路10を設け、坩堝蓋体3の外側表面に設けられた断熱材抜熱穴12から輻射光を取り出し、二色温度計11を用いて行う。 First, this single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating and recrystallizing SiC powder (SiC raw material) 2 as a raw material on the SiC single crystal 1 used as the seed crystal substrate 1 and further recrystallizing it onto the seed crystal. The SiC single crystal 1 that is the seed crystal substrate 1 is attached to the inner wall surface of a graphite crucible lid 3 that forms the crucible 5. The raw material SiC powder 2 is filled in a graphite crucible body 4 that also forms the crucible 5. Such a graphite crucible 5 is installed inside the double quartz tube 6 and has a mechanism capable of rotating the graphite crucible 5 at a rotational speed of less than 1 rpm in order to eliminate circumferential temperature non-uniformity. Thus, it can always rotate at a substantially constant speed during crystal growth. Around the graphite crucible 5, a heat insulating heat insulating material 7 for heat shielding is installed. The double quartz tube 6 can be highly evacuated (10 −3 Pa or less) by the evacuation device 8, and the internal atmosphere can be pressure controlled by argon gas. In addition, a work coil 9 is installed on the outer periphery of the double quartz tube 6, and the graphite crucible 5 is heated by flowing a high-frequency current to heat the SiC raw material 2 and the seed crystal substrate 1 to a desired temperature. be able to. The temperature of the crucible is measured by providing an optical path 10 having a diameter of 2 to 4 mm at the center of the growth apparatus in the upper direction, taking out the radiant light from the heat insulating material heat removal hole 12 provided on the outer surface of the crucible lid 3, and This is done using the thermometer 11.

後述するようにして種結晶基板1を固定した黒鉛製坩堝5に断熱保温材7等を配置した後、二重石英管6内に静置した。二重石英管6内を真空排気した後、ワークコイル9に電流を流し、坩堝蓋体3の表面温度を1700℃まで上げた。その後、雰囲気ガスとして高純度アルゴンガス(純度99.9995%)と高純度窒素ガス(純度99.9995%)の混合ガスを流入させ、二重石英管6内の圧力を約80kPaに保ちながら、坩堝蓋体表面温度を目標温度である2250℃まで上昇させた。雰囲気ガス中の窒素濃度は7%とした。その後、成長圧力である1.3kPaに約30分かけて減圧した。この際の黒鉛製坩堝5内のSiC粉末2と種結晶基板1との間の温度勾配は約20℃/cmである。   As described later, the heat insulating material 7 and the like were placed in the graphite crucible 5 on which the seed crystal substrate 1 was fixed, and then placed in the double quartz tube 6. After the inside of the double quartz tube 6 was evacuated, a current was passed through the work coil 9 to raise the surface temperature of the crucible lid 3 to 1700 ° C. Then, a mixed gas of high-purity argon gas (purity 99.9995%) and high-purity nitrogen gas (purity 99.9995%) is introduced as the atmospheric gas, and the pressure in the double quartz tube 6 is maintained at about 80 kPa, while the crucible lid surface The temperature was raised to the target temperature of 2250 ° C. The nitrogen concentration in the atmospheric gas was 7%. Thereafter, the pressure was reduced to 1.3 kPa as a growth pressure over about 30 minutes. At this time, the temperature gradient between the SiC powder 2 in the graphite crucible 5 and the seed crystal substrate 1 is about 20 ° C./cm.

この実施例1においては、種結晶基板1として、口径152mm、厚さ2mmの{0001}基板からなる4H−SiC単結晶を準備した。(000−1)面(C面)が結晶成長面となるように坩堝蓋体3に取り付けた。その際、図1(a)〜(c)に示した手順に従い、先ずは、直径が160mm、厚さ20mmの円盤形状の黒鉛製台座13を準備し、その上下面を貫通するように、台座13の中心に直径が5mmの貫通孔14を形成した。そして、種結晶基板1が固定される(取り付けられる)台座13の基板取付け面と、種結晶基板1の裏面(結晶成長面とは反対側の(0001)Si面)とを、それぞれ面研削盤を用いて鏡面加工した。加工後の種結晶基板1の裏面及び台座13の基板取付け面の表面粗さRaを、接触式表面粗さ計を持いて計測したところ、種結晶基板1の裏面の表面粗さRaが0.5μmであり、台座13の基板取付け面の表面粗さRaが0.9μmであった。   In Example 1, a 4H—SiC single crystal composed of a {0001} substrate having a diameter of 152 mm and a thickness of 2 mm was prepared as the seed crystal substrate 1. It was attached to the crucible lid 3 so that the (000-1) plane (C plane) was the crystal growth plane. At that time, according to the procedure shown in FIGS. 1A to 1C, first, a disk-shaped graphite base 13 having a diameter of 160 mm and a thickness of 20 mm is prepared, and the base is formed so as to penetrate the upper and lower surfaces. A through hole 14 having a diameter of 5 mm was formed at the center of 13. Then, the substrate mounting surface of the pedestal 13 to which the seed crystal substrate 1 is fixed (attached) and the back surface of the seed crystal substrate 1 (the (0001) Si surface opposite to the crystal growth surface) are respectively surface grinders. Was mirror-finished. When the surface roughness Ra of the back surface of the seed crystal substrate 1 after processing and the substrate mounting surface of the pedestal 13 was measured with a contact-type surface roughness meter, the surface roughness Ra of the back surface of the seed crystal substrate 1 was 0. The surface roughness Ra of the substrate mounting surface of the pedestal 13 was 0.9 μm.

そして、種結晶基板1の裏面と台座13の基板取付け面とを密着させた状態で、エチルアルコール溶媒にフェノール樹脂およびカーボン粉末を混合させた接着剤15を台座13の上面側から流し込み、台座13の上面側まで到達するように、貫通孔14に接着剤15を充填させた。次いで、台座13の上面側(種結晶基板1とは反対側)に黒鉛製の坩堝蓋体3を静置した状態で約250℃に加熱し、貫通孔14に充填された接着剤15を固化(硬化)させた。接着剤15が固化した後、図2に示したように、保持部材として黒鉛製のネジ16を用いて、それぞれのネジ16の頭部で種結晶基板1の外側周縁部を4箇所押さえ付けるようにしながら、黒鉛製台座13のネジ穴にネジ16を挿通し、その先端を坩堝蓋体3に設けられた雌ネジ部(図示外)に螺合させて、黒鉛製台座13と種結晶基板1とを坩堝蓋体3に対して一体的に固定した。このときの黒鉛製台座13の貫通孔14に充填された接着剤15による種結晶基板1との接合面積は、種結晶基板1に対する面積比で0.11%になる。   Then, with the back surface of the seed crystal substrate 1 and the substrate mounting surface of the pedestal 13 being in close contact with each other, an adhesive 15 in which a phenol resin and carbon powder are mixed in an ethyl alcohol solvent is poured from the upper surface side of the pedestal 13, The through hole 14 was filled with the adhesive 15 so as to reach the upper surface side. Next, the graphite crucible lid 3 is allowed to stand on the upper surface side of the pedestal 13 (the side opposite to the seed crystal substrate 1) and heated to about 250 ° C. to solidify the adhesive 15 filled in the through holes 14. (Cured). After the adhesive 15 is solidified, as shown in FIG. 2, graphite screws 16 are used as holding members, and the outer peripheral edge of the seed crystal substrate 1 is pressed at four locations with the heads of the screws 16. Then, the screw 16 is inserted into the screw hole of the graphite pedestal 13 and the tip thereof is screwed into a female screw portion (not shown) provided in the crucible lid 3 so that the graphite pedestal 13 and the seed crystal substrate 1 are inserted. Were fixed integrally to the crucible lid 3. At this time, the bonding area with the seed crystal substrate 1 by the adhesive 15 filled in the through holes 14 of the graphite pedestal 13 is 0.11% in terms of the area ratio with respect to the seed crystal substrate 1.

上記のようにして準備した単結晶成長装置を用いて、成長時間を約100時間として、結晶成長を行った。成長終了後、室温まで冷却してSiC単結晶インゴットを回収した。得られた試験SiC単結晶インゴットの口径は約150.2mm、インゴット先端である成長面形状は緩やかな凸形状をしており、その結晶中心近傍の高さは約30mmであった。また、得られたインゴットの外周側面や、結晶成長端面及び種結晶基板1の裏面(結晶成長端面の反対側)を目視と実体顕微鏡で観察したところ、種結晶基板1の熱分解消失や亜粒界等のマクロ欠陥の発生は一切なく、成長結晶はほぼ種結晶基板と同等の良好な結晶品質が実現されていることを確認した。   Crystal growth was performed using the single crystal growth apparatus prepared as described above, with a growth time of about 100 hours. After completion of the growth, the SiC single crystal ingot was recovered by cooling to room temperature. The diameter of the obtained test SiC single crystal ingot was about 150.2 mm, the shape of the growth surface at the tip of the ingot was a gentle convex shape, and the height near the crystal center was about 30 mm. Moreover, when the outer peripheral side surface of the obtained ingot, the crystal growth end face, and the back surface of the seed crystal substrate 1 (on the opposite side of the crystal growth end face) were observed visually and with a stereomicroscope, the thermal decomposition disappearance and subgrains of the seed crystal substrate 1 were observed. It was confirmed that there was no occurrence of macro defects such as boundaries, and that the grown crystal had a good crystal quality equivalent to that of the seed crystal substrate.

また、得られたSiC単結晶インゴットについて、研削、切断、及び研磨加工を行い、直径150mm、厚さ350μmの形状を有し、かつ結晶c軸(<0001>軸)が<11−20>方向へ4度傾いた4度オフSiC単結晶ウエハを作製した。なお、ウエハの取り出し位置はインゴットの最上部、すなわち成長端から採取した。作製したウエハを500℃に加熱して溶融したKOH(水酸化カリウム)に約3分間浸漬してエッチングを行い、転位ピットを形成させた。現れたピットの中で、基底面転位に対応する貝殻状のエッチピット(例えば、P. Wu, Journal of Crystal Growth 312(2010)p.1193参照)の個数を全面計測し、ウエハの面積で割ることで単位面積当たりの基底面転位密度を求めた。その結果、150mmウエハの全面で、98個/cmという極めて小さい密度値が実現されていることが判明した。 Further, the obtained SiC single crystal ingot is ground, cut, and polished, has a shape with a diameter of 150 mm, a thickness of 350 μm, and the crystal c axis (<0001> axis) is in the <11-20> direction. A 4-degree off-SiC single crystal wafer tilted 4 degrees was fabricated. The wafer was taken out from the top of the ingot, that is, from the growth end. The produced wafer was etched by being immersed in KOH (potassium hydroxide) melted at 500 ° C. for about 3 minutes to form dislocation pits. Of the pits that appear, measure the total number of shell-shaped etch pits corresponding to basal plane dislocations (see, for example, P. Wu, Journal of Crystal Growth 312 (2010) p. 1193) and divide by the area of the wafer. Thus, the basal plane dislocation density per unit area was obtained. As a result, it was found that an extremely small density value of 98 / cm 2 was realized on the entire surface of the 150 mm wafer.

(比較例1)
種結晶基板1の裏面及び黒鉛製台座13の基板取付け面を実施例1と同様に鏡面加工した後、黒鉛製台座13に貫通孔は形成せずに、基板取付け面全体に実施例1で使用したものと同じフェノール系接着剤を塗布して、固化後の接着剤層の厚みがおよそ200μmとなるようにして、種結晶基板1と黒鉛製台座13とを接合し、更に、実施例1と同様に種結晶基板1の外側周縁部を黒鉛製のネジ16を用いて4箇所固定するようにして、坩堝蓋体3に対する種結晶基板1の固定を完成させた。このようにして準備した単結晶成長装置を用いて、実施例1と同様にして結晶成長を行った。
(Comparative Example 1)
After the back surface of the seed crystal substrate 1 and the substrate mounting surface of the graphite pedestal 13 are mirror-finished in the same manner as in Example 1, the through hole is not formed in the graphite pedestal 13 and the entire substrate mounting surface is used in Example 1. The same phenol-based adhesive is applied, and the seed crystal substrate 1 and the graphite pedestal 13 are joined so that the thickness of the adhesive layer after solidification is approximately 200 μm. Similarly, fixation of the seed crystal substrate 1 to the crucible lid 3 was completed by fixing the outer peripheral edge portion of the seed crystal substrate 1 at four locations using graphite screws 16. Using the single crystal growth apparatus thus prepared, crystal growth was performed in the same manner as in Example 1.

成長後に取り出したSiC単結晶インゴットは、口径約150.1mm、インゴット先端である成長面形状は緩やかな凸形状をしており、その結晶中心近傍の高さは約31mmであった。但し、実施例1とは異なり、得られたSiC単結晶インゴットは、黒鉛製坩堝5から取り出し後も台座13に強く貼り付いており、そのため、台座13ごと実施例1と同様にしてウエハ化加工を行い、インゴットの最上部から直径150mm、厚さ350μmの4度オフSiC単結晶ウエハを作製し、取り出した。そして、実施例1と同様に溶融KOHエッチング法により基底面転位密度を評価したところ、ウエハ全面で32680個/cmの値が得られた。 The SiC single crystal ingot taken out after the growth had a diameter of about 150.1 mm, the growth surface at the tip of the ingot had a gently convex shape, and the height near the center of the crystal was about 31 mm. However, unlike Example 1, the obtained SiC single crystal ingot was strongly adhered to the pedestal 13 even after being taken out from the graphite crucible 5, and therefore the entire pedestal 13 was processed into a wafer in the same manner as in Example 1. Then, a 4-degree off SiC single crystal wafer having a diameter of 150 mm and a thickness of 350 μm was produced from the top of the ingot and taken out. Then, when the basal plane dislocation density was evaluated by the molten KOH etching method in the same manner as in Example 1, a value of 32680 / cm 2 was obtained over the entire wafer surface.

(実施例2〜4、比較例2〜4)
黒鉛製坩堝5に設ける貫通孔14の直径を表1に示したように変えた以外は実施例1と同様にして種結晶基板1を坩堝蓋体3側に取り付けて、単結晶成長装置を準備した。そして、実施例1と同様にして結晶成長を行い、得られたSiC単結晶インゴットについて、実施例1と同様にして、目視と実体顕微鏡による観察を行うと共に、ウエハ化加工を行って4度オフSiC単結晶ウエハを作製して、溶融KOHエッチング法により基底面転位密度を評価した。結果をまとめて表1に示す。なお、表1には実施例1の結果も合わせて示した。
(Examples 2-4, Comparative Examples 2-4)
A single crystal growth apparatus is prepared by attaching the seed crystal substrate 1 to the crucible lid 3 side in the same manner as in Example 1 except that the diameter of the through hole 14 provided in the graphite crucible 5 is changed as shown in Table 1. did. Then, the crystal growth was performed in the same manner as in Example 1, and the obtained SiC single crystal ingot was observed with a visual microscope and a stereomicroscope in the same manner as in Example 1, and the wafer was processed to turn off four times. A SiC single crystal wafer was produced, and the basal plane dislocation density was evaluated by a molten KOH etching method. The results are summarized in Table 1. Table 1 also shows the results of Example 1.

Figure 2018165227
Figure 2018165227

表1より判るように、黒鉛製台座13の貫通孔14の直径を6mm、10mm、及び30mmにして接合させた場合には(実施例2〜4)、小さい基底面転位密度のSiC単結晶インゴットが得られており、本発明が効果的である結果が示されている。これに対して、貫通孔の直径が3mmの場合では(比較例2)、成長中のインゴットの自重で接着剤による接合部分が剥離したと考えられ、成長終了後に確認したところでは、種結晶基板1と黒鉛製台座13との間で密着されておらずに隙間が形成されていた。このため、種結晶基板1の熱分解が発生し、マクロ欠陥が多量に生成して、基底面転位密度は評価不能であった。また、貫通孔の直径が50mm以上になると(比較例3、4)、種結晶基板1と黒鉛製台座13との間での接着剤による接合面積が過剰になるために、成長インゴット内の応力が増加したと考えられ、基底面転位密度が非常に大きくなっていた。   As can be seen from Table 1, when the diameter of the through hole 14 of the graphite pedestal 13 is 6 mm, 10 mm, and 30 mm (Examples 2 to 4), the SiC single crystal ingot having a small basal plane dislocation density is used. This shows that the present invention is effective. On the other hand, in the case where the diameter of the through hole is 3 mm (Comparative Example 2), it is considered that the bonded portion due to the adhesive is peeled off due to the weight of the growing ingot. 1 and the graphite base 13 were not in close contact with each other, and a gap was formed. For this reason, thermal decomposition of the seed crystal substrate 1 occurred, a large amount of macro defects were generated, and the basal plane dislocation density could not be evaluated. When the diameter of the through hole is 50 mm or more (Comparative Examples 3 and 4), the bonding area by the adhesive between the seed crystal substrate 1 and the graphite pedestal 13 becomes excessive, so that the stress in the growth ingot is increased. The basal plane dislocation density was very large.

(実施例5)
黒鉛製台座13の貫通孔14に充填する接着剤15として、市販のカーボン接着材(日清紡績社製ST-201)を使用し、固化時には接着度を向上するために200℃まで20時間で昇温し、その温度で1時間保持する硬化処理を行うようにした以外は実施例1と同様にして、種結晶基板1を坩堝蓋体3に接合させた。また、種結晶基板1の外側周縁部の固定としては、図3に示すように、先ず、厚さ2mmの種結晶基板1の外周側面において、周方向に沿って、厚さ方向の中心部に基板厚み方向での高さが約0.5mm、基板中心側への深さが約1mmの凹溝を形成し、これに対して、先端に厚さ約0.4mm、長さ約5mmの爪状の突起部を有した黒鉛製の支持棒17を挿入した。一方、この支持棒17の他端には雄ネジ部(図示外)が形成されており、坩堝蓋体3に設けられた雌ネジ部(図示外)に螺合させて、黒鉛製台座13と種結晶基板1とを坩堝蓋体3に対して一体的に固定した。このようにした以外は実施例1と同様にして単結晶成長装置を準備し、実施例1と同様に結晶成長を行った。
(Example 5)
A commercially available carbon adhesive (ST-201 manufactured by Nisshinbo Co., Ltd.) is used as the adhesive 15 filling the through hole 14 of the graphite pedestal 13, and the temperature is increased to 200 ° C. in 20 hours in order to improve the adhesion when solidified. The seed crystal substrate 1 was joined to the crucible lid 3 in the same manner as in Example 1 except that the curing treatment was performed by heating and holding at that temperature for 1 hour. In addition, as shown in FIG. 3, the outer peripheral edge of the seed crystal substrate 1 is first fixed on the outer peripheral side surface of the seed crystal substrate 1 having a thickness of 2 mm along the circumferential direction at the center in the thickness direction. A concave groove having a height of about 0.5 mm in the substrate thickness direction and a depth of about 1 mm toward the center of the substrate is formed. On the other hand, a nail having a thickness of about 0.4 mm and a length of about 5 mm is formed at the tip. A support rod 17 made of graphite having a protruding portion was inserted. On the other hand, a male screw portion (not shown) is formed at the other end of the support rod 17, and is screwed into a female screw portion (not shown) provided in the crucible lid body 3, The seed crystal substrate 1 was fixed integrally to the crucible lid 3. A single crystal growth apparatus was prepared in the same manner as in Example 1 except for this, and crystal growth was performed in the same manner as in Example 1.

得られたSiC単結晶インゴットについて、実施例1と同様にして、目視と実体顕微鏡による観察を行ったところ、種結晶基板1の熱分解消失や亜粒界等のマクロ欠陥の発生は一切なく、成長結晶はほぼ種結晶基板と同等の良好な結晶品質が実現されていることを確認した。また、実施例1と同様にしてウエハ化加工を行い、インゴットの最上部から直径150mm、厚さ350μmの4度オフSiC単結晶ウエハを作製した。そして、実施例1と同様にして溶融KOHエッチング法により基底面転位密度を評価したところ、ウエハ全面で56個/cmの値が得られた。 About the obtained SiC single crystal ingot, it was observed by visual observation and a stereoscopic microscope in the same manner as in Example 1, and there was no occurrence of macro defects such as disappearance of thermal decomposition of the seed crystal substrate 1 or subgrain boundaries, It was confirmed that the grown crystal had a good crystal quality equivalent to that of the seed crystal substrate. Further, wafer processing was performed in the same manner as in Example 1 to produce a 4-degree off-SiC single crystal wafer having a diameter of 150 mm and a thickness of 350 μm from the top of the ingot. When the basal plane dislocation density was evaluated by the melt KOH etching method in the same manner as in Example 1, a value of 56 / cm 2 was obtained over the entire wafer surface.

(比較例5)
黒鉛製の支持棒17による固定を行わないようにした以外は実施例4と同様にして、単結晶成長装置を準備して結晶成長を行った。成長後に冷却(放冷)して取り出したSiC単結晶インゴットを目視と実体顕微鏡により観察したところ、種結晶基板1の外周側面のほぼ全面が熱分解しており、それを起点にして成長結晶内ではマクロ欠陥が多量に発生していることが観察された。また、実施例1と同様にしてウエハ化加工を行い、インゴットの最上部から直径150mm、厚さ350μmの4度オフSiC単結晶ウエハを作製し、実施例1と同様に溶融KOHエッチング法により基底面転位密度を評価したところ、ウエハ中心近傍は基底面転位密度が約340個/cmと比較的良好な値が得られていたものの、外周部近傍はマクロ欠陥の影響で約29300個/cmとなっており、全面で転位密度の小さい良好なウエハは得られなかった。
(Comparative Example 5)
A single crystal growth apparatus was prepared and crystal growth was performed in the same manner as in Example 4 except that the fixation with the support rod 17 made of graphite was not performed. When the SiC single crystal ingot taken out after cooling (cooling) after growth was observed with a visual microscope and a stereomicroscope, almost the entire outer peripheral side surface of the seed crystal substrate 1 was thermally decomposed. It was observed that a large amount of macro defects occurred. In addition, wafer processing was performed in the same manner as in Example 1 to produce a 4-degree off-SiC single crystal wafer having a diameter of 150 mm and a thickness of 350 μm from the top of the ingot. When the surface dislocation density was evaluated, the basal plane dislocation density in the vicinity of the wafer center was about 340 / cm 2, which was a relatively good value. However, the vicinity of the outer periphery was about 29300 / cm 2 due to the influence of macro defects. No good wafer having a low dislocation density over the entire surface was obtained.

以上の結果から判るように、種結晶基板と坩堝蓋体の基板取付け部との取付け界面において、i)種結晶基板の中央部を所定の接合面積となるように接着剤で接合すること、ii)それ以外の外側周辺領域では、互いに所定の表面粗さを有する平滑面で接触させること、及びiii)種結晶基板の外側周縁部を保持部材によって機械的に固定することで、口径150mmの大口径SiC単結晶を成長させる場合でも、成長結晶に大きな応力が発生するのを防ぐことができると共に、マクロ欠陥の発生を抑制して、欠陥密度が小さい高品質なSiC単結晶インゴットを製造することができるようになる。   As can be seen from the above results, at the attachment interface between the seed crystal substrate and the substrate attachment portion of the crucible lid, i) bonding the central portion of the seed crystal substrate with an adhesive so as to have a predetermined bonding area, ii ) In other outer peripheral regions, they are brought into contact with each other with smooth surfaces having a predetermined surface roughness, and iii) by mechanically fixing the outer peripheral edge of the seed crystal substrate with a holding member, a large diameter of 150 mm Even when growing a SiC single crystal having a large diameter, it is possible to prevent the generation of a large stress in the grown crystal and to suppress the generation of macro defects and to produce a high-quality SiC single crystal ingot with a low defect density. Will be able to.

1 種結晶基板
2 SiC粉末(SiC原料)
3 坩堝蓋体
4 坩堝本体4
5 黒鉛製坩堝
6 二重石英管
7 断熱保温材
8 真空排気装置
9 ワークコイル
10 光路(測温用窓)
11 二色温度計(放射温度計)
12 断熱材抜熱穴(測温用断熱材穴)
13 黒鉛製台座
14 貫通孔
15 接着剤
16 黒鉛製ネジ(保持部材)
17 黒鉛製支持棒(保持部材)
1 Seed crystal substrate 2 SiC powder (SiC raw material)
3 crucible lid 4 crucible body 4
5 Graphite crucible 6 Double quartz tube 7 Insulation heat insulation material 8 Vacuum exhaust device 9 Work coil 10 Optical path (temperature measuring window)
11 Two-color thermometer (radiation thermometer)
12 Insulation material heat removal hole (insulation material hole for temperature measurement)
13 Graphite base 14 Through hole 15 Adhesive 16 Graphite screw (holding member)
17 Graphite support rod (holding member)

Claims (3)

坩堝本体と坩堝蓋体とからなる黒鉛製坩堝の坩堝本体側に炭化珪素原料を装填し、坩堝蓋体側に炭化珪素単結晶からなる種結晶基板を取り付けて、炭化珪素原料を加熱昇華させて種結晶基板の結晶成長面に炭化珪素単結晶を成長させる炭化珪素単結晶インゴットの製造方法であって、
前記坩堝蓋体の基板取付け部と前記種結晶基板との取付け界面において、種結晶基板の中央部に相当する中央領域では、種結晶基板に対する面積比で0.1%以上5%以下の接合面積を有するように接着剤で互いに接合され、該中央領域以外の外側周辺領域は、それぞれ表面粗さ(Ra)1μm以下の平滑面で互いに接するようにして、かつ、種結晶基板の外側周縁部は、保持部材により前記坩堝蓋体に対して機械的に固定して、種結晶基板の結晶成長面に炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶インゴットの製造方法。
A silicon carbide raw material is loaded on the crucible body side of a graphite crucible composed of a crucible body and a crucible lid body, a seed crystal substrate made of a silicon carbide single crystal is attached on the crucible lid body side, and the silicon carbide raw material is heated and sublimated to seed. A method for producing a silicon carbide single crystal ingot for growing a silicon carbide single crystal on a crystal growth surface of a crystal substrate,
In the central region corresponding to the central portion of the seed crystal substrate at the interface between the substrate mounting portion of the crucible lid and the seed crystal substrate, the bonding area is 0.1% or more and 5% or less in terms of the area ratio to the seed crystal substrate. The outer peripheral regions other than the central region are in contact with each other with smooth surfaces having a surface roughness (Ra) of 1 μm or less, and the outer peripheral edge of the seed crystal substrate is A method for manufacturing a silicon carbide single crystal ingot, wherein the silicon carbide single crystal is grown on a crystal growth surface of a seed crystal substrate by mechanically fixing the crucible lid with a holding member.
前記坩堝蓋体の基板取付け部が円盤状の黒鉛製台座から形成され、該黒鉛製台座は、前記種結晶基板の中央部に相当する位置に貫通孔を備えると共に、表面粗さ(Ra)1μm以下の平滑面を有し、また、前記種結晶基板は、結晶成長面と反対側が表面粗さ(Ra)1μm以下の平滑面を有して、前記黒鉛製台座の貫通孔に充填された接着剤により、黒鉛製台座を介して種結晶基板と坩堝蓋体とが接合されて、かつ、種結晶基板の外側周縁部に取り付けられる前記保持部材により、黒鉛製台座と種結晶基板とを坩堝蓋体に対して一体的に固定する請求項1に記載の炭化珪素単結晶インゴットの製造方法。   A substrate mounting portion of the crucible lid is formed from a disk-shaped graphite pedestal, and the graphite pedestal has a through hole at a position corresponding to the central portion of the seed crystal substrate and has a surface roughness (Ra) of 1 μm. The seed crystal substrate has a smooth surface with a surface roughness (Ra) of 1 μm or less on the opposite side to the crystal growth surface, and the seed crystal substrate is filled in the through hole of the graphite base. The seed crystal substrate and the crucible lid are joined by the agent via the graphite pedestal, and the graphite pedestal and the seed crystal substrate are connected to the crucible lid by the holding member attached to the outer peripheral edge of the seed crystal substrate. The manufacturing method of the silicon carbide single crystal ingot of Claim 1 fixed integrally with a body. 口径100mm以上を有する炭化珪素単結晶インゴットを製造する請求項1又は2に記載の炭化珪素単結晶インゴットの製造方法。
The manufacturing method of the silicon carbide single crystal ingot of Claim 1 or 2 which manufactures the silicon carbide single crystal ingot which has a diameter of 100 mm or more.
JP2017062663A 2017-03-28 2017-03-28 Method for Manufacturing Silicon Carbide Single Crystal Ingot Active JP6785698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062663A JP6785698B2 (en) 2017-03-28 2017-03-28 Method for Manufacturing Silicon Carbide Single Crystal Ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062663A JP6785698B2 (en) 2017-03-28 2017-03-28 Method for Manufacturing Silicon Carbide Single Crystal Ingot

Publications (2)

Publication Number Publication Date
JP2018165227A true JP2018165227A (en) 2018-10-25
JP6785698B2 JP6785698B2 (en) 2020-11-18

Family

ID=63922140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062663A Active JP6785698B2 (en) 2017-03-28 2017-03-28 Method for Manufacturing Silicon Carbide Single Crystal Ingot

Country Status (1)

Country Link
JP (1) JP6785698B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209162A1 (en) * 2021-03-31 2022-10-06 Secカーボン株式会社 Sic monocrystal growth device and sic crystal growth method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308697A (en) * 2001-04-05 2002-10-23 Nippon Steel Corp Silicon carbide single crystal ingot, production method therefor and method for mounting seed crystal for growing silicon carbide single crystal
JP2004269297A (en) * 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
JP2010116275A (en) * 2008-11-11 2010-05-27 Bridgestone Corp Production method of silicon carbide single crystal
WO2016006442A1 (en) * 2014-07-07 2016-01-14 住友電気工業株式会社 Production method for silicon carbide single crystal, and silicon carbide substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308697A (en) * 2001-04-05 2002-10-23 Nippon Steel Corp Silicon carbide single crystal ingot, production method therefor and method for mounting seed crystal for growing silicon carbide single crystal
JP2004269297A (en) * 2003-03-06 2004-09-30 Toyota Central Res & Dev Lab Inc SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
JP2010116275A (en) * 2008-11-11 2010-05-27 Bridgestone Corp Production method of silicon carbide single crystal
WO2016006442A1 (en) * 2014-07-07 2016-01-14 住友電気工業株式会社 Production method for silicon carbide single crystal, and silicon carbide substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209162A1 (en) * 2021-03-31 2022-10-06 Secカーボン株式会社 Sic monocrystal growth device and sic crystal growth method

Also Published As

Publication number Publication date
JP6785698B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
US11242618B2 (en) Silicon carbide substrate and method of manufacturing the same
JP6663548B2 (en) Wafer cut from SiC crystal and low dislocation density crystal
KR101960209B1 (en) Method for producing silicon carbide single crystal ingot and silicon carbide single crystal ingot
RU2728484C2 (en) Method of making composite substrate from sic
JP2010089983A (en) METHOD FOR FORMING SiC SINGLE CRYSTAL
JP6594146B2 (en) Method for producing silicon carbide single crystal ingot
JP5391653B2 (en) Method for growing aluminum nitride crystal and method for producing aluminum nitride crystal
JP2010132464A (en) Method for producing silicon carbide single crystal
JP2019112269A (en) Method of manufacturing silicon carbide single crystal
JP6881357B2 (en) Method for manufacturing silicon carbide single crystal
JP2013067522A (en) Method for producing silicon carbide crystal
JP2884085B1 (en) Single crystal SiC and method for producing the same
JP5843725B2 (en) Single crystal manufacturing method
JP6785698B2 (en) Method for Manufacturing Silicon Carbide Single Crystal Ingot
JP2015013762A (en) Method of manufacturing silicon carbide single crystal, and silicon carbide single crystal substrate
JP6861557B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Silicon Carbide Single Crystal Ingot Manufacturing Method
JP4374986B2 (en) Method for manufacturing silicon carbide substrate
JP5447206B2 (en) Method for manufacturing silicon carbide single crystal and silicon carbide substrate
JP5761264B2 (en) Method for manufacturing SiC substrate
JP5948988B2 (en) Method for producing silicon carbide single crystal
JPWO2016163157A1 (en) Method for producing silicon carbide single crystal
JP2016013949A (en) Method of manufacturing single crystal
JP2016190762A (en) Manufacturing apparatus for aluminum nitride single crystal
JP6695182B2 (en) Method for producing seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal ingot
JP2015074602A (en) Method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180302

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350