JP2006151756A - Method for fixing seed crystal - Google Patents

Method for fixing seed crystal Download PDF

Info

Publication number
JP2006151756A
JP2006151756A JP2004345378A JP2004345378A JP2006151756A JP 2006151756 A JP2006151756 A JP 2006151756A JP 2004345378 A JP2004345378 A JP 2004345378A JP 2004345378 A JP2004345378 A JP 2004345378A JP 2006151756 A JP2006151756 A JP 2006151756A
Authority
JP
Japan
Prior art keywords
seed crystal
adhesive
fixing method
silicon carbide
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345378A
Other languages
Japanese (ja)
Other versions
JP4501657B2 (en
Inventor
Yasuyo Satou
安代 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004345378A priority Critical patent/JP4501657B2/en
Publication of JP2006151756A publication Critical patent/JP2006151756A/en
Application granted granted Critical
Publication of JP4501657B2 publication Critical patent/JP4501657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for fixing a seed crystal, by which impurities are prevented from being present between the seed crystal and a seed crystal mounting face and the occurrence of a linear penetrating defect can be suppressed. <P>SOLUTION: A seed crystal mount 2 whose seed crystal mounting face 3 has an area smaller than the seed crystal 5 is used. The seed crystal 5 and the seed crystal mounting face 3 are adhered by using a first adhesive 4. Then, a second adhesive 6 is applied so that a part not adhered with the first adhesive 4 in the surface of the seed crystal 5 at the seed crystal mounting face 3 side and the side wall of the seed crystal mount 2 are connected. After hardening the second adhesive 6, the first adhesive 4 is heated, decomposed and removed. The elution or infiltration of the second adhesive 6 inbetween the seed crystal 5 and the seed crystal mounting face 3 can be prevented by the first adhesive 4. Further, after hardening the second adhesive 6, when heating treatment is performed at a high temperature, the first adhesive 4 is heated, decomposed and removed. Thereby, the impurities can be prevented from being present between the seed crystal 5 and the seed crystal mounting face 3, and a silicon carbide single crystal free from a linear penetrating defect can be produced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化珪素単結晶を昇華法により製造する際に、種結晶を種結晶台座に固定するための種結晶固定方法に関する。   The present invention relates to a seed crystal fixing method for fixing a seed crystal to a seed crystal base when a silicon carbide single crystal is manufactured by a sublimation method.

炭化珪素は禁制帯幅の広い半導体であり、物理的にも化学的にも安定であることから耐環境性半導体材料及び短波長発光ダイオード材料として注目されており、高品質かつ大型の炭化珪素単結晶基板の開発が求められている。炭化珪素単結晶の成長方法としては、種結晶を用いた昇華再結晶法である改良Lely法が広く用いられている。   Silicon carbide is a semiconductor with a wide forbidden band and is physically and chemically stable, and thus has attracted attention as an environment-resistant semiconductor material and a short wavelength light emitting diode material. There is a need for the development of crystal substrates. As a method for growing a silicon carbide single crystal, an improved Lely method, which is a sublimation recrystallization method using a seed crystal, is widely used.

図5を用いて改良Lely法の原理を説明する。種結晶5として炭化珪素単結晶基板と、原料である炭化珪素結晶粉末8は、黒鉛製あるいはタンタル等の高融点金属製の蓋付き坩堝7内に設置されている。この坩堝は減圧下でアルゴン等の不活性ガス雰囲気中、2000〜2400℃で加熱される。この際、炭化珪素結晶粉末8に比べて種結晶5がやや低温となるように温度勾配が設定される。原料は昇華後、やや低温となっている種結晶5が設置された方向へと拡散、輸送される。拡散、輸送された昇華ガスが種結晶5上で再結晶化することによって炭化珪素単結晶9が得られる。   The principle of the improved Lely method will be described with reference to FIG. A silicon carbide single crystal substrate as a seed crystal 5 and a silicon carbide crystal powder 8 as a raw material are placed in a crucible 7 with a lid made of graphite or a refractory metal such as tantalum. The crucible is heated at 2000 to 2400 ° C. in an inert gas atmosphere such as argon under reduced pressure. At this time, the temperature gradient is set so that the seed crystal 5 is slightly lower in temperature than the silicon carbide crystal powder 8. After sublimation, the raw material is diffused and transported in the direction in which the seed crystal 5 having a slightly low temperature is installed. The silicon carbide single crystal 9 is obtained by recrystallizing the diffused and transported sublimation gas on the seed crystal 5.

上記改良Lely法では、種結晶は坩堝蓋部や蓋部に形成された載置部等に機械的あるいは種結晶固定剤を用いた化学的手法により固定されている。機械的な方法の例には、種結晶裏面及び種結晶載置部表面を平坦化処理し、両者を物理的に密着させることにより装着する方法がある(例えば、特許文献1参照)。   In the improved Lely method, the seed crystal is fixed to the crucible lid portion or a mounting portion formed on the lid portion by a mechanical method or a chemical method using a seed crystal fixing agent. As an example of the mechanical method, there is a method in which the seed crystal back surface and the seed crystal mounting portion surface are flattened, and the two are physically attached to each other (see, for example, Patent Document 1).

一方、種結晶固定剤を用いた化学的な方法の例には、フェノール樹脂やノボラック樹脂などの高分子材料を含有する液状接着剤の高温炭化処理によって得られる炭化層が種結晶と載置部の間に介在し、上記炭化層により種結晶が載置部に結合された状態で単結晶を成長させる方法や、炭水化物と耐熱性微粒子と溶媒からなる種結晶固定剤を用い、種結晶を種結晶載置部に固定させる方法がある(例えば、特許文献2及び3参照)。   On the other hand, as an example of a chemical method using a seed crystal fixing agent, a carbonized layer obtained by high-temperature carbonization treatment of a liquid adhesive containing a polymer material such as a phenol resin or a novolac resin includes a seed crystal and a mounting portion. The seed crystal is seeded using a method of growing a single crystal with a seed crystal bonded to the mounting portion by the carbonized layer or a seed crystal fixing agent comprising a carbohydrate, a heat-resistant fine particle, and a solvent. There is a method of fixing to the crystal mounting part (for example, see Patent Documents 2 and 3).

これらの種結晶固定方法を用いて作製した炭化珪素単結晶から、炭化珪素単結晶ウエハが切り出され、エピタキシャル薄膜成長、デバイス作製に供されている。しかしながら、上記機械的あるいは化学的な種結晶固定法を用いて改良Lely法により炭化珪素単結晶を作製した場合、単結晶内部に貫通欠陥が観測される。この貫通欠陥は種結晶近傍に多く、種結晶裏面から成長方向に向かって線状に伸びていることが多い。
特開2002−308697号公報 特開平9−110584号公報 特開平11−171691号公報
A silicon carbide single crystal wafer is cut out from a silicon carbide single crystal produced using these seed crystal fixing methods, and is used for epitaxial thin film growth and device production. However, when a silicon carbide single crystal is produced by the modified Lely method using the mechanical or chemical seed crystal fixing method, penetration defects are observed inside the single crystal. This penetration defect is often near the seed crystal and often extends linearly from the back surface of the seed crystal in the growth direction.
JP 2002-308697 A Japanese Patent Laid-Open No. 9-110584 Japanese Patent Laid-Open No. 11-171691

線状の貫通欠陥は、種結晶載置面に固定される側の種結晶表面からの炭化珪素単結晶の不均一な分解・昇華現象によるものであり(R.A.Stein、Physica B、vol.185(1993)pp.211−216)、種結晶と種結晶載置面との不均一な接触が主要因である。接触が不十分な領域では、成長結晶から坩堝蓋部への抜熱が不十分となり、結果として成長結晶、特に種結晶近傍の成長結晶に大きな温度勾配が生じる。このような大きな温度勾配が生じた領域では、炭化珪素の分解・昇華現象が促進され、線状の貫通欠陥が発生し、伸長する。また、不均一接触により種結晶と種結晶載置面との間に隙間が形成されると、この隙間へ、あるいは隙間を通じてさらに系外へ昇華ガスが抜けやすくなり、やはりこの隙間に接する部分の炭化珪素の分解・昇華が促進され、種結晶に線状の貫通欠陥が発生し、伸長する。種結晶に発生した線状の貫通欠陥は、種結晶内にとどまることは少なく、成長結晶中へと伸長してしまう。   The linear penetration defect is due to non-uniform decomposition / sublimation phenomenon of the silicon carbide single crystal from the surface of the seed crystal fixed to the seed crystal mounting surface (RA Stein, Physica B, vol. 185 (1993) pp. 211-216), the non-uniform contact between the seed crystal and the seed crystal mounting surface is the main factor. In the region where the contact is insufficient, heat removal from the growth crystal to the crucible lid becomes insufficient, and as a result, a large temperature gradient is generated in the growth crystal, particularly in the vicinity of the seed crystal. In a region where such a large temperature gradient is generated, the decomposition / sublimation phenomenon of silicon carbide is promoted, and linear penetrating defects are generated and elongated. Further, if a gap is formed between the seed crystal and the seed crystal mounting surface due to non-uniform contact, the sublimation gas easily escapes to the outside of the system through this gap or through the gap. The decomposition and sublimation of silicon carbide is promoted, and a linear through defect is generated in the seed crystal and is elongated. Linear penetrating defects generated in the seed crystal rarely stay in the seed crystal and extend into the grown crystal.

これら線状貫通欠陥は、成長結晶をウエハ形状に加工した際には、ウエハを厚さ方向に貫通する中空欠陥となる。このような中空欠陥上に薄膜をエピタキシャル成長させることは困難であり、さらに、このような中空欠陥上に作製したデバイスの特性劣化は免れない。   These linear penetration defects become hollow defects that penetrate the wafer in the thickness direction when the grown crystal is processed into a wafer shape. It is difficult to epitaxially grow a thin film on such a hollow defect, and further, characteristics deterioration of a device manufactured on such a hollow defect is inevitable.

前記特許文献1に記載の固定方法では、種結晶と種結晶載置面を平坦化処理することで、種結晶と種結晶載置面での均一な接触は得られるが、それだけでは種結晶を種結晶載置面に固定することはできないので、黒鉛などで作られた高耐熱性のネジやL字部材といった保持部材で種結晶端部を固定する必要がある。固定に用いる前記保持部材そのもの、ならびに保持部材近傍は、局所的に温度分布が異なることとなり、保持部材上への多結晶の析出や保持部材近傍の単結晶内で欠陥が増大するなど、結晶性の悪化は免れない。   In the fixing method described in Patent Document 1, the seed crystal and the seed crystal placement surface are flattened to obtain uniform contact between the seed crystal and the seed crystal placement surface. Since it cannot be fixed to the seed crystal mounting surface, it is necessary to fix the end portion of the seed crystal with a holding member such as a high heat-resistant screw made of graphite or an L-shaped member. The holding member itself used for fixing and the vicinity of the holding member have locally different temperature distributions. Crystallinity such as precipitation of polycrystals on the holding member and increase of defects in the single crystal near the holding member. The deterioration is inevitable.

また、前記特許文献2に記載の化学的な固定方法では、単結晶成長工程に先立って高温熱処理による種結晶固定剤の炭化工程を必要とする。この炭化工程では、固定剤の体積が大幅に減少してしまうため、種結晶と種結晶載置面の不均一固着による好ましくない種結晶の歪みの発生や、体積減少の結果生じた隙間での種結晶の昇華再結晶が起こり、線状貫通欠陥を生じる恐れがある。また種結晶には、もともと線状貫通欠陥が存在していることもあるので、高温熱処理時には固定剤の一部が種結晶中の線状貫通欠陥内に侵入し、さらには種結晶表面まで溢れ出すなどして種結晶の内部及び表面が汚染される恐れもあり、その結果成長結晶の品質低下につながる可能性が高い。   Further, the chemical fixing method described in Patent Document 2 requires a carbonization step of a seed crystal fixing agent by high-temperature heat treatment prior to the single crystal growth step. In this carbonization process, the volume of the fixing agent is greatly reduced. Therefore, undesired seed crystal distortion due to non-uniform fixation between the seed crystal and the seed crystal mounting surface, and the gap generated as a result of the volume reduction. Sublimation recrystallization of the seed crystal occurs, and there is a risk of causing a linear penetration defect. In addition, since there may be linear penetration defects originally in the seed crystal, a part of the fixing agent penetrates into the linear penetration defects in the seed crystal during high-temperature heat treatment, and further overflows to the surface of the seed crystal. There is also a possibility that the inside and surface of the seed crystal may be contaminated due to the release, and as a result, there is a high possibility that the quality of the grown crystal will be deteriorated.

さらに、前記特許文献3に記載の化学的な固定方法は、種結晶固定剤は炭水化物と耐熱性微粒子及び溶媒からなり、室温あるいは低温での加圧接着を実現する方法なので、高温熱処理による固定剤の炭化工程を必要としない。しかし、炭化珪素単結晶を成長させる際には、2000℃以上の高温下にさらされるので、構成成分である炭水化物の分解や炭化を免れることはできず、炭水化物の分解にともなって種結晶と種結晶載置部間の隙間が増加し、その結果、線状貫通欠陥の発生につながる。また高温下で炭水化物の分解が進むと、残留成分は耐熱性微粒子のみとなるため、単結晶成長に耐えうる固定強度を得ることが難しい。   Furthermore, the chemical fixing method described in Patent Document 3 is a method in which the seed crystal fixing agent is composed of a carbohydrate, a heat-resistant fine particle, and a solvent, and realizes pressure bonding at room temperature or low temperature. No carbonization process is required. However, when growing a silicon carbide single crystal, it is exposed to a high temperature of 2000 ° C. or higher, so it cannot escape decomposition and carbonization of the constituent carbohydrates. The gap between the crystal mounting portions increases, and as a result, linear penetration defects are generated. Further, when the decomposition of carbohydrate progresses at a high temperature, the residual component becomes only heat-resistant fine particles, so it is difficult to obtain a fixing strength that can withstand single crystal growth.

本発明は、前記従来の課題を解決するもので、種結晶と種結晶載置面との間に不純物の介在を防ぎ、線状貫通欠陥の発生を抑制すると同時に成長時に多結晶の混入をも抑制できる種結晶固定方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, prevents impurities from interposing between the seed crystal and the seed crystal mounting surface, suppresses the occurrence of linear through defects, and at the same time, introduces polycrystals during growth. It aims at providing the seed crystal fixing method which can be suppressed.

前記従来の課題を解決するために、本発明の種結晶固定方法は、種結晶台座の種結晶載置面と種結晶とを第1の接着剤を用いて接着する接着工程と、前記種結晶の前記第1の接着剤で覆われていない部分と前記種結晶台座の側壁とを接続するように第2の接着剤を塗布する塗布工程と、前記第2の接着剤を乾燥させる乾燥工程と、前記第2の接着剤を所定の圧力を加えつつ300℃以下の温度で所定時間加熱して硬化させる熱硬化工程と、前記第1の接着剤を500℃以上の温度で加熱して除去する分解除去工程からなることを特徴とする。   In order to solve the above-described conventional problems, the seed crystal fixing method of the present invention includes a bonding step of bonding a seed crystal mounting surface of a seed crystal base and a seed crystal using a first adhesive, and the seed crystal An application step of applying a second adhesive so as to connect a portion of the seed crystal base that is not covered with the first adhesive, and a drying step of drying the second adhesive A thermosetting step of curing the second adhesive by applying a predetermined pressure at a temperature of 300 ° C. or lower for a predetermined time, and removing the first adhesive by heating at a temperature of 500 ° C. or higher. It consists of a decomposition and removal step.

さらに本発明の種結晶固定方法の前記種結晶載置面の面積は、前記種結晶載置面に接着する面の種結晶の面積よりも小なることを特徴とする。   Furthermore, the area of the seed crystal mounting surface of the seed crystal fixing method of the present invention is smaller than the area of the seed crystal on the surface bonded to the seed crystal mounting surface.

さらに本発明の種結晶固定方法の前記接着工程では、前記種結晶載置面に接着する面の種結晶表面の中心と前記種結晶載置面の中心とが略一致するように配置されることを特徴とする。   Further, in the bonding step of the seed crystal fixing method of the present invention, the center of the seed crystal surface of the surface bonded to the seed crystal mounting surface is arranged so that the center of the seed crystal mounting surface substantially coincides. It is characterized by.

さらに本発明の種結晶固定方法の前記第1の接着剤は、加熱分解除去の容易な有機物を主成分とすることを特徴とする。   Furthermore, the first adhesive of the seed crystal fixing method of the present invention is characterized in that an organic substance that can be easily removed by thermal decomposition is a main component.

本発明の種結晶固定方法によれば、種結晶と種結晶台座の種結晶載置面との間に不純物の介在を防ぎ、線状貫通欠陥の発生を抑制した高品質の炭化珪素単結晶を得ることができる。   According to the seed crystal fixing method of the present invention, a high-quality silicon carbide single crystal that prevents the inclusion of impurities between the seed crystal and the seed crystal mounting surface of the seed crystal pedestal and suppresses the occurrence of linear through defects is obtained. Obtainable.

以下に、本発明の種結晶固定方法の実施の形態を図面とともに詳細に説明する。   Hereinafter, embodiments of the seed crystal fixing method of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1による種結晶固定方法を示す工程図である。黒鉛製坩堝蓋1に形成された種結晶台座2において、図1aで示す種結晶載置面3の面積が、種結晶における種結晶載置面3へと接着される側の結晶表面の面積よりも小さいものを準備する。図1bに示すように、種結晶台座2の種結晶載置面3に第1の接着剤4を塗布する。第1の接着剤4は、本実施例ではロジンを用いた。ロジンは室温では固体なので、黒鉛製坩堝蓋1をロジンが軟化するのに十分な温度である概ね120℃で加熱して種結晶載置面3に接触させ塗布する。   FIG. 1 is a process diagram showing a seed crystal fixing method according to Example 1 of the present invention. In the seed crystal pedestal 2 formed on the graphite crucible lid 1, the area of the seed crystal mounting surface 3 shown in FIG. 1 a is larger than the area of the crystal surface of the seed crystal that is bonded to the seed crystal mounting surface 3. Also prepare a small one. As shown in FIG. 1 b, the first adhesive 4 is applied to the seed crystal mounting surface 3 of the seed crystal base 2. As the first adhesive 4, rosin was used in this example. Since rosin is solid at room temperature, the graphite crucible lid 1 is heated at approximately 120 ° C., which is a temperature sufficient for softening of the rosin, and is brought into contact with and applied to the seed crystal mounting surface 3.

次に、図1cに示すように、結晶台座2と種結晶5との位置合わせを行った後、種結晶5を載せて接着を行う。このときの種結晶5と種結晶載置面3の位置あわせは、種結晶載置面3の中心と種結晶5の中心がほぼ一致するようにすることが望ましいが、種結晶5が種結晶載置面3のすべてを覆うように取り付けられていれば良い。なお、図1cに示す種結晶5の接着工程は、ロジンが軟化している状態で行わなければならない。   Next, as shown in FIG. 1c, after the crystal pedestal 2 and the seed crystal 5 are aligned, the seed crystal 5 is placed and bonded. At this time, it is desirable that the seed crystal 5 and the seed crystal mounting surface 3 are aligned so that the center of the seed crystal mounting surface 3 and the center of the seed crystal 5 are substantially coincident with each other. What is necessary is just to be attached so that all the mounting surfaces 3 may be covered. Note that the bonding step of the seed crystal 5 shown in FIG. 1c must be performed in a state where the rosin is softened.

次に種結晶5を接着した坩堝蓋1を室温まで冷却し、第1の接着剤であるロジンを固化さる。その後、図1dに示すように、種結晶載置面3に接着されている側の種結晶表面のうち、前記第1の接着剤4で覆われていない部分と前記種結晶台座2の側壁に、液状接着剤の形態の第2の接着剤6を塗布する。この時に、第1の接着剤4が塗布されているので、第2の接着剤6が種結晶5と種結晶載置面3との間への溶出や浸透を防ぐことができる。第2の接着剤6は、本実施例では、フェノール樹脂とホルムアルデヒドを主成分とし、フルフリルアルコールを溶剤とし、耐熱性微粒子である黒鉛粒子が含まれている接着剤を用いた。このほか、ノボラック樹脂を主成分とするレジストを用いても良い。また、ノボラック樹脂を主成分とするレジストに黒鉛微粒子などの耐熱性微粒子が含まれているものでも良い。   Next, the crucible lid 1 to which the seed crystal 5 is bonded is cooled to room temperature, and the rosin as the first adhesive is solidified. Thereafter, as shown in FIG. 1 d, the portion of the seed crystal surface bonded to the seed crystal mounting surface 3 that is not covered with the first adhesive 4 and the side wall of the seed crystal base 2. Then, the second adhesive 6 in the form of a liquid adhesive is applied. At this time, since the first adhesive 4 is applied, the second adhesive 6 can prevent elution and permeation between the seed crystal 5 and the seed crystal mounting surface 3. In the present embodiment, the second adhesive 6 is an adhesive containing phenol resin and formaldehyde as main components, furfuryl alcohol as a solvent, and graphite particles that are heat-resistant fine particles. In addition, a resist whose main component is a novolac resin may be used. Further, a resist containing a novolac resin as a main component may contain heat-resistant fine particles such as graphite fine particles.

第2の接着剤6を塗布した後、室温にて、大気圧もしくは減圧雰囲気中で1時間以上放置し、塗布した第2の接着剤6を乾燥させる。大気圧雰囲気中での乾燥の場合には特に必要とはならないが、減圧雰囲気中で乾燥を行う場合には、図1dの括弧内に示すように、200g/cm2以上で加圧した方がよい。200g/cm2以上で加圧を行わない場合、第2の接着剤6に含まれている溶剤成分が揮発する際に、接着している種結晶5が押し上げられ、種結晶5と種結晶載置面3の間に大きな隙間を生じたり、種結晶5の固定位置がずれたりする恐れがある。 After the second adhesive 6 is applied, it is left at room temperature in an atmospheric pressure or reduced pressure atmosphere for 1 hour or longer to dry the applied second adhesive 6. When drying in an atmospheric pressure atmosphere, it is not particularly necessary, but when drying in a reduced pressure atmosphere, as shown in the parentheses of FIG. 1d, it is better to pressurize at 200 g / cm 2 or more. Good. When pressure is not applied at 200 g / cm 2 or more, when the solvent component contained in the second adhesive 6 volatilizes, the seed crystal 5 that is adhered is pushed up, and the seed crystal 5 and the seed crystal are mounted. There is a possibility that a large gap is generated between the mounting surfaces 3 or the fixing position of the seed crystal 5 is shifted.

その後、図1eに示すように、200g/cm2以上で加圧した状態で、概ね130℃で4時間、続いて概ね260℃で2時間加熱し、第2の接着剤6として用いたフェノール樹脂とホルムアルデヒドを主成分とする接着剤を熱硬化させる。第2の接着剤6として、主成分がノボラック樹脂で溶剤がエチルセロソルブアセテートであるレジストを使用することも可能であるが、その場合、加熱条件を概ね300℃で3時間以上とすれば主成分の炭化が行える。これらの加熱条件を満たしていない場合、熱硬化や炭化が不十分となったり、第1及び第2の接着剤の急激な熱分解や発泡が生じたりするなどし、好ましい接着状態が得られなくなる。なお、第2の接着剤6の熱硬化あるいは炭化処理の際に、第1の接着剤4の大部分は燃焼あるいは熱分解して除去されるが、第1の接着剤4の残渣が残る。この残渣は500℃未満では完全に除去することが難しいので、500℃以上の高温で1時間以上加熱を行って分解除去を行う。この500℃以上での高温熱処理を行う際、図1dや図1eで示すような加圧を行う必要はない。ただし、前記500℃以上での高温熱処理は、熱処理環境が不活性ガス雰囲気の減圧下でない場合には、黒鉛製の坩堝蓋1の劣化や、第2の接着剤6が完全燃焼してしまう恐れがあるので、不活性ガス雰囲気の減圧下で行う必要がある。 Thereafter, as shown in FIG. 1e, the phenol resin used as the second adhesive 6 was heated at about 130 ° C. for 4 hours and then at about 260 ° C. for 2 hours under a pressure of 200 g / cm 2 or more. And thermosetting the adhesive mainly composed of formaldehyde. As the second adhesive 6, it is possible to use a resist whose main component is a novolak resin and whose solvent is ethyl cellosolve acetate. In this case, the main component can be obtained if the heating condition is approximately 300 ° C. for 3 hours or more. Can be carbonized. When these heating conditions are not satisfied, the thermosetting or carbonization becomes insufficient, or rapid thermal decomposition or foaming of the first and second adhesives occurs, and a preferable adhesion state cannot be obtained. . Note that, when the second adhesive 6 is thermally cured or carbonized, most of the first adhesive 4 is removed by combustion or thermal decomposition, but the residue of the first adhesive 4 remains. Since it is difficult to completely remove the residue below 500 ° C., the residue is decomposed and removed by heating at a high temperature of 500 ° C. or more for 1 hour or more. When performing the high temperature heat treatment at 500 ° C. or higher, it is not necessary to perform pressurization as shown in FIGS. 1d and 1e. However, the high temperature heat treatment at 500 ° C. or higher may cause deterioration of the graphite crucible lid 1 or complete burning of the second adhesive 6 if the heat treatment environment is not under reduced pressure in an inert gas atmosphere. Therefore, it is necessary to carry out under reduced pressure in an inert gas atmosphere.

図2aは、本発明の種結晶固定方法を利用した炭化珪素単結晶製造に用いる坩堝構成の概略図である。黒鉛製の坩堝蓋1に形成された種結晶台座2の側壁と種結晶5は、第2の接着剤6によって接着され、坩堝7内部には原料となる炭化珪素粉末8が所定量入っている。図2aに示した構成の坩堝を不活性ガス雰囲気、雰囲気圧力20Torr、坩堝下部温度を約2200〜2400℃、坩堝上部温度を約2000〜2200℃に加熱することで、図2bに示すように、種結晶台座2からはみ出している部分の種結晶は昇華エッチングされ、種結晶台座2上に存在する種結晶5上に、炭化珪素単結晶9を成長させることができる。なお、本実施例では、種結晶を固定するためのネジ等の保持部材を用いていないので、当然ながら、保持部材及びその近傍への多結晶析出はない。作製した炭化珪素単結晶を成長方向と平行に切断し、次いで研磨を行い、断面を観察した結果、種結晶を貫通する線状貫通欠陥を完全に防止できており、成長開始から終了まで高品質な状態が保たれた単結晶が得られていることがわかった。   FIG. 2a is a schematic view of a crucible configuration used for silicon carbide single crystal production using the seed crystal fixing method of the present invention. The side wall of the seed crystal pedestal 2 formed on the graphite crucible lid 1 and the seed crystal 5 are bonded by a second adhesive 6, and a predetermined amount of silicon carbide powder 8 as a raw material is contained in the crucible 7. . By heating the crucible having the structure shown in FIG. 2a to an inert gas atmosphere, an atmospheric pressure of 20 Torr, a crucible lower temperature of about 2200 to 2400 ° C., and a crucible upper temperature of about 2000 to 2200 ° C., as shown in FIG. The portion of the seed crystal protruding from the seed crystal pedestal 2 is subjected to sublimation etching, and the silicon carbide single crystal 9 can be grown on the seed crystal 5 existing on the seed crystal pedestal 2. In this embodiment, since a holding member such as a screw for fixing the seed crystal is not used, naturally, there is no polycrystalline precipitation on the holding member and its vicinity. The produced silicon carbide single crystal was cut in parallel with the growth direction, then polished, and the cross section was observed. As a result, linear through defects penetrating the seed crystal could be completely prevented, and high quality from the start to the end of growth. As a result, it was found that a single crystal was maintained.

次に本発明の実施例2による種結晶固定方法を説明する。実施例1との相違点は、第1の接着剤4であり溶剤が含まれているので、室温では液体である。従って、第1の接着剤4を塗布するために坩堝蓋1を加熱する必要がない。本実施例では、第1の接着剤4として、エチルセルロースをアセトンに溶解させたものを用いた。実施例1の場合と同様に、黒鉛製坩堝蓋1に形成された種結晶台座2において、種結晶載置面3の面積は、種結晶5よりも小さいものを準備する。本実施例の場合、第1の接着剤4は室温で液体状態であるため、図1bに示す、種結晶載置面3への第1の接着剤4の塗布工程は室温で行えばよい。   Next, a seed crystal fixing method according to Example 2 of the present invention will be described. The difference from Example 1 is the first adhesive 4 and contains a solvent, so that it is liquid at room temperature. Therefore, it is not necessary to heat the crucible lid 1 in order to apply the first adhesive 4. In this example, the first adhesive 4 was prepared by dissolving ethyl cellulose in acetone. As in the case of Example 1, in the seed crystal base 2 formed on the graphite crucible lid 1, a seed crystal mounting surface 3 having an area smaller than that of the seed crystal 5 is prepared. In the case of the present embodiment, since the first adhesive 4 is in a liquid state at room temperature, the step of applying the first adhesive 4 to the seed crystal mounting surface 3 shown in FIG. 1b may be performed at room temperature.

次に、図1cに示すように、第1の接着剤4が塗布された種結晶載置面3上に種結晶5を、位置合わせして載せ、接着を行う。接着後、室温で放置すれば第1の接着剤中のアセトンは揮発し、種結晶5と種結晶載置面3との間には、室温では固体の形状をとるエチルセルロースが残存する。溶剤であるアセトンは第2の接着剤を溶解する恐れがあるので、必ずアセトンが揮発し、完全に第1の接着剤が乾燥した後でなければ、次工程へ進んではいけない。   Next, as shown in FIG. 1c, the seed crystal 5 is aligned and placed on the seed crystal mounting surface 3 to which the first adhesive 4 has been applied, and adhesion is performed. After bonding, if it is allowed to stand at room temperature, acetone in the first adhesive volatilizes, and ethyl cellulose having a solid shape remains at room temperature between the seed crystal 5 and the seed crystal mounting surface 3. Since acetone, which is a solvent, may dissolve the second adhesive, the acetone must be volatilized and the process cannot proceed to the next step unless the first adhesive is completely dried.

次に、種結晶台座2の側壁と種結晶5とを固定するため、図1dに示すように液状接着剤の形態の第2の接着剤6を塗布する。この第2の接着剤6の塗布工程以降、炭化珪素単結晶成長にいたるまで、実施例1の場合と同様な工程とした。得られた炭化珪素単結晶の断面観察の結果、実施例1と同様に、種結晶5を貫通する線状欠陥はみられず、成長開始から終了まで高品質な状態が保たれた単結晶が得られることがわかった。   Next, in order to fix the side wall of the seed crystal base 2 and the seed crystal 5, a second adhesive 6 in the form of a liquid adhesive is applied as shown in FIG. 1d. From the application step of the second adhesive 6 to the silicon carbide single crystal growth, the same steps as those in Example 1 were performed. As a result of cross-sectional observation of the obtained silicon carbide single crystal, as in Example 1, no single line defect penetrating the seed crystal 5 was observed, and a single crystal maintained in a high quality state from the start to the end of the growth was obtained. It turns out that it is obtained.

本発明の効果を検証するため、実施例1と2の種結晶固定法を用いて製造した炭化珪素単結晶と、比較例で示す従来法で製造した炭化珪素単結晶とを比較した。比較例の作製方法を下に示す。   In order to verify the effect of the present invention, a silicon carbide single crystal manufactured using the seed crystal fixing method of Examples 1 and 2 was compared with a silicon carbide single crystal manufactured by a conventional method shown in a comparative example. A manufacturing method of a comparative example is shown below.

(比較例)
図3は、本比較例による種結晶固定方法を示す工程図である。本比較例は従来の化学的手法によるものである。種結晶固定剤10は、本実施例の第2の接着剤として使用したものと同じ、フェノール樹脂とホルムアルデヒドを主成分とし、フルフリルアルコールを溶剤とした接着剤を用いた。図3aに示される種結晶台座2の種結晶載置面3に、種結晶固定剤10を塗布する。種結晶固定剤10を塗布した状態の図は、図3bに示されている。
(Comparative example)
FIG. 3 is a process diagram showing a seed crystal fixing method according to this comparative example. This comparative example is based on a conventional chemical method. As the seed crystal fixing agent 10, the same adhesive as that used as the second adhesive in the present example, which is mainly composed of phenol resin and formaldehyde and furfuryl alcohol as a solvent, was used. A seed crystal fixing agent 10 is applied to the seed crystal mounting surface 3 of the seed crystal base 2 shown in FIG. A diagram with the seed crystal fixer 10 applied is shown in FIG. 3b.

次に、図3cに示すように種結晶5を載せて固定する。本実施例での熱硬化処理工程と同様に、200g/cm2以上で加圧した状態で、概ね130℃で4時間、さらに概ね260℃で2時間加熱して種結晶固定剤10を熱硬化させた。本比較例の場合には、種結晶5と種結晶載置面3との間には、種結晶固定剤10が介在したままの状態となる。これを、本実施例と同じ条件にて単結晶成長を行った。得られた単結晶の断面観察の結果、種結晶を貫通する線状欠陥が多数観測された。 Next, as shown in FIG. 3c, the seed crystal 5 is placed and fixed. As in the thermosetting process in this example, the seed crystal fixer 10 is thermoset by heating at approximately 130 ° C. for 4 hours and further at approximately 260 ° C. for 2 hours in a state where the pressure is 200 g / cm 2 or more. I let you. In the case of this comparative example, the seed crystal fixing agent 10 remains between the seed crystal 5 and the seed crystal placement surface 3. A single crystal was grown under the same conditions as in this example. As a result of cross-sectional observation of the obtained single crystal, many linear defects penetrating the seed crystal were observed.

図4は、本発明の実施例と本比較例で示した従来法で製造した炭化珪素単結晶の断面を比較する図である。図4aは、実施例1を利用して得られた炭化珪素単結晶の断面であり、種結晶5を貫通する線状欠陥が全く発生していないことが示されている。実施例2を利用して得られた炭化珪素単結晶の断面についても、全く同じ結果が得られている。図4bは、本比較例を利用して得られた炭化珪素単結晶の断面であり、種結晶を貫通する線状貫通結晶11が多数発生しており、その線状貫通欠陥11は炭化珪素単結晶9中へと伸長している。   FIG. 4 is a diagram comparing cross sections of silicon carbide single crystals manufactured by the conventional method shown in the examples of the present invention and the comparative examples. FIG. 4 a is a cross section of a silicon carbide single crystal obtained using Example 1, and shows that no linear defects penetrating the seed crystal 5 are generated. The same result was obtained with respect to the cross section of the silicon carbide single crystal obtained using Example 2. FIG. 4b is a cross section of a silicon carbide single crystal obtained by using this comparative example, in which a large number of linear through crystals 11 penetrating the seed crystal are generated, and the linear through defects 11 are formed of silicon carbide single crystals. It extends into the crystal 9.

以上のように、本実施の形態において、種結晶と種結晶載置面との間には不純物の介在が防がれているため、線状貫通欠陥などの欠陥の発生を抑制することができ、高品質の炭化珪素単結晶を得ることができる。   As described above, in this embodiment, since impurities are prevented from intervening between the seed crystal and the seed crystal mounting surface, generation of defects such as linear through defects can be suppressed. A high-quality silicon carbide single crystal can be obtained.

本発明にかかる炭化珪素単結晶成長用の種結晶固定方法は、ネジなどの保持部材を用いることなく、かつ、種結晶と種結晶台座との接触界面に不純物となり得る種結晶固定剤を介在させることもなく種結晶を固定する技術を有し、炭化珪素単結晶成長時の線状貫通欠陥の発生と多結晶の析出を抑制した、高品質の炭化珪素単結晶製造に有用である。   In the seed crystal fixing method for growing a silicon carbide single crystal according to the present invention, a seed crystal fixing agent that can be an impurity is interposed at the contact interface between the seed crystal and the seed crystal base without using a holding member such as a screw. It has a technique for fixing a seed crystal without any problem, and is useful for producing a high-quality silicon carbide single crystal that suppresses the occurrence of linear penetration defects and the precipitation of polycrystals during the growth of the silicon carbide single crystal.

本発明の実施の形態1における種結晶固定方法の概略図Schematic of seed crystal fixing method in Embodiment 1 of the present invention 本発明の種結晶固定方法を利用した炭化珪素単結晶製造方法の概略図Schematic of silicon carbide single crystal manufacturing method using seed crystal fixing method of the present invention 比較例における種結晶固定方法の概略図Schematic of seed crystal fixing method in comparative example 本発明の種結晶固定方法と比較例で示した従来法を利用して得られた炭化珪素単結晶の断面を比較する図The figure which compares the cross section of the silicon carbide single crystal obtained using the seed crystal fixing method of this invention and the conventional method shown by the comparative example 改良Lely法の原理を説明する図Diagram explaining the principle of the improved Lely method

符号の説明Explanation of symbols

1 坩堝蓋
2 種結晶台座
3 種結晶載置面
4 第1の接着剤
5 種結晶
6 第2の接着剤
7 坩堝
8 炭化珪素結晶粉末
9 炭化珪素単結晶
10 種結晶固定剤
11 線状貫通欠陥
1 crucible lid 2 seed crystal base 3 seed crystal mounting surface 4 first adhesive 5 seed crystal 6 second adhesive 7 crucible 8 silicon carbide crystal powder 9 silicon carbide single crystal 10 seed crystal fixing agent 11 linear penetration defect

Claims (16)

種結晶台座の種結晶載置面と種結晶とを第1の接着剤を用いて接着する接着工程と、
前記種結晶の前記第1の接着剤で覆われていない部分と前記種結晶台座の側壁とを接続するように第2の接着剤を塗布する塗布工程と、
前記第2の接着剤を乾燥させる乾燥工程と、
前記第2の接着剤を所定の圧力を加えつつ300℃以下の温度で所定時間加熱して硬化させる熱硬化工程と、
前記第1の接着剤を500℃以上の温度で加熱して除去する分解除去工程からなる、
ことを特徴とする種結晶固定方法。
A bonding step of bonding the seed crystal mounting surface of the seed crystal base and the seed crystal using the first adhesive;
An application step of applying a second adhesive so as to connect a portion of the seed crystal that is not covered with the first adhesive and a side wall of the seed crystal base;
A drying step of drying the second adhesive;
A thermosetting step of curing the second adhesive by heating at a temperature of 300 ° C. or lower for a predetermined time while applying a predetermined pressure;
It comprises a decomposition and removal step of removing the first adhesive by heating at a temperature of 500 ° C. or higher.
A seed crystal fixing method characterized by the above.
前記種結晶載置面の面積は、前記種結晶載置面に接着する面の種結晶の面積よりも小なることを特徴とする請求項1に記載の種結晶固定方法。 2. The seed crystal fixing method according to claim 1, wherein an area of the seed crystal mounting surface is smaller than an area of a seed crystal on a surface bonded to the seed crystal mounting surface. 前記接着工程では、前記種結晶載置面に接着する面の種結晶表面の中心と前記種結晶載置面の中心とが略一致するように配置されることを特徴とする請求項1に記載の種結晶固定方法。 2. The bonding step according to claim 1, wherein the center of the seed crystal surface of the surface bonded to the seed crystal mounting surface and the center of the seed crystal mounting surface are substantially aligned. Seed crystal fixing method. 前記第1の接着剤は、加熱分解除去の容易な有機物を主成分とすることを特徴とする請求項1に記載の種結晶固定方法。 2. The seed crystal fixing method according to claim 1, wherein the first adhesive contains an organic substance that can be easily removed by thermal decomposition as a main component. 前記加熱分解除去の容易な有機物は、ロジン、エチルセルロースの少なくとも1つであることを特徴とする請求項4に記載の種結晶固定方法。 5. The seed crystal fixing method according to claim 4, wherein the organic substance that can be easily removed by thermal decomposition is at least one of rosin and ethyl cellulose. 前記第2の接着剤は、熱硬化性樹脂からなることを特徴とする請求項1に記載の種結晶固定方法。 The seed crystal fixing method according to claim 1, wherein the second adhesive is made of a thermosetting resin. 前記第2の接着剤は、耐熱性微粒子を含有していることを特徴とする請求項6に記載の種結晶固定方法。 The seed crystal fixing method according to claim 6, wherein the second adhesive contains heat-resistant fine particles. 前記耐熱性微粒子は、黒鉛微粒子であることを特徴とする請求項7に記載の種結晶固定方法。 The seed crystal fixing method according to claim 7, wherein the heat-resistant fine particles are graphite fine particles. 前記熱硬化性樹脂は、フェノール樹脂あるいはノボラック樹脂の少なくとも1つを有していることを特徴とする請求項6に記載の種結晶固定方法。 The seed crystal fixing method according to claim 6, wherein the thermosetting resin includes at least one of a phenol resin and a novolac resin. 前記乾燥工程は、室温の大気圧下あるいは減圧下にて1時間以上放置することを特徴とする請求項1に記載の種結晶固定方法。 2. The seed crystal fixing method according to claim 1, wherein the drying step is allowed to stand for 1 hour or more under atmospheric pressure or reduced pressure at room temperature. 前記熱硬化工程は、約300℃以下の温度を約3時間以上保持することを特徴とする請求項1に記載の種結晶固定方法。 2. The seed crystal fixing method according to claim 1, wherein the thermosetting step maintains a temperature of about 300 ° C. or less for about 3 hours or more. 前記熱硬化工程において、前記種結晶は、前記種結晶台座との間で200g/cm2以上の力で加圧されることを特徴とする請求項11に記載の種結晶固定方法。 The seed crystal fixing method according to claim 11, wherein, in the thermosetting step, the seed crystal is pressed with a force of 200 g / cm 2 or more between the seed crystal pedestal and the seed crystal pedestal. 前記分解除去工程は、減圧下の不活性ガス雰囲気中で行うことを特徴とする請求項1に記載の種結晶固定方法。 The seed crystal fixing method according to claim 1, wherein the decomposition and removal step is performed in an inert gas atmosphere under reduced pressure. 請求項1に記載の種結晶固定方法を用いて製造した炭化珪素単結晶インゴット。 A silicon carbide single crystal ingot produced using the seed crystal fixing method according to claim 1. 請求項14に記載の炭化珪素単結晶インゴットを切断、研磨してなる炭化珪素単結晶ウエハ。 A silicon carbide single crystal wafer obtained by cutting and polishing the silicon carbide single crystal ingot according to claim 14. 請求項15に記載の炭化珪素単結晶ウエハにエピタキシャル成長させてなる炭化珪素単結晶エピタキシャルウエハ。 A silicon carbide single crystal epitaxial wafer obtained by epitaxial growth on the silicon carbide single crystal wafer according to claim 15.
JP2004345378A 2004-11-30 2004-11-30 Seed crystal fixing method for silicon carbide single crystal growth Expired - Fee Related JP4501657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345378A JP4501657B2 (en) 2004-11-30 2004-11-30 Seed crystal fixing method for silicon carbide single crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345378A JP4501657B2 (en) 2004-11-30 2004-11-30 Seed crystal fixing method for silicon carbide single crystal growth

Publications (2)

Publication Number Publication Date
JP2006151756A true JP2006151756A (en) 2006-06-15
JP4501657B2 JP4501657B2 (en) 2010-07-14

Family

ID=36630492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345378A Expired - Fee Related JP4501657B2 (en) 2004-11-30 2004-11-30 Seed crystal fixing method for silicon carbide single crystal growth

Country Status (1)

Country Link
JP (1) JP4501657B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041728A1 (en) * 2006-10-03 2008-04-10 Bridgestone Corporation Seed crystal fixing device
KR101101983B1 (en) 2008-12-17 2012-01-02 에스케이씨 주식회사 Seed assembly and method of manufacturing the same
JP2013112543A (en) * 2011-11-25 2013-06-10 Kyocera Corp Method for producing seed crystal holder, seed crystal holder, crystal growing apparatus and crystal growing method
JP2016020306A (en) * 2015-11-05 2016-02-04 京セラ株式会社 Seed crystal holder
JP2019531368A (en) * 2016-08-22 2019-10-31 ナショナル リサーチ カウンシル オブ カナダ Pyrolysable adhesive with cellulose and related methods of manufacture and use
CN114657633A (en) * 2022-02-25 2022-06-24 江苏集芯半导体硅材料研究院有限公司 Seed crystal sticking device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308697A (en) * 2001-04-05 2002-10-23 Nippon Steel Corp Silicon carbide single crystal ingot, production method therefor and method for mounting seed crystal for growing silicon carbide single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308697A (en) * 2001-04-05 2002-10-23 Nippon Steel Corp Silicon carbide single crystal ingot, production method therefor and method for mounting seed crystal for growing silicon carbide single crystal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041728A1 (en) * 2006-10-03 2008-04-10 Bridgestone Corporation Seed crystal fixing device
JP2008088024A (en) * 2006-10-03 2008-04-17 Bridgestone Corp Device for fixing seed crystal
US8051888B2 (en) 2006-10-03 2011-11-08 Bridgestone Corporation Seed crystal fixing device
KR101101983B1 (en) 2008-12-17 2012-01-02 에스케이씨 주식회사 Seed assembly and method of manufacturing the same
JP2013112543A (en) * 2011-11-25 2013-06-10 Kyocera Corp Method for producing seed crystal holder, seed crystal holder, crystal growing apparatus and crystal growing method
JP2016020306A (en) * 2015-11-05 2016-02-04 京セラ株式会社 Seed crystal holder
JP2019531368A (en) * 2016-08-22 2019-10-31 ナショナル リサーチ カウンシル オブ カナダ Pyrolysable adhesive with cellulose and related methods of manufacture and use
CN114657633A (en) * 2022-02-25 2022-06-24 江苏集芯半导体硅材料研究院有限公司 Seed crystal sticking device

Also Published As

Publication number Publication date
JP4501657B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US9090992B2 (en) Method of manufacturing single crystal
KR101553387B1 (en) Method for growing single crystal silicon carbide
CN111074338B (en) Seed crystal with protective film, method of manufacturing the same, method of attaching the same, and method of manufacturing ingot using the same
JP4556634B2 (en) Seed crystal fixing part and seed crystal fixing method
JP2020502032A (en) Method for growing large diameter silicon carbide single crystal ingot
JP2011121815A (en) Single crystal production method
JP4998491B2 (en) Method for bonding SiC single crystal and solution growing method for SiC single crystal
JP4501657B2 (en) Seed crystal fixing method for silicon carbide single crystal growth
KR20100112068A (en) Method for growing aluminum nitride crystal, process for producing aluminum nitride crystal, and aluminum nitride crystal
US20110229719A1 (en) Manufacturing method for crystal, manufacturing apparatus for crystal, and stacked film
JP2013237592A (en) Method for producing silicon carbide single crystal
JP4258921B2 (en) Seed crystal fixing agent, seed crystal fixing method, and method for producing single crystal using them
KR101101983B1 (en) Seed assembly and method of manufacturing the same
JP2011006302A (en) Method for producing silicon carbide single crystal
JP5447206B2 (en) Method for manufacturing silicon carbide single crystal and silicon carbide substrate
KR102242438B1 (en) Seed attachment method
JP4461858B2 (en) Method for bonding SiC single crystal
JP4457708B2 (en) Seed crystal fixing method and single crystal manufacturing method
JP3680531B2 (en) Seed crystal fixing agent and method for producing single crystal using the same
JP2012250865A (en) Method for manufacturing single crystal, and seed crystal fixing agent
JP2006347868A (en) Apparatus and method of fixing seed crystal
KR101419471B1 (en) Seed holder adhesion method, and growing nethod for single crystal using seed holder
KR102058873B1 (en) Method for growing silicon carbide single crystal ingot with large diameter
KR100951617B1 (en) Surface treatment method for silicon carbide substrate
JP2015120605A (en) Production method of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees