JP2002308659A - Cement hardened body and its production process - Google Patents

Cement hardened body and its production process

Info

Publication number
JP2002308659A
JP2002308659A JP2001108362A JP2001108362A JP2002308659A JP 2002308659 A JP2002308659 A JP 2002308659A JP 2001108362 A JP2001108362 A JP 2001108362A JP 2001108362 A JP2001108362 A JP 2001108362A JP 2002308659 A JP2002308659 A JP 2002308659A
Authority
JP
Japan
Prior art keywords
cement
fiber
hardened
ash
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001108362A
Other languages
Japanese (ja)
Other versions
JP3683826B2 (en
Inventor
Yoshitaka Ishikawa
嘉崇 石川
Tatsuo Suzuki
達雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Hazama Ando Corp
Original Assignee
Electric Power Development Co Ltd
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Hazama Gumi Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2001108362A priority Critical patent/JP3683826B2/en
Publication of JP2002308659A publication Critical patent/JP2002308659A/en
Application granted granted Critical
Publication of JP3683826B2 publication Critical patent/JP3683826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/24Sea water resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cement hardened body which can be produced by a production process that involves mixing, as a substitute for cement, a large amount of incineration ash into cement, in a cement mix for forming a cement formed body, and also to provide the production process of the cement hardened body. SOLUTION: The production process involves mixing a cement mix containing cement (C) and incineration ash (F), then forming the mixed cement mix into a cement formed body and hardening the cement formed body, wherein, in the cement mix, the ratio (F/(F+C)) of the content of the incineration ash (F) to the total content of the cement (C) and the incineration ash (F) is >=10 mass %, also, the cement mix contains a fibrous reinforcing material in a 2-10 vol.% ratio of the fibrous reinforcing material to the mixture (F+C) of the incineration ash (F) and the cement (C), and further, in the cement mix, water- powder ratio (S) meets the relational expression 0<=(S-S0)<=5% (S0 is an optimum water content).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼却灰(フライア
ッシュ等)を利用したセメント硬化体及びその製造方法
に関するものであり、より詳細には、繊維材及び水分量
を最適な割合で含ませると共に、最適な練混ぜを行って
製造してなる、優れた曲げ強度等を有するセメント硬化
体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hardened cement body using incinerated ash (fly ash and the like) and a method for producing the same, and more particularly, to a fiber material and a water content in an optimum ratio. The present invention also relates to a hardened cement body having excellent bending strength and the like, which is manufactured by performing optimal kneading, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】石炭火力発電により発生する石炭等の焼
却灰は、その一部がセメント原料またはコンクリート用
混和材等の用途で利用されているものの、多くが埋立て
処分されており、環境保護や資源活用の観点からも利用
拡大が求められている。また汚水を水質浄化した後に生
じる汚泥等の焼却灰に関しても、同様に埋立て処分以外
の利用が求められている。また、製鉄所における溶銑処
理工程で発生する焼却スラグ等の利用も求められてい
る。
2. Description of the Related Art Although incinerated ash such as coal generated by coal-fired power generation is partially used for purposes such as cement raw materials or admixtures for concrete, most of the incinerated ash is disposed of in landfills, thus protecting the environment. From the viewpoint of resource utilization and resource utilization, expansion of utilization is required. Similarly, incineration ash such as sludge generated after purifying sewage water is also required to be used for purposes other than landfill disposal. In addition, utilization of incineration slag and the like generated in the hot metal treatment process in ironworks is also required.

【0003】セメントに上記焼却灰を配合したセメント
硬化体は従来から種々提案され、一般に、セメントにで
きるだけ多量の上記焼却灰を配合することが望まれ、そ
して、このような焼却灰を含むセメント硬化体が、従来
のセメント原料を主体した砂利、砂等からなる一般的な
コンクリート硬化体に近い強度を有することも求められ
ている。また、このような焼却灰を含ませた硬化体(ブ
ロック)等は海洋ブロック等に利用される場合が多いた
め、耐磨耗性や非アルカリ溶出等を有することが求めら
れている。
Various types of hardened cement bodies in which the above-mentioned incinerated ash is mixed with cement have been conventionally proposed. In general, it is desired to mix as much of the above-mentioned incinerated ash into cement as possible. It is also required that the body has a strength close to that of a general hardened concrete body made of gravel, sand, or the like mainly composed of a conventional cement raw material. In addition, since such a cured body (block) containing incinerated ash is often used for a marine block or the like, it is required to have abrasion resistance, non-alkali elution, and the like.

【0004】従来、このような硬化体については、セメ
ントと乾燥微粉体(石炭灰、高炉スラグ、汚泥焼却灰)
とを含む水硬化性材料を、でききる限り最適含水比の近
い範囲で水を添加して混練して、型枠に打設して型枠を
振動させて締め固める硬化体の製造方法が提案されてい
る(特開平9−12348号公報)。かかる製造方法は
配合水分量をできるかぎり控えて、振動処理により各成
分の分散性を高めることにより、製造硬化体の製造時の
発熱によりひび割れ、またブリージングのない均一且つ
クラック等が生じないセメント硬化体を提供するもので
ある。
[0004] Conventionally, such a hardened material is made of cement and dry fine powder (coal ash, blast furnace slag, sludge incineration ash).
A water-curable material containing, as far as possible, water is added and kneaded in a range as close to the optimum water content ratio as possible, and a method for producing a cured body in which the material is poured into a mold and vibrated to compact the mold is proposed. (JP-A-9-12348). In such a production method, the amount of water contained is reduced as much as possible, and the dispersibility of each component is increased by vibration treatment, whereby cement hardened without heat, cracks, and breathing without heat generation during the production of the cured product. It provides the body.

【0005】また、上記セメントと、多量の微粉体と、
最適含水比程度の水粉体比の水とを含む材料からなる硬
化体を製造するために、各材料の配合比率を求める方法
が提案されている(特開平10−323820号公
報)。セメントと微粉体と水とを練り混ぜて混練物を生
成し、該混練物についてフロー試験を行って所定のフロ
ー値を示す水粉体比を求め、該水粉体比から、硬化体の
圧縮強度が最大となる水粉体比(最適水粉体比)の推定
値を演算により求め、水粉体比の該推定値から硬化体の
圧縮強度の推定値を演算により求め、圧縮強度の該推定
値と、硬化体の所要圧縮強度とからセメント添加率を演
算により求めるものである。
Further, the cement, a large amount of fine powder,
In order to produce a cured product made of a material containing water having a water powder ratio of about the optimum water content ratio, a method for determining the blending ratio of each material has been proposed (Japanese Patent Laid-Open No. 10-323820). A kneaded product is produced by kneading and mixing cement, fine powder, and water, and a flow test is performed on the kneaded product to determine a water powder ratio showing a predetermined flow value. An estimated value of the water powder ratio (optimal water powder ratio) at which the strength is maximized is calculated, an estimated value of the compression strength of the cured body is calculated from the estimated value of the water powder ratio, and the estimated value of the compression strength is calculated. The cement addition rate is obtained by calculation from the estimated value and the required compressive strength of the hardened body.

【0006】かかる製造方法は、混練物のフロー値と、
セメント硬化体の圧縮強度と、セメント添加率の値とを
求め、かかる値を再三フィードバックさせながら、微粉
体等の材料に対する最適なセメント添加率を求め、セメ
ント硬化体の圧縮強度の改善を図っているものである。
更に、セメント硬化体の強度、例えば、引張強度やひび
われによる抵抗性を改善するために、ガラス繊維補強材
等を添加したコンクリート等が種々提案されている(特
公平1−54163号公報)。このようなセメント硬化
体においてはガラス繊維補強材を十分にセメント材料に
分散させるために加工型枠の上方から振動板で振動を与
えながらコンクリート成形を行っている。
[0006] Such a production method comprises the steps of:
Calculate the compressive strength of the hardened cement and the value of the cement addition rate, seek the optimum cement addition rate for the material such as fine powder while repeating the feedback, and aim to improve the compressive strength of the hardened cement. Is what it is.
Furthermore, in order to improve the strength of the hardened cement, for example, tensile strength and resistance to cracks, various concretes and the like to which a glass fiber reinforcing material or the like is added have been proposed (Japanese Patent Publication No. 1-54163). In such a hardened cement body, concrete molding is performed while applying vibrations from above the working form by a vibration plate in order to sufficiently disperse the glass fiber reinforcing material in the cement material.

【0007】ところで、上記焼却灰を含むセメント硬化
体は、できるだけ焼却灰を含み、即ち、セメント配合量
をできるだけ少なくして、曲げ強度や圧縮強度等の機械
的強度を高く維持させることが望まれている。このた
め、上記セメント硬化体に繊維補強材等を添加すること
が考えられている。しかしながら、従来のように繊維補
強材を単に添加して振動板で振動を与えただけでは、焼
却灰を含む硬化体では問題がある。即ち焼却灰を含む硬
化体にあっては繊維補強材、特にフライアッシュファイ
バーにダマが生じ、混入に限界があるだけでなく分散性
が極めて悪くなる。特に、ファイバー混入によってコン
システンシーが相当高くなるためこのような現象が特に
生じる。以上のことからセメントの代替材料として多量
のフライアッシュ及び繊維補強材が混入でき、且つ優れ
た機械的強度を維持するセメント硬化体及びその製造方
法が望まれている。
[0007] Incidentally, it is desired that the hardened cement body containing incinerated ash contains incinerated ash as much as possible, that is, the amount of cement is reduced as much as possible to maintain high mechanical strength such as bending strength and compressive strength. ing. For this reason, it has been considered to add a fiber reinforcing material or the like to the hardened cement body. However, there is a problem with a cured body containing incinerated ash simply by adding a fiber reinforcing material and vibrating with a diaphragm as in the prior art. That is, in the cured body containing incinerated ash, fibers are formed in the fiber reinforcing material, particularly fly ash fiber, and not only the mixing is limited, but also the dispersibility becomes extremely poor. In particular, such a phenomenon particularly occurs because the consistency becomes considerably high due to fiber mixing. In view of the above, there is a demand for a hardened cement body capable of mixing a large amount of fly ash and fiber reinforcing material as a substitute material for cement and maintaining excellent mechanical strength, and a method for producing the same.

【0008】[0008]

【本発明が解決しようとする課題】本発明は、上記従来
の焼却灰を含むセメント硬化体に鑑み、セメントの代替
材料として多量の焼却灰を混入できると共に、優れた機
械的強度を有するセメント硬化体及びその製造方法を提
供することを課題とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional hardened cement containing incinerated ash, the present invention provides a cement hardened material having a high mechanical strength, in which a large amount of incinerated ash can be mixed as a substitute for cement. It is an object to provide a body and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は上記課題を解
決するために鋭意研究を行った結果、繊維補強材、特に
フライアッシュファイバー等の繊維補強材が細く折れ易
いために、通常ミキサー等でフライアッシュとセメント
を練り混ぜると繊維補強材は破損するが、プレミックス
と、また上下の加圧振動による締固め工法を用いると、
繊維補強材が破損されず容易に練り混ぜられて流動化で
きること、また水とセメント比を通常の量比で練り混ぜ
ると繊維補強材、特にフライアッシュファイバー等の繊
維補強材がダマ等になり易く十分に混入できなくなる
が、水分を適宜制限するとその繊維補強材の限界混入率
を高めることができること、及び繊維補強材の所定範囲
内での混入率がセメント硬化体の機械的強度を高めるこ
とを見出し、上記課題を解決したものである。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems. As a result, the fiber reinforcing material, particularly the fiber reinforcing material such as fly ash fiber is thin and easily broken. Mixing and mixing fly ash and cement will break the fiber reinforcement, but if you use the premix and the compaction method using vertical vibration,
The fiber reinforcement is not broken and can be easily mixed and fluidized, and if the water and cement ratio is mixed at a normal ratio, the fiber reinforcement, especially the fiber reinforced material such as fly ash fiber, easily becomes lump. Although it becomes impossible to mix sufficiently, it is possible to increase the limit mixing ratio of the fiber reinforcement by appropriately restricting the moisture, and the mixing ratio of the fiber reinforcement within a predetermined range increases the mechanical strength of the hardened cement. The present invention has solved the above problem.

【0010】即ち、本発明に係るセメント硬化体及びそ
の製造方法は、以下の(1)乃至(8)に記載されるも
のである。 (1) 焼却灰(F)を含むセメント(C)を練混ぜて
成形するセメント硬化体において、上記焼却灰(F)と上
記セメント(C)とにおける上記焼却灰の混合比率(F
/F+C)が10質量%以上の範囲にあり、上記焼却灰
(F)と上記セメント(C)からなる混合物(F+C)
に対して繊維補強材が2乃至10容量%の範囲で含み、
且つ水粉体比(S)が最適含水比(S0)に対して0≦
(S)−(S0)≦5%の範囲となるように加水して練混
ぜた練混ぜ物から成形したことを特徴とするセメント硬
化体。
That is, the hardened cement body and the method for producing the same according to the present invention are described in the following (1) to (8). (1) In a cement hardened body formed by kneading and molding cement (C) containing incinerated ash (F), the mixing ratio (F) of the incinerated ash in the incinerated ash (F) and the cement (C)
/ F + C) is in the range of 10% by mass or more, and a mixture (F + C) comprising the incinerated ash (F) and the cement (C)
The fiber reinforcement in the range of 2 to 10% by volume,
And the water powder ratio (S) is 0 ≦ with respect to the optimum water content ratio (S0).
(C) A hardened cement, characterized by being formed from a kneaded mixture obtained by adding water and kneading so as to be in a range of (S) − (S0) ≦ 5%.

【0011】(2) 上記焼却灰が火力発電により発生
するフライアッシュ、又は汚泥焼却灰であることを特徴
とする上記(1)記載のセメント硬化体。 (3) 上記繊維補強材がフライアッシュファイバー、
ガラス繊維、炭素繊維、樹脂繊維である上記(1)又は
(2)記載のセメント硬化体。 (4) 上記繊維補強材は石炭灰を高温で溶融して紡糸
したフライアッシュファイバーであることを特徴とする
上記(3)記載のセメント硬化体。
(2) The hardened cement according to (1), wherein the incinerated ash is fly ash or sludge incinerated ash generated by thermal power generation. (3) The fiber reinforcing material is fly ash fiber,
The cured cement according to the above (1) or (2), which is a glass fiber, a carbon fiber, or a resin fiber. (4) The hardened cement according to (3), wherein the fiber reinforcing material is fly ash fiber obtained by melting and spinning coal ash at a high temperature.

【0012】(5) 上記(1)乃至(4)記載のセメ
ント硬化体の製造方法において、少なくとも上記繊維補
強材、焼却灰及びセメントをプレミックスし、その後、
加水し練り混ぜた後、振動付与により流動化して締め固
めをすることを特徴とするセメント硬化体の製造方法。
(5) In the method for producing a hardened cement according to any one of the above (1) to (4), at least the fiber reinforcing material, incinerated ash and cement are premixed.
A method for producing a hardened cement, comprising mixing, mixing, and then fluidizing by vibrating and compacting.

【0013】(6) 上記練混ぜ物の上方及び下方から
振動付与することを特徴とする上記(5)記載のセメン
ト硬化体の製造方法。 (7) 上記プレミックスが逆流式高速混合方法である
ことを特徴とする上記(5)又は(6)記載のセメント
硬化体の製造方法。 (8) 上記振動を付与して流動化させる際に、振動加
速度を3G以上とすることを特徴とする上記(5)乃至
(7)のいずれかに記載のセメント硬化体の製造方法。
(6) The method for producing a hardened cement according to the above (5), wherein vibration is applied from above and below the kneaded mixture. (7) The method for producing a hardened cement according to the above (5) or (6), wherein the premix is a backflow high-speed mixing method. (8) The method for producing a hardened cement according to any one of the above (5) to (7), wherein the vibration acceleration is set to 3 G or more when the vibration is applied and fluidized.

【0014】[0014]

【発明の実施の形態】以下、本発明に係るセメント硬化
体及びその製造方法の実施の形態及び実施例を、図面を
参照しながら詳しく説明する。尚、本発明に係るセメン
ト硬化体及びその製造方法は、以下の実施の形態および
実施例に限るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments and examples of a cured cement body and a method for producing the same according to the present invention will be described in detail with reference to the drawings. The hardened cement body and the method for producing the same according to the present invention are not limited to the following embodiments and examples.

【0015】図1(a)及び(b)は本発明に係るセメ
ント硬化体を製造する際の振動付与を行う装置の概略図
である。図2及び図3は本発明に係る硬化体の材齢7日
及び28日におけるセメント硬化体のフライアッシュフ
ァイバーの混入率に対する曲げ強度の関係線図である。
図4は、本発明に係るセメント硬化体に高性能減水剤を
添加したときの乾燥密度を示した関係線図である。図5
及び図6は比較例のセメント硬化体の材齢7日及び28
日におけるセメント硬化体のフライアッシュファイバー
の混入率に対する曲げ強度の関係線図である。
FIGS. 1 (a) and 1 (b) are schematic views of an apparatus for imparting vibration when producing a hardened cement body according to the present invention. FIG. 2 and FIG. 3 are graphs showing the relationship between the mixing ratio of fly ash fiber and the bending strength of the hardened cement according to the present invention at the ages of 7 days and 28 days.
FIG. 4 is a relation diagram showing a dry density when a high-performance water reducing agent is added to the hardened cement according to the present invention. FIG.
6 and FIG. 6 show the results of the comparative cement hardened material of 7 days and 28 days in age.
FIG. 4 is a graph showing the relationship between the mixing ratio of fly ash fiber and the flexural strength of a hardened cement body on a day.

【0016】本発明に係るセメント硬化体は少なくとも
焼却灰(F)とセメント(C)とから成形されている。上
記焼却灰(F)としては、石炭灰、鉱炉スラグ、乾燥汚
泥の燃焼灰等の煙道ガス内からのフライアッシュ、火山
灰等を挙げることができ、特に、火力発電所或いは高炉
等より発生するフライアッシュが好ましく、更に好まし
くは、微粉炭燃焼により発生したものを電気集塵機で集
めた、いわゆるEP灰、あるいはこれを粗粒化した既成
灰などを挙げることができる。これらのうち、上記フラ
イアッシュ等は、含水量が一定していることから、取扱
いが容易であり、後述するフライアッシュファイバーを
十分に分散させることができる。
The hardened cement according to the present invention is formed from at least incinerated ash (F) and cement (C). Examples of the incinerated ash (F) include fly ash, volcanic ash and the like from flue gas such as coal ash, furnace slag, and combustion ash of dried sludge, and particularly generated from a thermal power plant or a blast furnace. Fly ash is preferred, and more preferably, so-called EP ash obtained by collecting dust generated by pulverized coal combustion with an electrostatic precipitator, or preformed ash obtained by coarsening the same. Among them, the fly ash and the like are easy to handle because the water content is constant, and can sufficiently disperse a fly ash fiber described later.

【0017】上記セメント(C)としては、普通ポルト
ランドセメント、早強ポルトランドセメント、超早強ポ
ルトランドセメント、中庸熱ポルトランドセメント等の
各種ポルトランドセメント;アルミナセメント、石灰ア
ルミナセメント等のアルミナセメント;高炉スラグ混合
セメント、ポゾラン混合セメント、フライアツシユセメ
ント等の各種混合セメントを挙げることができる。これ
らのうち、ポルトランドセメント、特に普通ポルトラン
ドセメントが一般的であり好ましく使用できる。
The above cement (C) includes various portland cements such as ordinary portland cement, early-strength portland cement, ultra-high-strength portland cement, moderately heated portland cement; alumina cement such as alumina cement and lime alumina cement; blast furnace slag mixing Various mixed cements such as cement, pozzolan mixed cement, fly ash cement and the like can be mentioned. Of these, Portland cement, particularly ordinary Portland cement, is generally and preferably used.

【0018】本発明に係るセメント硬化体は、上記焼却
灰(F)と上記セメント(C)との焼却灰の混合比率%
(F/F+C)が10質量%以上の範囲にある。特に、
15質量%以上、50質量%以下であることが好まし
い。セメント硬化体はできる限り上記焼却灰を配合する
ことが望まれるが、上記混合比率50質量%を超える範
囲で焼却灰(F)を配合すると、セメント量が相対的に
少なくなるため、セメント硬化体の機械的強度(例え
ば、曲げ強度等)が悪くなる。また、セメント硬化体の
焼却灰(F)が10質量%未満である場合は、後述する
繊維補強材をいくら添加しても、セメント硬化体に十分
な機械的強度を付与する効果が見られない。
The hardened cement according to the present invention is characterized in that the incineration ash (F) and the cement (C) are mixed at a mixing ratio of%.
(F / F + C) is in the range of 10% by mass or more. In particular,
It is preferably from 15% by mass to 50% by mass. It is desirable to mix the incinerated ash as much as possible in the hardened cement body. However, if the incinerated ash (F) is mixed in a range exceeding the mixing ratio of 50% by mass, the amount of cement is relatively reduced. Mechanical strength (for example, bending strength, etc.) is deteriorated. In addition, when the incinerated ash (F) of the hardened cement is less than 10% by mass, the effect of imparting sufficient mechanical strength to the hardened cement is not seen, no matter how much the fiber reinforcing material described below is added. .

【0019】本発明に係るセメント硬化体は繊維補強材
が含まれている。上記繊維補強材としては、フライアッ
シュファイバー、ガラス繊維等の無機繊維、炭素繊維、
ビニロン等の樹脂の合成繊維、天然繊維等を挙げること
ができる。特に、無機繊維の中でも石炭灰等を高温で溶
融して紡糸したフライアッシュファイバーが好ましい。
上記フライアッシュファイバーは上述したフライアッシ
ュへの分散性に優れ、それを用いたセメント硬化体の機
械的強度を十分に高めることができる。
The hardened cement according to the present invention contains a fiber reinforcing material. As the fiber reinforcing material, fly ash fiber, inorganic fiber such as glass fiber, carbon fiber,
Synthetic fibers and natural fibers of resins such as vinylon can be used. In particular, among the inorganic fibers, fly ash fibers obtained by melting and spinning coal ash or the like at a high temperature are preferable.
The fly ash fiber is excellent in dispersibility in the above-mentioned fly ash, and can sufficiently increase the mechanical strength of a cured cement body using the fiber.

【0020】上記繊維補強材は上記混合物(F+C)に
対して2乃至10容量%の範囲、特に、4乃至6容量%
の範囲で含めることが好ましい。上記繊維補強材が上記
範囲内であれば、セメント硬化体自体の機械的強度を高
めることができる。上記繊維補強材が2容量%未満の場
合は、セメント硬化体の圧縮強度が十分に高められず、
また曲げ強度も高めることができない。また上記繊維補
強材が10容量%の範囲を超えると、却ってセメント硬
化体の機械的強度、特に曲げ強度が低下を起こす。
The fiber reinforcing material is in the range of 2 to 10% by volume, especially 4 to 6% by volume, based on the mixture (F + C).
Is preferably included in the range. When the fiber reinforcing material is within the above range, the mechanical strength of the cured cement body itself can be increased. When the fiber reinforcing material is less than 2% by volume, the compressive strength of the hardened cement cannot be sufficiently increased,
Also, the bending strength cannot be increased. On the other hand, if the fiber reinforcing material exceeds the range of 10% by volume, the mechanical strength, particularly the bending strength, of the hardened cement body is rather lowered.

【0021】本発明に係るセメント硬化体は、上記混合
物をプレミックスして適量の水分を混ぜた練混ぜ物から
成形される。上記練混ぜ物は水粉体(S)が最適含水比
(S0)に対して0≦(S)−(S0)≦5%の範囲となる
ように水分が添加される。ここで、水粉体比(S)は、
(W)/(F+C)で表され、(W)は加水量である。
最適含水比(S0)とは含水比を変化させながら各含水
比の供試体を突固め、JIS A 1210-1979の突固めによる
土の締固め試験により、最大乾燥密度が得られる含水比
を云う。
The hardened cement according to the present invention is formed from a kneaded mixture obtained by premixing the above mixture and mixing an appropriate amount of water. Water is added to the kneaded mixture so that the water powder (S) is in the range of 0 ≦ (S) − (S0) ≦ 5% with respect to the optimum water content (S0). Here, the water powder ratio (S) is
It is represented by (W) / (F + C), where (W) is the amount of water.
The optimum water content (S0) refers to the water content at which the maximum dry density is obtained by compacting the specimens of each water content while changing the water content and performing the compaction test of the soil by compaction according to JIS A 1210-1979. .

【0022】上記水粉体比(S)−最適含水比(S0)
の値が5%を超えると、繊維補強材がダマ等になり易
く、そのセメント硬化体はブリージングが大きくなり、
乾燥時にひび割れを生じ場合がある。また、その硬化体
中に水分が残りヘアクラックが頻繁に起こってくる。ま
た、上記水粉体比(S)−最適含水比(S0)が0%未
満(マイナス値)では製造時のそのセメント硬化体の締
固めに時間がかかり、作業性が悪くなるので打設困難と
なる。
The above water powder ratio (S) -optimal water content ratio (S0)
When the value exceeds 5%, the fiber reinforcing material is liable to be lump, etc., and the hardened cement becomes large in breathing,
Cracks may occur during drying. In addition, moisture remains in the cured product and hair cracks frequently occur. If the water powder ratio (S) -optimal water content ratio (S0) is less than 0% (negative value), it takes a long time to compact the hardened cement at the time of production, and the workability is deteriorated, so that the casting is difficult. Becomes

【0023】本発明に係るセメント硬化体において、上
記燃焼灰、セメント、繊維補強材以外に、山砂等の細骨
材、石膏、及び無機混和剤、化学混和剤等の添加剤を配
合することができる。上記混和剤の無機塩類としては、
塩化ナトリウム、臭化ナトリウム、塩化カリウム、フッ
化カリウムなどのアルカリ金属ハロゲン化物類、塩化カ
ルシウム、塩化マグネシウム、臭化マグネシウムなどの
アルカリ土類金属ハロゲン化物類、及びこれらの二種以
上の混合物を挙げることができる。これらの無機塩類は
粉末若しくは水溶液にて混和剤とすることができ、上記
混和剤の濃度は臨界的ではないが通常1〜20重量%程
度の水溶液として用いる。真水に換えて海水を添加して
練混みする場合は、上記範囲に応じて適宜濃度調製を行
う。
In the hardened cement according to the present invention, in addition to the above-mentioned combustion ash, cement and fiber reinforcing material, fine aggregate such as mountain sand, gypsum, and additives such as inorganic admixture and chemical admixture are blended. Can be. As the inorganic salts of the admixture,
Alkali metal halides such as sodium chloride, sodium bromide, potassium chloride and potassium fluoride; alkaline earth metal halides such as calcium chloride, magnesium chloride and magnesium bromide; and mixtures of two or more thereof be able to. These inorganic salts can be used as an admixture in the form of a powder or an aqueous solution. The concentration of the admixture is not critical, but is usually used as an aqueous solution of about 1 to 20% by weight. When seawater is added instead of fresh water and kneaded, the concentration is adjusted appropriately according to the above range.

【0024】化学混和剤としては、AE剤、減水剤、A
E減水剤、高性能AE減水剤、流動剤等を挙げることが
でき、これらはセメント硬化体のワーカービリティー及
び耐久性を向上させることができる。特に、高性能減水
剤等の混和剤は、繊維補強材の効果を十分に発揮させる
ことができる。以上のように混和剤を添加することによ
り、硬化体の短期・長期の圧縮強度が増強される。
As the chemical admixture, AE agent, water reducing agent, A
E water reducing agents, high-performance AE water reducing agents, fluidizing agents, and the like can be mentioned, and these can improve the workability and durability of the cured cement. In particular, an admixture such as a high-performance water reducing agent can sufficiently exert the effect of the fiber reinforcing material. By adding the admixture as described above, the short-term and long-term compressive strength of the cured product is enhanced.

【0025】次に、本発明に係るセメント硬化体の製造
方法について詳述する。本発明に係るセメント硬化体の
製造方法は、上記セメント硬化体において、上記繊維補
強材、焼却灰及びセメントとをプレミックスし、その
後、加水し練り混ぜた後、振動付与により流動化して締
め固めするものである。
Next, the method for producing a hardened cement according to the present invention will be described in detail. In the method for producing a hardened cement according to the present invention, in the hardened cement, the fiber reinforcing material, incineration ash, and cement are premixed, then, after being mixed with water, fluidized by vibration and compacted. Is what you do.

【0026】上記セメント硬化体の製造方法では、少な
くとも上記繊維補強材と、焼却灰と、セメントとをプレ
ミックスする。上記繊維補強材は通常混ぜる前に解繊を
行う。上記解繊は数センチ程度に機械或いは手作業で行
う。上記プレミックスの通常方法としては、焼却灰、セ
メント、及び繊維補強材をミキサーに投入し、低速、中
速で練り混ぜる方法を挙げることができる。尚、オープ
ンミキサーでは、焼却灰及び繊維補強材が飛散する虞が
あるため、添加総加水量の一部を加えてミックスするこ
とが好ましく、加水量は0乃至2/3程度(添加される
総水分量に対する割合)、特に1/3乃至1/2程度の
範囲で添加することが望ましい。
In the method for producing a hardened cement body, at least the fiber reinforcing material, incinerated ash, and cement are premixed. The fiber reinforcing material is usually defibrated before being mixed. The defibration is performed by a machine or a manual operation to about several centimeters. As a usual method of the premix, there can be mentioned a method in which incineration ash, cement, and fiber reinforcing material are put into a mixer and kneaded at low speed and medium speed. In the open mixer, incineration ash and fiber reinforcing material may be scattered. Therefore, it is preferable to add a part of the total amount of added water to mix the mixture, and the amount of added water is about 0 to 2/3 (total added water). (The ratio to the amount of water), particularly preferably in the range of about 1/3 to 1/2.

【0027】本発明に係るセメント硬化体の製造方法に
おけるプレミックス方法としては、特に逆流高速混合方
法が好ましく、逆流高速混合方法は、混合物を回転する
混合槽と固定壁スクレーパ及び逆回転するアジテータに
より、高速度で交差させて強制混合するものである。こ
のような逆流式高速混合方法を採用することにより、繊
維補強材、特に、フライアッシュファイバー等を殆ど破
損させることなく、セメント等に均一に練り混ぜること
ができる。また、このような逆流式高速混合方法では、
通常の方法に比べて、セメント硬化体のバラツキが少な
く、一定した練り混ぜができることが分かる。上記逆流
式高速混合方法ではセメント及びフライアッシュを投入
して所定時間練混ぜた後、繊維補強材を投入して再び混
ぜることが望ましい。
As the premixing method in the method for producing a hardened cement according to the present invention, a backflow high-speed mixing method is particularly preferable, and the backflow high-speed mixing method comprises a mixing tank for rotating the mixture, a fixed wall scraper, and an agitator for reverse rotation. , Forcibly mixing at high speed. By employing such a backflow high-speed mixing method, the fiber reinforcing material, particularly fly ash fiber, etc., can be uniformly kneaded with cement or the like with almost no damage. In addition, in such a backflow high-speed mixing method,
It can be seen that there is less variation in the cement hardened material and a constant mixing can be achieved as compared with the ordinary method. In the above-mentioned reverse flow type high-speed mixing method, it is desirable that after cement and fly ash are charged and kneaded for a predetermined time, a fiber reinforcing material is charged and mixed again.

【0028】次に、上記混合物への加水(真水又は海
水)を完了させて、上記混合物を、モルタルミキサー等
を使用して所定時間、低速、中速で練り混ぜる。上記混
合物に添加する水分は上述したように各配合成分から予
め決定される最適含水比に対する所定の水粉体比に基づ
くものである。上記加水量が上記最適含水比と水粉体比
との関係を超えて多量に注入すると、フライアッシュフ
ァイバー等の繊維補強材がダマになり易く、繊維補強材
の多量混入が困難となる。
Next, the addition of water (fresh water or seawater) to the mixture is completed, and the mixture is kneaded at a low speed and a medium speed for a predetermined time using a mortar mixer or the like. The water to be added to the mixture is based on a predetermined water powder ratio with respect to an optimum water content determined in advance from each of the components as described above. If the amount of water added is larger than the relationship between the optimum water content ratio and the water powder ratio, a large amount of fiber reinforcement such as fly ash fiber is liable to be lumped, and it becomes difficult to mix a large amount of fiber reinforcement.

【0029】次に、上記練混ぜ物を型枠内等に注入し、
振動を付与しながら流動化及び締め固めを行う。上記振
動付与に際して、上記練混ぜ物の上部から圧力を加えな
がら行うことができる。例えば、図1(a)及び(b)
に示すように、上記振動付与としては上記練混ぜ物1の
型枠3等を振動台5(テーブルバイブレータ)等に載置
して行っても良く、また、上記練混ぜ物1の上面にフロ
ート式、或いは上下移動式振動板7を配して行っても良
い。上記振動付与は振動板7による上部からのみ或いは
振動台5による下部からのみでも良く、また上下両方向
からの振動付与であっても良い。本発明に係る製造方法
においては特に、上下両方向から均一な振動を付与する
ことが望ましい。このような上下からの振動付与は、上
記練混ぜ物の流動化前後において上層部及び下層部に気
泡や不陸等が生じない。
Next, the kneaded mixture is poured into a mold or the like,
Fluidization and compaction are performed while applying vibration. The vibration can be applied while applying pressure from above the kneaded mixture. For example, FIGS. 1 (a) and 1 (b)
As shown in the figure, the vibration may be imparted by placing the mold 3 and the like of the kneaded mixture 1 on a vibrating table 5 (table vibrator) or the like. Alternatively, the vibration may be provided by using a vertical or movable diaphragm 7. The above-described vibration may be applied only from the upper portion by the vibrating plate 7 or only from the lower portion by the vibrating table 5, or may be applied from both upper and lower directions. In the manufacturing method according to the present invention, it is particularly desirable to apply uniform vibration from both the upper and lower directions. Such application of vibration from above and below does not cause bubbles or irregularities in the upper and lower layers before and after fluidization of the kneaded mixture.

【0030】上記振動台5或いは振動板7等には荷重重
り、或いは通常振動モータ9等が取り付けられている。
振動モータ9等による振動加速度は3G以上、特に5乃
至10Gの範囲にあることが望ましい。上記振動加速度
が3G以上であれば、上記練混ぜ物を比較的短時間で流
動化させることができる。また、上記振動板7等には荷
重重り9等を載値して上記練混ぜ物を上方から加圧をす
ることができる。このような加圧は、0.01乃至0.
1kg/cm2の範囲にあることが望ましい。上方から
の加圧により、上記練混ぜ物の流動化を促進することが
できる。また、流動化が最終段階になったときに、上記
練混ぜ物の上方からの加圧を解除しても良い。
The vibrating table 5 or the vibrating plate 7 is provided with a load weight or a normal vibrating motor 9 or the like.
It is desirable that the vibration acceleration by the vibration motor 9 and the like be 3 G or more, particularly in the range of 5 to 10 G. When the vibration acceleration is 3 G or more, the kneaded mixture can be fluidized in a relatively short time. Further, a load weight 9 or the like is placed on the vibration plate 7 or the like, and the kneaded mixture can be pressurized from above. Such pressurization may be from 0.01 to 0.
It is desirable to be in the range of 1 kg / cm 2 . Pressurization from above can promote fluidization of the kneaded mixture. Further, when fluidization is at the final stage, the pressure from above the kneaded mixture may be released.

【0031】上記振動付与による上記練混ぜ物の流動化
状態は、練混ぜ物の電気抵抗値等を測定することによっ
て調べることができる。例えば、型枠内に所定距離をお
いて電極を設置し、電極間に通電して得られる電気抵抗
値を測定しながら、この電気抵抗値の絶対値を問題にし
ないで、その変化値を測定して調べることができる。即
ち、上記練混ぜ物自体の電気抵抗値の経時的変化で、電
気抵抗値が低下するまで型枠を振動させることよって、
その流動化を調べることができる。
The fluidized state of the kneaded mixture by the application of the vibration can be examined by measuring the electric resistance value and the like of the kneaded mixture. For example, an electrode is placed at a predetermined distance in a mold, and while measuring the electric resistance value obtained by energizing between the electrodes, the change value is measured without regard to the absolute value of the electric resistance value. You can find out. That is, by changing the electric resistance value of the kneaded mixture itself with time, by vibrating the mold until the electric resistance value decreases,
The fluidization can be examined.

【0032】以上の如く構成される上記振動締め固め方
法では、プレミックス、特に逆流式高速混合方法を採用
することにより、繊維補強材、特にフライアッシュファ
イバー等の繊維が破損しない。このため、繊維補強材を
セメント硬化体に均一且つ十分量混入することができ
る。また、加水量を水粉体比と最適含水率との関係比率
の一定範囲内に抑えたので、繊維補強材が振動付与によ
り締め固め方法と相まって、繊維補強材、特にフライア
ッシュファイバー等の繊維がダマ等を生じさせることが
ない。このため、繊維補強材の限界混入率を高めること
ができる。更に、締め固め時の上下振動付与によって、
セメント硬化体に不陸等を生じさせることなく、均一に
成形させることができ、その曲げ強度等の機械強度を安
定且つ一定したものとすることができる。
In the above-described vibration compaction method configured as described above, by employing a premix, particularly a backflow high-speed mixing method, a fiber reinforcing material, particularly a fiber such as a fly ash fiber, does not break. For this reason, the fiber reinforcing material can be uniformly and sufficiently mixed into the hardened cement. In addition, since the amount of water is kept within a certain range of the relation ratio between the water powder ratio and the optimum water content, the fiber reinforcing material is combined with the compaction method by applying vibration, so that the fiber reinforcing material, especially fiber such as fly ash fiber, etc. Does not cause lumps or the like. For this reason, the limit mixing ratio of the fiber reinforcing material can be increased. Furthermore, by giving vertical vibration at the time of compaction,
The hardened cement body can be formed uniformly without causing unevenness or the like, and its mechanical strength such as bending strength can be made stable and constant.

【0033】[0033]

【実施例】次に、添付図面を参照して本発明を実施例に
より更に詳述する。尚、本発明に係るセメント硬化体及
びその製造方法は、以下の各実施例に限るものではな
い。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. The hardened cement body and the method for producing the same according to the present invention are not limited to the following embodiments.

【0034】(使用材料) ・セメント 普通ポリトランドセメント(太平洋セメン
ト社製:比重3.16、フロー140となる水粉体比2
5.0%、最適含水比18.5%) ・焼却灰 フライアッシュ(電源開発松浦火力産:比重
2.20、強熱残量1.0%、フロー140となる水粉
体比30.0%、最適含水比23.0%) ・繊維補強材 フライアッシュファイバー(三創:比重
2.50) ・減水剤 高性能AE減水剤(ポゾリス物産:ポリカル
ボン酸系)
(Materials used) Cement Ordinary polytland cement (manufactured by Taiheiyo Cement Co., Ltd .: specific gravity 3.16, water powder ratio of flow 140, 2)
5.0%, optimal moisture content 18.5%)-Incinerated ash Fly ash (Matsuura Thermal Power Development: Specific gravity 2.20, Residue on ignition 1.0%, Flow 140 ratio of water powder 30.0) %, Optimal water content 23.0%) ・ Fiber reinforced material Fly ash fiber (Mitsuoka: specific gravity 2.50) ・ Water reducer High performance AE water reducer (Pozzolith products: polycarboxylic acid type)

【0035】(セメント硬化体の製造方法) (1)プレミックス方法 1).通常方法 空練前に人力で繊維補強材を数センチ程度の大きさに解
繊する。セメント及びフライアッシュ、及びフライアッ
シュファイバーをミキサーに投入して、低速で60秒、
中速で120秒間混合する(オープンミキサーを使用し
た場合はセメント等が飛散するため、加水量の1/2程
度を加えてプレミックスを行う)。 2).逆流式高速混合方法 アイリッヒミキサー(容量10リットル)を用いて、先
ずセメントとフライアッシュとを投入して30秒乃至6
0秒間混合する。次に、繊維補強材を投入して180秒
間混合する。
(Manufacturing Method of Hardened Cement Body) (1) Premixing Method 1). Normal Method Prior to blank kneading, the fiber reinforcing material is defibrated to a size of about several centimeters manually. Put cement and fly ash, and fly ash fiber into the mixer, at low speed for 60 seconds,
Mix at medium speed for 120 seconds (when using an open mixer, cement and the like are scattered, so about 1/2 of the amount of water is added to perform premixing). 2). Reverse-flow high-speed mixing method First, cement and fly ash are charged using an Erich mixer (capacity: 10 liters) for 30 seconds to 6 hours.
Mix for 0 seconds. Next, the fiber reinforcement is charged and mixed for 180 seconds.

【0036】(2)練混ぜ方法 プレミックス後、容量5リットルを、モルタルミキサー
を用いて加水して、低速で60秒間、中速で120秒
間、計180秒間練混ぜる。
(2) Kneading method After premixing, a volume of 5 liters is watered using a mortar mixer, and kneaded for 60 seconds at a low speed and 120 seconds at a medium speed for a total of 180 seconds.

【0037】(3)振動締固め方法(型枠注入及び振動
付与) 内径100乃至400mmの範囲の型枠を使用して、外
形500mmの大型VC振動台(振動数66.7Hz、
振幅1mm、振動時間5分)に型枠を固定し、型枠内に
練混ぜ物を所定量注入する。また、練混ぜ物の上方から
の加圧には加圧板(重り等により加圧力250kg/c
2)で実施する。尚、加圧振動方法は以下の5種類で
実施した。 1).継続加圧振動(振動台の振動期間中の全てに加
圧) 2).解放加圧振動(振動開始から60秒間後に振動板
を取り除く) 3).反復加圧振動(振動開始から60秒間後に振動板
を10秒間取り除き、再び振動板を載せ、かかる状態を
反復継続させる) 4).上方加圧振動(加圧板に振幅数180、及び21
0Hzの振動モータを載せて、上記加圧状態で加圧板と
振動台とで加圧振動を付与する。) 5).上下両方振動(加圧板に振幅数180、及び21
0Hzの振動モータを載せて、上記加圧状態で加圧板と
振動台とで加圧振動を付与する。)
(3) Vibration Compaction Method (Form Injection and Vibration Application) Using a mold having an inner diameter in the range of 100 to 400 mm, a large VC vibrating table having an outer diameter of 500 mm (vibration frequency 66.7 Hz;
The mold is fixed at an amplitude of 1 mm and a vibration time of 5 minutes), and a predetermined amount of the kneaded mixture is injected into the mold. Also, a pressurizing plate (pressing force of 250 kg / c by weight etc.)
m 2 ). The following five types of pressurized vibration methods were used. 1) .Continuous pressurized vibration (presses all during the vibration period of the shaking table) 2) .Release pressurized vibration (remove the diaphragm 60 seconds after the start of vibration) 3) .Repeated pressurized vibration (from the start of vibration) After 60 seconds, the diaphragm is removed for 10 seconds, the diaphragm is mounted again, and such a state is repeated continuously. 4). Upper press vibration (amplitude 180 and 21 on the press plate)
A vibration motor of 0 Hz is mounted, and pressure vibration is applied between the pressure plate and the vibration table in the above-mentioned pressurized state. 5). Both vertical vibration (amplitude 180 and 21 on the pressure plate)
A vibration motor of 0 Hz is mounted, and pressure vibration is applied between the pressure plate and the vibration table in the above-mentioned pressurized state. )

【0038】(実施例1及び比較例1)実施例1(ファ
イバー混入率6容量%、フライアッシュの混合率(F/
F+C)30質量%)及び比較例1(ファイバー混入率
0容量%、フライアッシュの混合率(F/F+C)30
質量%)を、プレミックス方法に逆流式高速混合方法を
使用して、表1に示す製造条件でセメント硬化体を各2
ブロック製造した。尚、表1における曲げ強度の評価方
法は各2ブロックを測定した平均値である。材齢は製造
後7日後、28日後のサンプルで評価を行った。
Example 1 and Comparative Example 1 Example 1 (fiber mixing ratio 6% by volume, fly ash mixing ratio (F /
F + C) 30% by mass) and Comparative Example 1 (fiber mixing ratio 0% by volume, fly ash mixing ratio (F / F + C) 30)
% By mass) of each of the cement hardened materials under the production conditions shown in Table 1 by using a backflow high-speed mixing method as a premix method.
Block manufactured. In addition, the evaluation method of the bending strength in Table 1 is an average value measured for each two blocks. The material age was evaluated on samples 7 days and 28 days after production.

【0039】[0039]

【表1】 [Table 1]

【0040】以上、表1から分かるように、ファイバー
を混入した実施例1のものは全てにおいて比較例1のも
のより曲げ強度が優れていることが分かる。また、上下
両方の振動方法によるセメント硬化体は加圧効果によっ
て流体化が促進されること、底面から流体化するため気
泡の除去が容易なことから、締め固め度が向上すると考
えられる。
As can be seen from Table 1, all of the samples of Example 1 in which the fiber was mixed had better bending strength than that of Comparative Example 1. In addition, it is considered that the degree of compaction is improved because the cement hardened body by both the upper and lower vibration methods is promoted to be fluidized by the effect of pressurization, and is easily fluidized from the bottom surface to remove bubbles.

【0041】(実施例2乃至11及び比較例2乃至1
0)表2に示す条件の元で各実施例及び比較例のセメン
ト硬化体を製造した。尚、各実施例及び比較例における
水粉体比(S)−最適含水比(S0)は全て0乃至5%
の範囲内であり、振動付与は振動台による振動である。
(Examples 2 to 11 and Comparative Examples 2 to 1)
0) Under the conditions shown in Table 2, hardened cement bodies of Examples and Comparative Examples were produced. The water powder ratio (S) -optimal water content (S0) in each of Examples and Comparative Examples is all 0 to 5%.
And the vibration application is vibration by a vibration table.

【0042】[0042]

【表2】 [Table 2]

【0043】また、表2における各実施例のセメント硬
化体の材齢7日及び材齢28日の曲げ強度の値を表3に
示した。
Table 3 shows the flexural strength values of the cement hardened bodies of the examples in Table 2 at the ages of 7 days and 28 days.

【0044】[0044]

【表3】 [Table 3]

【0045】また実施例2乃至10及び比較例10のセ
メント硬化体の材齢7日及び材齢28日における曲げ強
度とフライアッシュファイバーの混入率との関係線図を
図1及び図2に示した。この結果より、フライアッシュ
ファイバーの混入率(容量%)が2乃至10%特に4乃
至6%の範囲において強度が高まることが分かる。ま
た、逆流式高速混合方法によるプレミックス方法が全体
に一定のものが安定して得られ、通常のプレミックス方
法より若干セメント硬化体の強度が高まることが分か
る。
FIGS. 1 and 2 show the relationship between the flexural strength and the mixing ratio of fly ash fiber of the hardened cement bodies of Examples 2 to 10 and Comparative Example 10 at the ages of 7 days and 28 days, respectively. Was. From this result, it can be seen that the strength increases when the mixing ratio (volume%) of the fly ash fiber is in the range of 2 to 10%, particularly 4 to 6%. Further, it can be seen that a constant premix method by the backflow high-speed mixing method can be stably obtained as a whole, and the strength of the hardened cement is slightly higher than that of a normal premix method.

【0046】一方、表2における比較例2乃至9のセメ
ント硬化体の材齢7日及び材齢28日における曲げ強度
とフライアッシュファイバーの混入率との関係線図を図
4及び図5に示した。この結果より、フライアッシュフ
ァイバーの混入率(容量%)が高くなるほど、セメント
硬化体の強度が低下してくることが分かる。このことか
ら、フライアッシュを全く含まないセメント硬化体には
繊維補強材の効果が十分に見られなかったことが分か
る。従って、セメントとフライアッシュとからなるセメ
ント硬化体には一定の繊維補強材を一定範囲内で混入す
ることがセメント硬化体の強度を高めることにつなが
る。
On the other hand, FIG. 4 and FIG. 5 show the relationship between the flexural strength and the mixing ratio of fly ash fiber of the cured cement bodies of Comparative Examples 2 to 9 at the ages of 7 days and 28 days in Table 2. Was. From this result, it can be seen that the strength of the hardened cement material decreases as the mixing ratio (volume%) of the fly ash fiber increases. This shows that the effect of the fiber reinforcing material was not sufficiently observed in the cement hardened body containing no fly ash. Therefore, mixing a certain fiber reinforcing material within a certain range into a hardened cement body composed of cement and fly ash leads to an increase in the strength of the hardened cement body.

【0047】更に、実施例8、10、11の高性能減水
剤を含むセメント硬化体における水粉体比と乾燥密度の
関係線図を図3に示した。この結果から高性能減水剤を
添加するほど乾燥密度は高まり、表3に示すように、実
施例11のセメント硬化体の曲げ強度は高性能減水剤に
よって改善されることが分かる。
Further, FIG. 3 shows a relationship diagram between the water powder ratio and the dry density in the cement hardened products containing the high performance water reducing agents of Examples 8, 10 and 11. From this result, it can be seen that the dry density increases as the high-performance water reducing agent is added, and as shown in Table 3, the flexural strength of the cured cement body of Example 11 is improved by the high-performance water reducing agent.

【0048】[0048]

【発明の効果】本発明に係るセメント硬化体及びその製
造方法によれば、上記焼却灰(F)と上記セメント(C)
とにおける上記焼却灰の混合比率(F/F+C)が10
質量%以上の範囲にあり、上記焼却灰(F)と上記セメ
ント(C)からなる混合物(F+C)に対して繊維補強
材が2乃至10容量%の範囲で含み、且つ水粉体比
(S)が最適含水比(S0)に対して0≦(S)−(S0)
≦5%の範囲となるように加水して練混ぜた練混ぜ物か
ら成形したので、セメント硬化体はセメントの代替材料
として多量の焼却灰を混入できると共に優れた機械的強
度を有する。
According to the hardened cement body and the method of manufacturing the same according to the present invention, the incinerated ash (F) and the cement (C) are used.
And the mixing ratio (F / F + C) of the above incinerated ash is 10
% Of the fiber reinforced material in the range of 2 to 10% by volume with respect to the mixture (F + C) composed of the incinerated ash (F) and the cement (C), and the water powder ratio (S ) Is 0 ≦ (S) − (S0) with respect to the optimum water content (S0).
Since it was formed from a kneaded mixture obtained by adding water and kneading so as to be within a range of ≤5%, the hardened cement can mix a large amount of incinerated ash as a substitute material for cement and has excellent mechanical strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)及び(b)は、本発明に係るセメン
ト硬化体を製造する際の振動付与を行う装置の概略図で
ある。
FIGS. 1 (a) and 1 (b) are schematic views of an apparatus for imparting vibration when producing a hardened cement body according to the present invention.

【図2】図2は本発明に係るセメント硬化体の材齢7日
におけるセメント硬化体のフライアッシュファイバーの
混入率に対する曲げ強度の関係線図である。
FIG. 2 is a graph showing the relationship between the flexural strength and the mixing ratio of fly ash fiber in the hardened cement at the age of 7 days of the hardened cement according to the present invention.

【図3】図3は本発明に係るセメント硬化体の材齢28
日におけるセメント硬化体のフライアッシュファイバー
の混入率に対する曲げ強度の関係線図である。
FIG. 3 is an illustration of a cement hardened material according to the present invention having a material age of 28;
FIG. 4 is a graph showing the relationship between the mixing ratio of fly ash fiber and the flexural strength of a hardened cement body on a day.

【図4】図4は、本発明に係るセメント硬化体に高性能
減水剤を添加したときの乾燥密度を示した関係線図であ
る。
FIG. 4 is a relation diagram showing a dry density when a high-performance water reducing agent is added to the hardened cement according to the present invention.

【図5】図5は、比較例におけるセメント硬化体のフラ
イアッシュファイバーの混入率に対する材齢7日におけ
る曲げ強度の関係線図である。
FIG. 5 is a diagram showing the relationship between the mixing ratio of fly ash fiber in the cement hardened material and the flexural strength at the age of 7 days in the comparative example.

【図6】図6は比較例におけるセメント硬化体のフライ
アッシュファイバーの混入率に対する材齢28日におけ
る曲げ強度の関係線図である。
FIG. 6 is a graph showing the relationship between the mixing ratio of fly ash fiber in a hardened cement body and the flexural strength at a material age of 28 days in a comparative example.

【符号の説明】[Explanation of symbols]

1 練混ぜ物 3 型枠 5 振動台 7 振動板 REFERENCE SIGNS LIST 1 kneaded mixture 3 formwork 5 shaking table 7 diaphragm

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 18/02 C04B 28/02 //(C04B 28/02 18:02 18:02 14:38 C 14:38 14:42 Z 14:42 14:38 A 14:38 16:06 Z 16:06) B28B 1/08 B A (72)発明者 鈴木 達雄 東京都港区北青山二丁目5番8号 株式会 社間組内 Fターム(参考) 4G012 PA15 PA17 PA20 PA24 PA27 4G056 AA07 AA13 AA14 AA15 AA18 CC01 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C04B 18/02 C04B 28/02 // (C04B 28/02 18:02 18:02 14:38 C 14:38 14: 42Z 14:42 14:38 A 14:38 16:06 Z 16:06) B28B 1/08 B A (72) Inventor Tatsuo Suzuki 2-5-8 Kitaaoyama, Minato-ku, Tokyo F Terms (reference) 4G012 PA15 PA17 PA20 PA24 PA27 4G056 AA07 AA13 AA14 AA15 AA18 CC01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 焼却灰(F)を含むセメント(C)を練
混ぜて成形するセメント硬化体において、上記焼却灰
(F)と上記セメント(C)とにおける上記焼却灰の混合
比率(F/F+C)が10質量%以上の範囲にあり、上
記焼却灰(F)と上記セメント(C)からなる混合物
(F+C)に対して繊維補強材が2乃至10容量%の範
囲で含み、且つ水粉体比(S)が最適含水比(S0)に
対して0≦(S)−(S0)≦5%の範囲となるように加
水して練混ぜた練混ぜ物から成形したことを特徴とする
セメント硬化体。
1. A hardened cement molded by kneading and molding a cement (C) containing incinerated ash (F), wherein said incinerated ash is
The mixture ratio (F / F + C) of the incinerated ash in (F) and the cement (C) is in a range of 10% by mass or more, and a mixture (F + C) composed of the incinerated ash (F) and the cement (C) And the water powder ratio (S) is in the range of 0 ≦ (S) − (S0) ≦ 5% with respect to the optimum water content ratio (S0). A hardened cement body formed from a kneaded mixture obtained by adding water and mixing.
【請求項2】 上記焼却灰が火力発電により発生するフ
ライアッシュ、又は汚泥焼却灰であることを特徴とする
請求項1記載のセメント硬化体。
2. The hardened cement body according to claim 1, wherein said incinerated ash is fly ash or sludge incinerated ash generated by thermal power generation.
【請求項3】 上記繊維補強材がフライアッシュファイ
バー、ガラス繊維、炭素繊維、樹脂繊維である請求項1
又は2記載のセメント硬化体。
3. The fiber reinforced material is fly ash fiber, glass fiber, carbon fiber, or resin fiber.
Or the cured cement according to 2.
【請求項4】 上記繊維補強材は石炭灰を高温で溶融し
て紡糸したフライアッシュファイバーであることを特徴
とする請求項3記載のセメント硬化体。
4. A hardened cement body according to claim 3, wherein said fiber reinforcing material is fly ash fiber spun by melting coal ash at a high temperature.
【請求項5】 上記請求項1乃至4記載のセメント硬化
体の製造方法において、少なくとも上記繊維補強材、焼
却灰及びセメントをプレミックスし、その後、加水し練
り混ぜた後、振動付与により流動化して締め固めをする
ことを特徴とするセメント硬化体の製造方法。
5. The method for producing a hardened cement according to claim 1, wherein at least the fiber reinforcing material, incinerated ash and cement are premixed, then mixed with water, and then fluidized by applying vibration. And producing a cured cement body.
【請求項6】 上記練混ぜ物の上方及び下方から振動付
与することを特徴とする請求項5記載のセメント硬化体
の製造方法。
6. The method for producing a hardened cement body according to claim 5, wherein vibration is applied from above and below said kneaded mixture.
【請求項7】 上記プレミックスが逆流式高速混合方法
であることを特徴とする請求項5又は6記載のセメント
硬化体の製造方法。
7. The method for producing a hardened cement according to claim 5, wherein the premix is a backflow high-speed mixing method.
【請求項8】 上記振動を付与して流動化させる際に、
振動加速度を3G以上とすることを特徴とする請求項5
乃至7のいずれかに記載のセメント硬化体の製造方法。
8. When fluidizing by applying the vibration,
The vibration acceleration is set to 3 G or more.
8. The method for producing a cured cement body according to any one of items 1 to 7.
JP2001108362A 2001-04-06 2001-04-06 Method for producing hardened cement Expired - Lifetime JP3683826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108362A JP3683826B2 (en) 2001-04-06 2001-04-06 Method for producing hardened cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108362A JP3683826B2 (en) 2001-04-06 2001-04-06 Method for producing hardened cement

Publications (2)

Publication Number Publication Date
JP2002308659A true JP2002308659A (en) 2002-10-23
JP3683826B2 JP3683826B2 (en) 2005-08-17

Family

ID=18960516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108362A Expired - Lifetime JP3683826B2 (en) 2001-04-06 2001-04-06 Method for producing hardened cement

Country Status (1)

Country Link
JP (1) JP3683826B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505480A (en) * 2002-11-07 2006-02-16 プロシード エンタープライズ エタブリスマン How to treat fly ash
JP2016022705A (en) * 2014-07-23 2016-02-08 株式会社安藤・間 Device for and method of producing solidified block
JP2018144470A (en) * 2017-02-27 2018-09-20 Next Innovation合同会社 Method for finely dividing air bubble
JP2019084717A (en) * 2017-11-02 2019-06-06 株式会社NejiLaw Bubble refining/removing device, and charging device
JP2019205990A (en) * 2018-05-25 2019-12-05 株式会社NejiLaw Fluctuating inertia force application device and fluctuating inertia force application program
CN112390597A (en) * 2020-12-10 2021-02-23 杭州易佰新材料科技有限公司 Preparation method of composite plant fiber cement board
CN117185691A (en) * 2023-11-08 2023-12-08 浙江京兰低碳技术有限公司 Method for regenerating baking-free artificial lightweight aggregate by cooperatively disposing aluminum ash and garbage incineration fly ash

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254575A (en) * 2002-11-07 2010-11-11 Procedo Enterprises Etablissement Method for treatment of fly ash
JP2006505480A (en) * 2002-11-07 2006-02-16 プロシード エンタープライズ エタブリスマン How to treat fly ash
JP2016022705A (en) * 2014-07-23 2016-02-08 株式会社安藤・間 Device for and method of producing solidified block
JP2018144470A (en) * 2017-02-27 2018-09-20 Next Innovation合同会社 Method for finely dividing air bubble
JP2018145089A (en) * 2017-02-27 2018-09-20 Next Innovation合同会社 Method for finely dividing air bubble in ready-mixed concrete
JP7150296B2 (en) 2017-11-02 2022-10-11 株式会社NejiLaw Air bubble miniaturization defoaming device and filling device
JP2019084717A (en) * 2017-11-02 2019-06-06 株式会社NejiLaw Bubble refining/removing device, and charging device
JP2019205990A (en) * 2018-05-25 2019-12-05 株式会社NejiLaw Fluctuating inertia force application device and fluctuating inertia force application program
JP7399442B2 (en) 2018-05-25 2023-12-18 株式会社NejiLaw Variable inertia force application device and variable inertia force application program.
CN112390597A (en) * 2020-12-10 2021-02-23 杭州易佰新材料科技有限公司 Preparation method of composite plant fiber cement board
CN112390597B (en) * 2020-12-10 2022-11-18 中建三局科创产业发展有限公司 Preparation method of composite plant fiber cement board
CN117185691A (en) * 2023-11-08 2023-12-08 浙江京兰低碳技术有限公司 Method for regenerating baking-free artificial lightweight aggregate by cooperatively disposing aluminum ash and garbage incineration fly ash
CN117185691B (en) * 2023-11-08 2024-01-19 浙江京兰低碳技术有限公司 Method for regenerating baking-free artificial lightweight aggregate by cooperatively disposing aluminum ash and garbage incineration fly ash

Also Published As

Publication number Publication date
JP3683826B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
CN107265966A (en) One kind prepares bridge self-compaction cracking resistance clear-water concrete using high fine powder content Machine-made Sand
CN101113090A (en) Method for producing baking-free brick without odour and three-waste by using sewage plant sludge
CN109265107A (en) A method of control regenerated aggregate concrete is shunk
JP2009227574A (en) Cement composition and method for producing the same
CN107879681A (en) A kind of concrete slurry, alkali-activated carbonatite lightweight rubber regeneration concrete and preparation method thereof
JP4520106B2 (en) concrete
Zheng et al. Study on performance improvement of ultra-high performance concrete by vibration mixing
JP3683826B2 (en) Method for producing hardened cement
JP2007015893A (en) Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash
JPH0832603B2 (en) Lightweight cement composition
JP2000247719A (en) Production of hardened body and hardened body composition
JP3201934B2 (en) Method for producing hardened body of fine powder
Arioz et al. Properties of slag-based geopolymer pervious concrete for ambient curing condition
JPH0699420A (en) Mold for manufacturing block and manufacture of block
JP2005145747A (en) Hardening accelerator for hardened boy, method of accelerating hardening of hardened body and method of manufacturing hardened body
JP2002293601A (en) Production process of lightweight mortar material
CN111517713A (en) Low-cost high-strength C45 fine-stone concrete and preparation method thereof
JP3864762B2 (en) Concrete composition and mortar composition
JP2008087978A (en) Acid-resistant concrete product
Ban et al. Properties of Concrete Containing Large Volumes of Ground Granulated Blast Furnace Slag and Ground Coal Bottom Ash with Lime Kiln Dust
JPS61162601A (en) Production of concrete block for abrasion resistant pavement
JP2001342053A (en) Fly ash-containing autoclave cured molding and method for manufacture thereof
JP2000335950A (en) Concrete for structure of civil engineering and construction for recycling
JP4086328B2 (en) Noro reducing material, centrifugal force molded body using the same, and method for producing the same
Madhumitha et al. An Experimental Study on Mechanical Properties of Zero Cement Concrete

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3683826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term