JP2002307430A - Method for manufacture of fiber-reinforced resin molding material - Google Patents

Method for manufacture of fiber-reinforced resin molding material

Info

Publication number
JP2002307430A
JP2002307430A JP2001113183A JP2001113183A JP2002307430A JP 2002307430 A JP2002307430 A JP 2002307430A JP 2001113183 A JP2001113183 A JP 2001113183A JP 2001113183 A JP2001113183 A JP 2001113183A JP 2002307430 A JP2002307430 A JP 2002307430A
Authority
JP
Japan
Prior art keywords
die ring
fiber
resin composition
press roll
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001113183A
Other languages
Japanese (ja)
Inventor
Riyouta Kitagawa
良太 喜多河
Hitoshi Hayashi
仁司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001113183A priority Critical patent/JP2002307430A/en
Publication of JP2002307430A publication Critical patent/JP2002307430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacture of fiber-reinforced resin molding material wherein generation of a damage of reinforcing fiber is little, though organic fiber is used as the reinforcing fiber, generation of heat deterioration is little and application to a short fiber is also easy. SOLUTION: A resin composition comprising thermoplastic resin and reinforcing fiber is fed to a clearance between an inner peripheral surface of a die ring 3 and a press roll 4 of a granulator 1 wherein a cylindrical die ring 3 having many through holes 31 the press roll 4 which confronts an inner peripheral surface of the die ring 3 beyond a very small clearance and is made freely rotatable, and a cutting edge 5 which confronts an outer peripheral surface of the die ring 3 across a very small clearance are provided. By rotating the die ring 3 under conditions wherein though the thermal plastic resin is melted, the reinforcing fiber is not melted, the press roll 4 is rotated while the resin composition is melted and kneaded. The kneaded resin composition is discharged from the through hole 31 of the die ring 3 to the outer peripheral side of the die ring 3 and the resin composition discharged from the through hole 31 is cut with the cutting edge 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は繊維強化樹脂成形材
料の製造方法に関する。
The present invention relates to a method for producing a fiber-reinforced resin molding material.

【0002】[0002]

【従来の技術】熱可塑性樹脂の耐熱性や機械的強度を向
上させるために、従来から無機繊維を添加することが行
われている。そして、耐衝撃性を改善するため、さらに
有機繊維を添加することが提案されている。
2. Description of the Related Art In order to improve the heat resistance and mechanical strength of a thermoplastic resin, an inorganic fiber has been conventionally added. In order to improve impact resistance, it has been proposed to further add an organic fiber.

【0003】このような補強繊維の添加は、 ミキサーで加熱攪拌して混練する。 ロール、押出機、コニーダーなどで溶融混練する。 などの方法により行われ、さらにペレット化されて、成
形用材料とされる。
[0003] The addition of such reinforcing fibers is carried out by kneading the mixture by heating and stirring with a mixer. Melt and knead with a roll, extruder, co-kneader, etc. Etc., and further pelletized to obtain a molding material.

【0004】しかし、これらの方法では、熱可塑性樹脂
と補強繊維とが長時間機械的に混練されるので、補強繊
維の破損が起こり、補強繊維の特性を十分に活かせない
という問題があり、さらに、補強繊維として有機繊維を
用いると、長時間高温にさらされた有機繊維は熱劣化を
起こし、十分な耐衝撃性能が得られないという問題があ
った。
However, in these methods, since the thermoplastic resin and the reinforcing fiber are mechanically kneaded for a long time, there is a problem that the reinforcing fiber is broken and the characteristics of the reinforcing fiber cannot be fully utilized. When an organic fiber is used as a reinforcing fiber, the organic fiber exposed to a high temperature for a long time causes thermal deterioration, and there is a problem that sufficient impact resistance cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】そこで、有機繊維を含
む有機繊維強化樹脂ペレットを溶融引抜き法により製造
するのにあたり、溶融したポリオレフィン系樹脂浴に有
機繊維を浸漬するとともに、浸漬時間が6秒を超えない
時間で樹脂浴から引き出し、得られた樹脂含浸有機繊維
を切断する有機繊維強化樹脂ペレットの製法が提案され
ている(特許第3073988号公報)。
Therefore, in producing organic fiber reinforced resin pellets containing organic fibers by a melt drawing method, the organic fibers are immersed in a molten polyolefin resin bath and the immersion time is reduced to 6 seconds. There has been proposed a method of producing organic fiber reinforced resin pellets in which the resin-impregnated organic fibers are drawn out of the resin bath in a time not exceeding the time (Japanese Patent No. 3073988).

【0006】しかし、上記の製法では、有機繊維が連続
繊維でなくてはならず、短繊維に適用するのは困難であ
った。
However, in the above-mentioned production method, the organic fibers must be continuous fibers, and it is difficult to apply the organic fibers to short fibers.

【0007】本発明は、上記の課題を解決し、補強繊維
の破損を生じることが少なく、補強繊維として有機繊維
を用いても熱劣化を起こすことが少なく、短繊維に適用
するのも容易な繊維強化樹脂成形材料の製造方法を提供
することを目的とする。
[0007] The present invention solves the above-mentioned problems, and hardly causes breakage of the reinforcing fiber. Even if an organic fiber is used as the reinforcing fiber, it hardly causes thermal deterioration, and is easily applied to short fibers. An object of the present invention is to provide a method for producing a fiber-reinforced resin molding material.

【0008】[0008]

【課題を解決するための手段】本発明の繊維強化樹脂成
形材料の製造方法は、熱可塑性樹脂と補強繊維とからな
る樹脂組成物を、多数の貫通孔を有する円筒状のダイリ
ングと、該ダイリングの内周面と微小の間隙を隔てて対
峙し、回転自在とされたプレスロールと、上記ダイリン
グの外周面と微小の間隙を隔てて対峙する切断刃とが設
けられた成形材料製造装置の、上記ダイリングの内周面
とプレスロールとの間の間隙に供給し、熱可塑性樹脂は
溶融するが、補強繊維は溶融しない条件でダイリングを
回転させることにより樹脂組成物を溶融混練させつつプ
レスロールを回転させ、混練された樹脂組成物を、上記
ダイリングの貫通孔からダイリングの外周側に排出させ
るとともに、貫通孔から排出した樹脂組成物を上記切断
刃により切断するものである。
According to the present invention, there is provided a method for producing a fiber-reinforced resin molding material, comprising: forming a resin composition comprising a thermoplastic resin and reinforcing fibers into a cylindrical die ring having a large number of through holes; Molding material production provided with a press roll rotatably facing the inner peripheral surface of the die ring with a minute gap therebetween and a cutting blade facing the outer peripheral surface of the die ring with a minute gap therebetween. The resin is supplied to the gap between the inner peripheral surface of the die ring and the press roll of the device, and the thermoplastic resin is melted, but the reinforcing fiber is melted and kneaded by rotating the die ring under the condition that the fiber is not melted. While rotating the press roll, the kneaded resin composition is discharged from the through hole of the die ring to the outer peripheral side of the die ring, and the resin composition discharged from the through hole is cut by the cutting blade. Than it is.

【0009】本発明において使用される熱可塑性樹脂は
特に限定されるものではなく、例えば、ポリエチレン、
ポリプロピレン等のオレフィン系樹脂;塩化ビニル系樹
脂;ポリスチレン、アクリル変性ポリスチレン、アクリ
ロニトリル−(エチレン−プロピレン−ジエン)−スチ
レン共重合体、アクリロニトリル−ブタジエン−スチレ
ン共重体等のスチレン系樹脂;アクリル系樹脂;ポリエ
チレンテレフタレート等の熱可塑性ポリエステル;ポリ
カーボネートなどが挙げられる。これらは単独で使用さ
れてもよいし、2種類以上併用されてもよい。
[0009] The thermoplastic resin used in the present invention is not particularly limited.
Olefin resins such as polypropylene; vinyl chloride resins; styrene resins such as polystyrene, acrylic-modified polystyrene, acrylonitrile- (ethylene-propylene-diene) -styrene copolymer, acrylonitrile-butadiene-styrene copolymer; acrylic resins; Thermoplastic polyesters such as polyethylene terephthalate; polycarbonates; These may be used alone or in combination of two or more.

【0010】本発明において使用される補強繊維は特に
限定されるものではなく、例えば、炭素繊維、ガラス繊
維、金属繊維、アルミナ繊維等の無機繊維;アラミド繊
維、ポリエステル繊維、ナイロン繊維、ビニロン繊維、
アクリル繊維、レーヨン繊維等の有機合成繊維、木粉、
綿、麻等のセルロース系有機繊維;羊毛、絹等の天然有
機繊維などが挙げられる。これらは単独で使用されても
よいし、2種類以上併用されてもよい。
The reinforcing fiber used in the present invention is not particularly limited, and examples thereof include inorganic fibers such as carbon fiber, glass fiber, metal fiber, and alumina fiber; aramid fiber, polyester fiber, nylon fiber, vinylon fiber,
Organic synthetic fibers such as acrylic fiber and rayon fiber, wood flour,
Cellulose organic fibers such as cotton and hemp; natural organic fibers such as wool and silk; These may be used alone or in combination of two or more.

【0011】上記無機繊維は、熱伸縮の抑制、剛性等機
械的強度の向上、熱変形温度の上昇等耐熱性の向上など
のために添加されるものであり、その添加量は少なすぎ
ると上述の効果が少なく、多すぎると得られる樹脂組成
物の流動性が著しく低下し成形性が悪くなるので、上記
熱可塑性樹脂100重量部に対して、2〜40重量部が
好ましい。
The above inorganic fibers are added to suppress thermal expansion and contraction, improve mechanical strength such as rigidity, and improve heat resistance such as an increase in heat deformation temperature. The effect is small, and if it is too large, the fluidity of the obtained resin composition is remarkably reduced and the moldability is deteriorated. Therefore, the amount is preferably 2 to 40 parts by weight based on 100 parts by weight of the thermoplastic resin.

【0012】上記有機繊維は、耐衝撃性の向上などのた
めに添加されるものであり、その添加量は少なすぎると
上述の効果が少なく、多すぎると熱可塑性樹脂での分散
が困難となるので、上記熱可塑性樹脂100重量部に対
して、5〜50重量部が好ましい。
The above organic fibers are added for the purpose of improving impact resistance and the like. If the amount of the organic fibers is too small, the above-mentioned effects are small, and if the amount is too large, dispersion in the thermoplastic resin becomes difficult. Therefore, the amount is preferably 5 to 50 parts by weight based on 100 parts by weight of the thermoplastic resin.

【0013】有機繊維の繊維形状は、チョップ、ロービ
ング、ミルドファイバー、綿状等、造粒機に投入できる
形状であれば、特に限定されるものではない。
The fiber shape of the organic fiber is not particularly limited as long as it can be put into a granulator, such as chop, roving, milled fiber, and cotton.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、本発明の繊維強化樹脂成
形材料の製造方法に使用される造粒機の一例を示す側面
図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing an example of a granulator used in the method for producing a fiber-reinforced resin molding material of the present invention.

【0015】図1において、1は造粒機、3はダイリン
グ、4はプレスロール、5は切断刃である。
In FIG. 1, 1 is a granulator, 3 is a die ring, 4 is a press roll, and 5 is a cutting blade.

【0016】図1に示すように、本発明の製造方法に使
用される造粒機1には、ホッパー2と、円筒状のダイリ
ング3と、ダイリング3の内周面と微小の間隙を隔てて
対峙し、回転自在とされたプレスロール4と、上記ダイ
リング3の外周面と微小の間隙を隔てて対峙する切断刃
5とが設けられている。
As shown in FIG. 1, a granulator 1 used in the manufacturing method of the present invention has a hopper 2, a cylindrical die ring 3, and a small gap between the inner peripheral surface of the die ring 3 and the hopper 2. A press roll 4 that faces and is rotatable, and a cutting blade 5 that faces the outer peripheral surface of the die ring 3 with a small gap therebetween.

【0017】図2は、上記ダイリングを拡大して示す斜
視図である。図2に示すように、ダイリング3には、多
数の貫通孔31が設けられている。
FIG. 2 is an enlarged perspective view showing the die ring. As shown in FIG. 2, a large number of through holes 31 are provided in the die ring 3.

【0018】本発明の繊維強化樹脂成形材料の製造方法
は、熱可塑性樹脂と補強繊維とからなる樹脂組成物を、
まず、図1に示す造粒機1のホッパー2から、ダイリン
グ3の内周面とプレスロール4との間の間隙に供給す
る。次いで、図示しないモーターにより、熱可塑性樹脂
は溶融するが、補強繊維は溶融しない条件でダイリング
3を回転させることにより樹脂組成物を溶融混練させ
る。供給された樹脂組成物は、その摩擦力で、プレスロ
ール4を回転させ、その回転により混練される。そし
て、混練された樹脂組成物は固化し、図2に示すダイリ
ング3の貫通孔31からダイリング3の外周側に排出さ
れる。貫通孔31から排出された樹脂組成物は図1に示
す切断刃5により切断され、所望のサイズのペレットと
なる。
The method for producing a fiber-reinforced resin molding material of the present invention comprises the steps of:
First, it is supplied from the hopper 2 of the granulator 1 shown in FIG. Next, the resin composition is melted and kneaded by rotating the die ring 3 under the condition that the thermoplastic resin is melted but the reinforcing fiber is not melted by a motor (not shown). The supplied resin composition rotates the press roll 4 by the frictional force, and is kneaded by the rotation. Then, the kneaded resin composition solidifies and is discharged from the through hole 31 of the die ring 3 shown in FIG. The resin composition discharged from the through hole 31 is cut by the cutting blade 5 shown in FIG. 1 to form a pellet of a desired size.

【0019】[0019]

【実施例】本発明を実施例に基づいて詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on embodiments.

【0020】(実施例)図1、2に示した造粒機1のホ
ッパー2に、アクリル変性ポリスチレン(A&M社製、
品番「SM050」)100重量部、炭素繊維チョップ
(東邦レーヨン社製、商品名「ペスファイトHTA−C
6―SR」;平均繊維直径7μm、平均繊維長6mm)
8重量部、及びポリエステル繊維チョップ(三菱レーヨ
ン社製、商品名「ソルーナB250」)12重量部を投
入し、直径4mmの多数の貫通孔31を有する厚み25
mmのダイリング3の内周面とプレスロール4との間の
間隙に供給した。
(Example) Acrylic-modified polystyrene (manufactured by A & M Co., Ltd.) was placed in a hopper 2 of a granulator 1 shown in FIGS.
Part number "SM050") 100 parts by weight, carbon fiber chop (manufactured by Toho Rayon Co., Ltd., trade name "Pesfight HTA-C"
6-SR "; average fiber diameter 7 μm, average fiber length 6 mm)
8 parts by weight and 12 parts by weight of a polyester fiber chop (trade name “SOLUNA B250” manufactured by Mitsubishi Rayon Co., Ltd.) are put in, and the thickness 25 having many through holes 31 with a diameter of 4 mm
mm of the die ring 3 and the press roll 4.

【0021】そして、モーターにより、ダイリング3を
回転速度200rpmで回転させることにより、アクリ
ル変性ポリスチレンが溶融され、炭素繊維及びポリエス
テル繊維は溶融せずに混練され、樹脂組成物が得られ
た。得られた樹脂組成物は、固化されながら貫通孔31
からダイリング3の外周側に排出され、切断刃5により
切断され、直径4mm、長さ10mmのペレットが得ら
れた。
Then, by rotating the die ring 3 at a rotation speed of 200 rpm by a motor, the acryl-modified polystyrene was melted, and the carbon fiber and the polyester fiber were kneaded without melting to obtain a resin composition. The obtained resin composition is solidified and the through-holes 31 are formed.
From the die ring 3 and cut by the cutting blade 5 to obtain a pellet having a diameter of 4 mm and a length of 10 mm.

【0022】得られたペレットを、押出機(日本製鋼社
製、型式「TEX44」)に供給し、幅100mm、厚
み5mmの板状成形体を得た。
The obtained pellets were supplied to an extruder (Model "TEX44", manufactured by Nippon Steel Corporation) to obtain a plate-like molded body having a width of 100 mm and a thickness of 5 mm.

【0023】(比較例1)ダイリング3の貫通孔31の
直径を6mm、ダイリング3の厚みを60mmとしたこ
と以外は実施例と同様にして混練したが、アクリル変性
ポリスチレンは溶融せず、ペレットは得られなかった。
Comparative Example 1 Kneading was carried out in the same manner as in the example except that the diameter of the through hole 31 of the die ring 3 was 6 mm and the thickness of the die ring 3 was 60 mm, but the acrylic-modified polystyrene was not melted. No pellet was obtained.

【0024】(比較例2)ダイリング3の貫通孔31の
直径を4mm、ダイリング3の厚みを45mmとしたこ
と以外は実施例と同様にして混練した。アクリル変性ポ
リスチレンのみならず、炭素繊維及びポリエステル繊維
も溶融して混練された。以下、実施例と同様にしてペレ
ットを得、実施例と同様にして板状成形体を作製した。
(Comparative Example 2) Kneading was carried out in the same manner as in Example except that the diameter of the through hole 31 of the die ring 3 was 4 mm and the thickness of the die ring 3 was 45 mm. Not only acrylic-modified polystyrene but also carbon fibers and polyester fibers were melted and kneaded. Hereinafter, pellets were obtained in the same manner as in the examples, and plate-like molded bodies were produced in the same manner as in the examples.

【0025】(比較例3)実施例と同様のアクリル変性
ポリスチレン100重量部、炭素繊維チョップ8重量
部、及びポリエステル繊維チョップ12重量部を一軸混
練押出機(プラスチック工業研究所製、型式「UT−2
5」)に供給して混練し、ペレタイザー(竹野鉄工所
製、型式「TAN−S−5」)で直径4mm、長さ10
mmのペレットを得た。得られたペレットを用い、実施
例と同様にして板状成形体を得た。
Comparative Example 3 A single-screw kneading extruder (Model “UT- 2
5 ”), kneaded, and a pelletizer (manufactured by Takeno Iron Works, model“ TAN-S-5 ”) having a diameter of 4 mm and a length of 10 mm.
mm pellets were obtained. Using the obtained pellets, a plate-like molded body was obtained in the same manner as in the example.

【0026】実施例、比較例2、3で得られた板状成形
体を、以下の評価に供した。物性評価 線膨張率 JIS K7197に準拠して、30〜80℃の線膨張
率を測定した。
The plate-like molded articles obtained in Examples and Comparative Examples 2 and 3 were subjected to the following evaluations. Linear Expansion Coefficient of Physical Properties In accordance with JIS K7197, the linear expansion coefficient at 30 to 80 ° C was measured.

【0027】アイゾット衝撃強度 JIS K7110に準拠して、アイゾット衝撃強度を
測定した。
Izod impact strength Izod impact strength was measured according to JIS K7110.

【0028】引張弾性率 ASTM D638に準拠して、引張弾性率を測定し
た。 以上の結果を、表1に纏めて示した。
Tensile modulus According to ASTM D638, the tensile modulus was measured. The above results are summarized in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の繊維強化樹脂成形材料の製造方
法は、熱可塑性樹脂と補強繊維とからなる樹脂組成物
を、多数の貫通孔を有する円筒状のダイリングと、該ダ
イリングの内周面と微小の間隙を隔てて対峙し、回転自
在とされたプレスロールと、上記ダイリングの外周面と
微小の間隙を隔てて対峙する切断刃とが設けられた造粒
機の、上記ダイリングの内周面とプレスロールとの間の
間隙に供給し、熱可塑性樹脂は溶融するが、補強繊維は
溶融しない条件でダイリングを回転させることにより樹
脂組成物を溶融混練させつつプレスロールを回転させ、
混練された樹脂組成物を、上記ダイリングの貫通孔から
ダイリングの外周側に排出させるとともに、貫通孔から
排出した樹脂組成物を上記切断刃により切断するもので
あるから、補強繊維の破損を生じることが少なく、補強
繊維として有機繊維を用いても熱劣化を起こすことが少
なく、短繊維に適用するのも容易なものとなる。
According to the method for producing a fiber-reinforced resin molding material of the present invention, a resin composition comprising a thermoplastic resin and a reinforcing fiber is prepared by forming a cylindrical die ring having a large number of through holes, and The die of a granulator provided with a press roll that is rotatably opposed to the outer peripheral surface with a minute gap therebetween and a cutting blade that is opposed to the outer peripheral surface of the die ring with a minute gap therebetween. The press roll is supplied to the gap between the inner peripheral surface of the ring and the press roll, while the thermoplastic resin is melted, but the reinforcing fiber is melted and kneaded by rotating the die ring under a condition that does not melt. Rotate
The kneaded resin composition is discharged from the through hole of the die ring to the outer peripheral side of the die ring, and the resin composition discharged from the through hole is cut by the cutting blade. This is less likely to occur, and even if organic fibers are used as the reinforcing fibers, thermal degradation is less likely to occur, and application to short fibers is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の繊維強化樹脂成形材料の製造方法に使
用される造粒機の一例を示す側面図である。
FIG. 1 is a side view showing an example of a granulator used in a method for producing a fiber-reinforced resin molding material of the present invention.

【図2】図1のダイリングを拡大して示す斜視図であ
る。
FIG. 2 is an enlarged perspective view showing the die ring of FIG. 1;

【符号の説明】[Explanation of symbols]

1 造粒機 3 ダイリング 31 貫通孔 4 プレスロール 5 切断刃 Reference Signs List 1 granulator 3 die ring 31 through hole 4 press roll 5 cutting blade

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂と補強繊維とからなる樹脂
組成物を、多数の貫通孔を有する円筒状のダイリング
と、該ダイリングの内周面と微小の間隙を隔てて対峙
し、回転自在とされたプレスロールと、上記ダイリング
の外周面と微小の間隙を隔てて対峙する切断刃とが設け
られた造粒機の、上記ダイリングの内周面とプレスロー
ルとの間の間隙に供給し、熱可塑性樹脂は溶融するが、
補強繊維は溶融しない条件でダイリングを回転させるこ
とにより樹脂組成物を溶融混練させつつプレスロールを
回転させ、混練された樹脂組成物を、上記ダイリングの
貫通孔からダイリングの外周側に排出させるとともに、
貫通孔から排出した樹脂組成物を上記切断刃により切断
することを特徴とする繊維強化樹脂成形材料の製造方
法。
1. A resin composition comprising a thermoplastic resin and a reinforcing fiber is opposed to a cylindrical die ring having a large number of through-holes and separated by a small gap from an inner peripheral surface of the die ring, and rotated. The gap between the inner peripheral surface of the die ring and the press roll of a granulator provided with a freely press roll and a cutting blade facing the outer peripheral surface of the die ring with a minute gap therebetween And the thermoplastic resin melts,
By rotating the die ring under the condition that the reinforcing fiber is not melted, the press roll is rotated while melting and kneading the resin composition, and the kneaded resin composition is discharged from the through hole of the die ring to the outer peripheral side of the die ring. Let me
A method for producing a fiber-reinforced resin molding material, comprising cutting the resin composition discharged from the through hole with the cutting blade.
JP2001113183A 2001-04-11 2001-04-11 Method for manufacture of fiber-reinforced resin molding material Pending JP2002307430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001113183A JP2002307430A (en) 2001-04-11 2001-04-11 Method for manufacture of fiber-reinforced resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001113183A JP2002307430A (en) 2001-04-11 2001-04-11 Method for manufacture of fiber-reinforced resin molding material

Publications (1)

Publication Number Publication Date
JP2002307430A true JP2002307430A (en) 2002-10-23

Family

ID=18964444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001113183A Pending JP2002307430A (en) 2001-04-11 2001-04-11 Method for manufacture of fiber-reinforced resin molding material

Country Status (1)

Country Link
JP (1) JP2002307430A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506143A (en) * 2007-12-21 2011-03-03 レンツィング アクチェンゲゼルシャフト Cellulosic spun fiber pellets and their manufacture and use
CN104153039A (en) * 2014-08-12 2014-11-19 苏州通力电气有限公司 Novel submersible pump impeller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506143A (en) * 2007-12-21 2011-03-03 レンツィング アクチェンゲゼルシャフト Cellulosic spun fiber pellets and their manufacture and use
CN104153039A (en) * 2014-08-12 2014-11-19 苏州通力电气有限公司 Novel submersible pump impeller

Similar Documents

Publication Publication Date Title
JP4846315B2 (en) Method for producing cellulose fiber-containing thermoplastic resin composition
JP5369614B2 (en) Extruder for powder raw material and method for producing thermoplastic resin composition
JPH0780203B2 (en) Parabolic antenna manufacturing method
JP2012056173A (en) Method for manufacturing fiber-reinforced resin material
JP2002307430A (en) Method for manufacture of fiber-reinforced resin molding material
JP2009242616A (en) Resin injection-molded article and its molding method
JPH0780834A (en) Fiber reinforced thermoplastic resin structure and method and extruder for producing the same
JPH09309140A (en) Manufacture of tubular form
JPS62202699A (en) Manufacture of speaker diaphragm
JPH0365311A (en) Carbon fiber chop
JP3683080B2 (en) Resin composition, injection molded product having hollow portion, and injection molding method
JP2001304463A (en) Fiber-reinforced resin pipe, fiber-reinforced multi-layer resin pipe, and manufacturing method for the pipes
JP2001192466A (en) Fiber-reinforced thermoplastic resin structure
KR102309200B1 (en) Cleaning agent and cleaning method for molding machine cleaning
JPH09296053A (en) Fiber-reinforced thermoplastic resin molding
JPH09216966A (en) Fiber-reinforced thermoplastic resin molding, its production, composite article, and fiber-reinforced thermoplastic resin composition
WO2012137575A1 (en) Device for producing pellet, and method for producing pellet
JPH0857916A (en) Method for molding liquid crystal resin composite
JPH11170334A (en) Method and mold for producing tubular member
JPH0859889A (en) Fiber-reinforced thermoplastic resin sheet and its production
JPH10296833A (en) Manufacture of tubular body
JP2001071344A (en) Liquid carstal resin composite molding and its production
JP2000043120A (en) Production of tubular object
JPH09309139A (en) Manufacture of tubular form
TW202409159A (en) Fiber-reinforced resin molding material and molded article