JP2001192466A - Fiber-reinforced thermoplastic resin structure - Google Patents

Fiber-reinforced thermoplastic resin structure

Info

Publication number
JP2001192466A
JP2001192466A JP2000361290A JP2000361290A JP2001192466A JP 2001192466 A JP2001192466 A JP 2001192466A JP 2000361290 A JP2000361290 A JP 2000361290A JP 2000361290 A JP2000361290 A JP 2000361290A JP 2001192466 A JP2001192466 A JP 2001192466A
Authority
JP
Japan
Prior art keywords
fiber
screw
thermoplastic resin
fiber length
reinforced thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000361290A
Other languages
Japanese (ja)
Inventor
Motonori Hiratsuka
元紀 平塚
Hidetoshi Sakai
秀敏 坂井
Motonobu Yamada
元伸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000361290A priority Critical patent/JP2001192466A/en
Publication of JP2001192466A publication Critical patent/JP2001192466A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced thermoplastic resin structure which comprises a thermoplastic resin and reinforcing fibers homogeneously dispersed in the thermoplastic resin and has a specific fiber length distribution and a specified fiber length. SOLUTION: This fiber-reinforced thermoplastic resin structure comprising a thermoplastic resin and reinforcing fibers, characterized in that the ratio of the weight-average fiber length of the homogeneously dispersed reinforcing fibers to their number-average fiber length is 1.1 to 3 and in that the weight- average fiber length is 2 to 15 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強化繊維の開繊度
合や繊維長が制御され、成形性、機械的性質や表面平滑
性に優れた繊維強化熱可塑性樹脂構造物に関する。更に
詳しくは、自動車のシリンダヘッドカバー、バンパービ
ーム、シートフレーム、インスツルメントパネル、ホイ
ールキャップ、バッテリートレー等や、OAや家電機器
のシャーシや筐体等、更には、工具ハウジング等に好適
な、繊維強化されたペレットおよび射出成形品、ブロー
成形品、チューブ、パイプやシート、更には熱成形用シ
ートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced thermoplastic resin structure in which the degree of fiber opening and fiber length of reinforcing fibers are controlled, and which is excellent in moldability, mechanical properties and surface smoothness. More specifically, a fiber suitable for a cylinder head cover of an automobile, a bumper beam, a seat frame, an instrument panel, a wheel cap, a battery tray, a chassis or a housing of an OA or a home appliance, and a tool housing. The present invention relates to reinforced pellets and injection molded articles, blow molded articles, tubes, pipes and sheets, and even sheets for thermoforming.

【0002】[0002]

【従来の技術】繊維強化熱可塑性構造体は、その優れた
機械的性質を活かして、自動車部品やOA機器等の種々
の用途に使用されている。特に、強化繊維長を長くし機
械的性質等改良する検討が進められており、例えば、繊
維強化熱可塑性ペレット構造体の場合、特公昭41−2
0738号公報のごときチョップドストランドを押出機
を用いて混練する方法では強化繊維が破損してしまい良
好な機械的性質を発現しないため、特公昭63−376
94号公報のごときプルトルージョン法(引抜成形法)
によって連続した強化繊維のロービングを熱可塑性樹脂
で被覆し、所定の長さに切断するペレット構造体が主流
となっている。また、特開平3−7307号公報のごと
く、抄紙法や乾式不織布法によって均一に分散した繊維
長3〜20mmのペレット構造体や特開昭63−951
1号公報のごとく前もって樹脂パウダとガラス繊維をヘ
ンシェルミキサ等で混合後、ラム式押出機で溶融するペ
レット構造体も知られている。また、熱成形用シート構
造体の場合も、特公昭63−15135号公報のような
ガラス繊維マットのラミネート法や特公平4−4037
2号公報のごとき7mm〜50mmの不連続単繊維を含
む抄紙法によるシート構造体が知られている。
2. Description of the Related Art Fiber-reinforced thermoplastic structures are used in various applications such as automobile parts and OA equipment, taking advantage of their excellent mechanical properties. In particular, studies are underway to increase the reinforcing fiber length and improve the mechanical properties and the like. For example, in the case of a fiber reinforced thermoplastic pellet structure, Japanese Patent Publication No.
In the method of kneading chopped strands using an extruder as disclosed in Japanese Patent Publication No. 0738, the reinforcing fibers are broken and good mechanical properties are not exhibited.
No. 94 Pultrusion method (pultruding method)
The mainstream is a pellet structure in which a continuous roving of reinforcing fibers is coated with a thermoplastic resin and cut into a predetermined length. Also, as disclosed in JP-A-3-7307, a pellet structure having a fiber length of 3 to 20 mm uniformly dispersed by a papermaking method or a dry nonwoven method is disclosed in JP-A-63-951.
As in JP-A No. 1 (KOKAI), a pellet structure in which resin powder and glass fiber are mixed in advance with a Henschel mixer or the like and then melted with a ram extruder is also known. Also, in the case of a sheet structure for thermoforming, a laminating method of a glass fiber mat as disclosed in JP-B-63-15135 or JP-B-4-4037.
A sheet structure including a discontinuous single fiber of 7 mm to 50 mm by a papermaking method as disclosed in Japanese Patent Publication No. 2 (Kokai) No. 2 is known.

【0003】押出機によって、強化繊維の開繊性や繊維
長を制御しようという試みは、特開昭58−56818
号公報のごとく二軸押出機の第二の供給口からガラスロ
ービングを供給して単繊維化する方法、特開昭60−2
21460号公報のごとき強化された材料や特開平4−
125110号公報のように混練装置内で切断された短
繊維を分散させた材料や特公平4−80810号公報の
ようにピストン運動を利用して混練する方法が知られて
いる。また、スクリューやシリンダ加工された押出機と
しては、特公昭62−57491号公報のように、有機
フィラーを擦り潰すために多数の突起を有する開繊混練
領域を設けたスクリュ、特公昭63−56845号公報
のように無機物添加剤等を破砕するため凹凸加工したバ
リアー型ミキシング部のスクリュや特公昭60−893
4号公報のように熱可塑性樹脂を混練するため特殊加工
されたシリンダやスクリュからなる混練要素が知られて
いる。
An attempt to control the fiber opening length and fiber length of a reinforcing fiber by an extruder is disclosed in Japanese Patent Application Laid-Open No. Sho 58-56818.
Japanese Patent Application Laid-Open No. Sho 60-2 discloses a method in which glass roving is supplied from a second supply port of a twin-screw extruder to form a single fiber.
No. 21460, reinforced materials,
There is known a method in which a short fiber cut in a kneading apparatus is dispersed in a kneading apparatus as disclosed in JP-A-125110 or a method in which piston movement is used as disclosed in JP-B-4-80810. As an extruder machined with a screw or a cylinder, as disclosed in Japanese Patent Publication No. Sho 62-57491, a screw provided with an opening kneading region having a large number of projections for crushing organic fillers is disclosed in Japanese Patent Publication No. Sho 63-56845. No. 60-893, a screw of a barrier type mixing section which has been processed to crush inorganic additives, etc.
As disclosed in Japanese Patent Application Laid-Open No. 4 (1999) -210, there is known a kneading element composed of a cylinder or screw specially worked to knead a thermoplastic resin.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
構造体では強化繊維長は長くなるものの、開繊度合や混
練作用が不十分となるため流動性、機械的性質や表面平
滑性が不十分であるばかりで無く、生産性も低い。特
に、プルトルージョン法で得られたペレット構造体は一
定の繊維長であるばかりでなく、繊維の開繊度合も悪い
ため、プレス成形すると樹脂と繊維が分離してしまった
り、射出成形時の流動性も悪いという課題がある。ま
た、抄紙法の場合は、繊維破損が無く単繊維レベルまで
分散した均質な成形品が得られるものの、樹脂と強化繊
維界面の混練作用が小さいため、接着強度が低く、機械
的性質に劣る問題点がある。また、ガラスマットのラミ
ネ−ト法は機械的性質は優れるものの、流動性が悪く、
コーナー部等に繊維が流れない課題がある。そこで、強
化繊維の開繊度合や繊維長が制御され、流動性、機械的
性質や表面平滑性に優れた、高い生産性の繊維強化熱可
塑性構造物が求められている。
However, in the above-mentioned structure, although the reinforcing fiber length is long, the degree of opening and the kneading action are insufficient, so that the fluidity, mechanical properties and surface smoothness are insufficient. Not only that, but also low productivity. In particular, the pellet structure obtained by the pultrusion method has not only a fixed fiber length but also a poor fiber opening degree, so that the resin and the fiber are separated by press molding, or the flow during injection molding is reduced. There is a problem that sex is bad. In addition, in the case of the papermaking method, although a homogenous molded product dispersed to a single fiber level without fiber breakage can be obtained, since the kneading action at the interface between the resin and the reinforcing fiber is small, the adhesive strength is low and the mechanical properties are poor. There is a point. In addition, although the laminating method of a glass mat has excellent mechanical properties, it has poor fluidity,
There is a problem that the fiber does not flow to the corners and the like. Therefore, there is a demand for a high-productivity fiber-reinforced thermoplastic structure in which the degree of fiber opening and the fiber length of the reinforcing fiber are controlled, and which is excellent in fluidity, mechanical properties and surface smoothness.

【0005】一般に押出機を用いると高い生産性が得ら
れるが、特開昭58−56818号公報、特開昭60−
221460号公報、特開平4−125110号公報や
特公平4−80810号公報の方法では、強化繊維の開
繊度合と繊維長が十分に制御できず、スクリュの混練作
用を強化すると繊維長が短くなり機械的性質が低下して
しまい、混練を弱くすると開繊度合が不十分で強化繊維
が不均一となる問題点がある。更に、特公昭62−57
491号公報、特公昭63−56845号公報や特公昭
60−8934号公報は、単に無機や有機物フィラーを
擦り潰したり、熱可塑性樹脂を混練する設計になってい
るため、強化繊維の開繊度合と繊維長を制御できない課
題がある。
[0005] In general, high productivity can be obtained by using an extruder, but Japanese Patent Application Laid-Open Nos.
In the methods disclosed in JP-A-221460, JP-A-4-125110 and JP-B-4-80810, the degree of opening and the fiber length of the reinforcing fibers cannot be sufficiently controlled, and if the kneading action of the screw is strengthened, the fiber length becomes shorter. If the kneading is weakened, the degree of opening is insufficient and the reinforcing fibers become non-uniform. Furthermore, Japanese Patent Publication No. 62-57
No. 491, JP-B-63-56845 and JP-B-60-8934 are designed to simply crush inorganic or organic fillers or to knead a thermoplastic resin. There is a problem that the fiber length cannot be controlled.

【0006】[0006]

【課題を解決するための手段】そこで本発明は、開繊度
合を制御して強化繊維を均一に分散させると共に、その
重量平均繊維長を長く保ったまま、混練作用によって特
定の繊維長分布の繊維強化熱可塑性樹脂構造物とする事
によって、流動性、機械的性質や表面平滑性等の上記課
題を解決できることを見出した。すなわち、本発明は、
熱可塑性樹脂と強化繊維を含み、均一に分散した強化繊
維の重量平均繊維長と数平均繊維長の比が1.1〜3で
あり、重量平均繊維長が2mm〜15mmであることを
特徴とする繊維強化熱可塑性樹脂構造物を提供するもの
である。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method of controlling the degree of fiber opening to uniformly disperse reinforcing fibers, and while maintaining a long weight-average fiber length, by kneading, a specific fiber length distribution. It has been found that the above problems such as fluidity, mechanical properties, and surface smoothness can be solved by using a fiber-reinforced thermoplastic resin structure. That is, the present invention
Including a thermoplastic resin and reinforcing fibers, the ratio of the weight average fiber length to the number average fiber length of the uniformly dispersed reinforcing fibers is 1.1 to 3, and the weight average fiber length is 2 mm to 15 mm, The present invention provides a fiber-reinforced thermoplastic resin structure.

【0007】本発明の特徴は、開繊度合を制御して強化
繊維を均一に分散させると共に、長い繊維長を保ったま
ま、混練作用によって特定の繊維長分布の構造物を提供
する点にある。
A feature of the present invention is to provide a structure having a specific fiber length distribution by kneading while maintaining a long fiber length, while controlling the degree of fiber opening to uniformly disperse the reinforcing fibers. .

【0008】[0008]

【発明の実施の形態】以下に、本発明を更に詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0009】本発明の構造物とは、ブロー成形品、棒状
(チューブ、パイプなどの中空状のものを含む)やシー
ト状の形状を有する構造物、さらには熱成形用シート等
の繊維強化熱可塑性構造物、自動車のシリンダーヘッド
カバー等の射出成形や押出等の種々の成形に用い得る繊
維強化熱可塑性ペレット構造物、および射出成形品をい
う。
The structure of the present invention refers to a blow-molded product, a structure having a rod shape (including a hollow shape such as a tube or a pipe) or a sheet shape, and a fiber-reinforced heat-generating material such as a thermoforming sheet. It refers to a plastic structure, a fiber-reinforced thermoplastic pellet structure that can be used for various moldings such as injection molding and extrusion of an automobile cylinder head cover, and an injection molded product.

【0010】構造物中に均一に分散した強化繊維の重量
平均繊維長と数平均繊維長の比が1.1〜3、重量平均
繊維長が2mm〜15mmであり、より好ましくは4.
5mm〜12mmである。重量平均繊維長が2mm未満
の場合は、機械的性質の向上効果が得らず、15mm以
上で繊維の絡み合いのため不均一な構造物となるため好
ましくない。また、重量平均繊維長と数平均繊維長の比
は、1.1〜3、好ましくは、1.3〜2.5、更に好
ましくは1.3〜2.1である。1.1未満では混練作
用が小さく、樹脂と繊維の界面の接着性が不十分なため
良好な機械的性質や流動性が得られず、3を越えると長
い繊維が増え、繊維のからみあいのため不均一な流動に
なり、均一な成形品が得られないため望ましくない。ま
た、本発明の均一な分散とは、構造物を溶融圧縮した際
に強化繊維と樹脂が分離しない状態を言い、単繊維にま
で分散した状態から、数10本程度まで、好ましくは5
本程度まで結束した状態までを包含する。
The ratio of the weight average fiber length to the number average fiber length of the reinforcing fibers uniformly dispersed in the structure is 1.1 to 3 and the weight average fiber length is 2 mm to 15 mm, more preferably 4.
5 mm to 12 mm. If the weight-average fiber length is less than 2 mm, the effect of improving mechanical properties cannot be obtained, and if it is 15 mm or more, the fibers become entangled, resulting in an uneven structure, which is not preferable. The ratio between the weight average fiber length and the number average fiber length is 1.1 to 3, preferably 1.3 to 2.5, and more preferably 1.3 to 2.1. If it is less than 1.1, the kneading action is small, and good mechanical properties and fluidity cannot be obtained due to insufficient adhesiveness at the interface between the resin and the fiber. If it exceeds 3, long fibers increase and fiber entanglement occurs. This is not desirable because it results in non-uniform flow and a uniform molded product cannot be obtained. The uniform dispersion according to the present invention refers to a state in which the reinforcing fibers and the resin do not separate when the structure is melt-compressed.
It includes up to a state of binding to about this.

【0011】上記の熱成形用シート構造物とは、均一に
分散した強化繊維の重量平均繊維長と数平均繊維長の比
が1.1〜3であり、重量平均繊維長が2mm〜15m
m、より好ましくは繊維長の比が1.3〜2.5であり
繊維長が4.5mm〜12mmのシート状のスタンピン
グ成形等に有用な繊維強化熱可塑性樹脂構造物である。
強化繊維はシート平面にほぼランダムに向いているが、
条件によっては流動方向に向いている比率が高くなる。
The above-mentioned sheet structure for thermoforming has a ratio of the weight average fiber length to the number average fiber length of the uniformly dispersed reinforcing fibers of 1.1 to 3 and the weight average fiber length of 2 mm to 15 m.
m, more preferably a fiber-reinforced thermoplastic resin structure having a fiber length ratio of 1.3 to 2.5 and a fiber length of 4.5 to 12 mm, which is useful for sheet-like stamping and the like.
The reinforcing fibers are oriented almost randomly on the sheet plane,
Depending on the conditions, the ratio in the flow direction is high.

【0012】棒状構造物とは、直径が約1〜8mm程度
の丸棒、矩形等の任意断面の棒や中空の棒状物である。
The rod-shaped structure is a rod having an arbitrary cross section such as a round rod or a rectangle having a diameter of about 1 to 8 mm or a hollow rod.

【0013】本発明の繊維強化ペレット構造物は上記シ
ートや棒状等の構造物をペレタイザーやシートカッタで
ペレット化した構造物である。上記シートをペレタイズ
する場合は、縦横にカッティング(切断)するが、棒状
構造物は一方向のみにカッティング(切断)すれば良く
繊維破損が少ないため、棒状構造物をペレタイズするこ
とが望ましい。ペレット構造物のペレット長および繊維
長は特に限定するものではないが、繊維長を長くするた
め、ペレット長は、通常、カッティング前の繊維強化熱
可塑性樹脂構造物の重量平均繊維長の1/2以上であ
り、なかでも15mm以下程度が望ましい。更に、本発
明のペレットの特徴として、ペレット中の重量平均繊維
長は棒状物などの繊維長よりも短くなり、通常ペレット
長の0.9以下、場合によっては0.7以下となる。
The fiber-reinforced pellet structure of the present invention is a structure obtained by pelletizing the above-mentioned sheet or rod-like structure with a pelletizer or a sheet cutter. When the sheet is pelletized, cutting (cutting) is performed vertically and horizontally. However, since the rod-shaped structure needs to be cut (cut) only in one direction and fiber breakage is small, it is desirable to pelletize the rod-shaped structure. Although the pellet length and the fiber length of the pellet structure are not particularly limited, the pellet length is usually 1 / of the weight average fiber length of the fiber reinforced thermoplastic resin structure before cutting in order to increase the fiber length. Above all, it is particularly desirable that it is about 15 mm or less. Further, as a feature of the pellet of the present invention, the weight average fiber length in the pellet is shorter than the fiber length of a rod-shaped material or the like, and usually becomes 0.9 or less, sometimes 0.7 or less, of the pellet length.

【0014】更に、本発明のペレット構造物は、圧縮成
形、射出成形や押出成形等の公知の成形に使用できる。
圧縮成形を除けば、射出成形、押出成形に通常用いられ
るスクリュ式成形機では、成形により強化繊維の繊維長
や分布が変化するため、本発明のペレット構造物におい
ては、ペレット構造物中の繊維長や分布を規定するもの
であり、射出成形、押出成形後の成形品の繊維長や分布
を規定するものではない。
Further, the pellet structure of the present invention can be used for known molding such as compression molding, injection molding and extrusion molding.
Except for compression molding, injection molding, screw-type molding machines usually used for extrusion molding, since the fiber length and distribution of the reinforcing fiber changes by molding, in the pellet structure of the present invention, the fiber in the pellet structure The length and distribution are defined, but not the fiber length and distribution of the molded product after injection molding or extrusion molding.

【0015】本発明の構造物を製造する方法は、公知の
方法を組合せて製造することができるが、これら公知の
方法では多段プロセスとなり高い生産性の方法とは言え
ず、最も好ましい方法は、熱可塑性樹脂と連続した強化
繊維を押出機で溶融混練することにより繊維強化熱可塑
性樹脂構造物を製造する方法において、溶融した熱可塑
性樹脂と強化繊維とをスクリュ表面および/またはシリ
ンダ内壁の少なくとも一部が表面異形化加工されたスク
リュおよび/またはシリンダで形成される制御機構部を
通過させることにより、異形化加工表面の櫛作用で熱可
塑性樹脂マトリックス中における強化繊維の開繊度合お
よび/または繊維長を制御する方法である。
The method for producing the structure of the present invention can be produced by a combination of known methods. However, these known methods result in a multi-step process and cannot be said to be a method of high productivity. In a method for producing a fiber-reinforced thermoplastic resin structure by melt-kneading a thermoplastic resin and a continuous reinforcing fiber with an extruder, the molten thermoplastic resin and the reinforcing fiber are mixed with at least one of a screw surface and / or a cylinder inner wall. The degree of opening of the reinforcing fibers and / or fibers in the thermoplastic resin matrix by the comb action of the deformed surface by passing the control mechanism formed by a screw and / or a cylinder whose surface has been deformed. This is a method of controlling the length.

【0016】本発明の連続した強化繊維の開繊度合や繊
維長を制御するスクリュおよび/またはシリンダ加工さ
れた押出機とは、単軸または多軸のスクリュ式の押出機
であって、その内部連続した強化繊維の開繊度合や繊維
長の制御機構部を含む押出機を言う。連続した強化繊維
は、スクリュフライトとシリンダ間の剪断力によって押
出機中に巻き込まれ、スクリュに巻き付きながら前進す
る。通常樹脂はスクリュの溝を流動するが、本発明の強
化繊維はスクリュフライトを乗り越えて前進する。スク
リュ断面を見た場合、フライト部は全周の一部であるた
め、この巻き込まれ速度とスクリュ最外周の周速は、図
1のごとく、一定のずれを生じる。図1はスクリュ径3
0mmの二軸押出機とポリエチレンテレフタレートを使
用してガラスロービング巻き込まれ速度とスクリュ回転
数の関係を示したグラフである。従って、巻き付いた強
化繊維より、相対的に速く動くスクリュ外周部やシリン
ダ内壁に種々の加工をほどこすことによって、スクリュ
とシリンダ間で強化繊維に”櫛”の作用を及ぼすことが
できる。
The screw and / or cylinder-processed extruder for controlling the degree of opening and the fiber length of the continuous reinforcing fiber of the present invention is a single-screw or multi-screw extruder having an internal structure. It refers to an extruder that includes a mechanism for controlling the degree of opening of continuous reinforcing fibers and the fiber length. The continuous reinforcing fiber is wound into the extruder by the shearing force between the screw flight and the cylinder, and advances while winding around the screw. Usually, the resin flows through the grooves of the screw, but the reinforcing fibers of the present invention advance over the screw flight. Looking at the screw cross section, since the flight portion is a part of the entire circumference, the winding speed and the peripheral speed of the outermost circumference of the screw have a certain deviation as shown in FIG. Figure 1 shows screw diameter 3
It is the graph which showed the relationship between the glass roving winding-in speed using the 0-mm twin-screw extruder and polyethylene terephthalate, and the screw rotation speed. Therefore, by performing various processes on the outer peripheral portion of the screw and the inner wall of the cylinder that move relatively faster than the wound reinforcing fiber, a "comb" effect can be exerted on the reinforcing fiber between the screw and the cylinder.

【0017】具体的な制御機構部の例としては、スクリ
ュのフライト上、混練部または、円や楕円筒部の少なく
とも一部に、凹凸加工を施す事が挙げられる。凹凸を形
成する方法は特に制限はないが、切削加工、研削加工、
ブラスト加工等を採用することができる。また、凹凸の
形態としては、溝や突起を形成した櫛型、特定の角度で
溝や突起を形成したもの、さらには縦横に溝を形成し網
目状に加工したものなどが含まれる。突起の先端は、鋭
角にする事が望ましく、台形形状にして、擦り潰し作用
を及ぼすと、繊維長が極端に短くなるため好ましくな
い。強化繊維の繊維長を長く、単繊維に開繊する場合
は、スクリュの一部にフライトを持たない円や楕円筒を
設け、その円周上に円周方向に平行な突起を設ける事が
望ましく、そのピッチを小さく取れば良い。また、比較
的束の繊維を残したい場合は、そのピッチを大きく取る
か、円周方向にランダムな突起や溝を設ければ良い。こ
のようにして、連続した強化繊維を目的とする開繊度合
や繊維長に制御する事ができる。上記制御機構部は、連
続した強化繊維の投入部に隣接して、設ける事が望まし
い。投入部から離れ過ぎると、特開昭61−21136
7号公報に記載のごとく、強化繊維が制御機構部に到達
する前に、通常のスクリュフライトとシリンダ間で擦り
切れてしまい、繊維長や開繊度合の制御が困難となるた
め、望ましくない。また、特開平4−125110号公
報に記載のごとく、投入部以降に通常の混練部や逆流部
を設けると、そこで強化繊維が破損するため望ましくな
い。投入部と制御機構部間に混練部を設けると、前述と
同様に強化繊維が切れてしまい、制御できなくなる。更
に、制御機構部以降に混練部を設けた場合も、特に繊維
長を短くしたい場合を除けば、繊維が破損してしまうた
め望ましくない。
As a specific example of the control mechanism, a kneading part or at least a part of a circular or elliptical cylinder part may be subjected to uneven processing on the flight of the screw. The method of forming the irregularities is not particularly limited, but cutting, grinding,
Blasting or the like can be adopted. Examples of the shape of the unevenness include a comb shape having grooves and projections, a shape having grooves and projections formed at a specific angle, and a shape having grooves formed vertically and horizontally to form a mesh. It is desirable that the tip of the projection be formed at an acute angle, and it is not preferable to form the trapezoidal shape and exert a crushing action because the fiber length becomes extremely short. When the fiber length of the reinforcing fiber is long and the fiber is opened to a single fiber, it is desirable to provide a circle or an elliptical cylinder without flight on a part of the screw, and to provide a projection parallel to the circumferential direction on the circumference. The pitch should be small. When relatively bundled fibers are desired to be left, the pitch may be increased or random protrusions or grooves may be provided in the circumferential direction. In this way, it is possible to control the degree of opening and the fiber length of the continuous reinforcing fibers to the desired values. It is desirable that the control mechanism is provided adjacent to a continuous reinforcing fiber feeding section. If it is too far away from the charging section,
As described in Japanese Patent Publication No. 7, the reinforcing fibers are frayed between the ordinary screw flight and the cylinder before reaching the control mechanism, which makes it difficult to control the fiber length and the degree of fiber opening, which is not desirable. Further, as described in Japanese Patent Application Laid-Open No. 4-125110, it is not desirable to provide a normal kneading section or a backflow section after the charging section because the reinforcing fibers are broken there. If a kneading section is provided between the charging section and the control mechanism section, the reinforcing fibers are cut as in the case described above, and the control becomes impossible. Furthermore, it is not desirable to provide a kneading section after the control mechanism section, since the fibers are damaged unless the fiber length is particularly shortened.

【0018】連続した強化繊維の投入部は、樹脂の溶融
部よりも下流に設け、溶融した樹脂中に投入する。樹脂
と同時に投入すると、樹脂の溶融時に繊維が切れてしま
い、制御できなくなるため好ましくない。一般的には、
繊維投入口として押出機のベント口を利用する事ができ
る。
The continuous reinforcing fiber feeding section is provided downstream of the resin melting section, and is fed into the molten resin. If the resin is introduced at the same time as the resin, the fibers are cut when the resin is melted, and it is not preferable because the fibers cannot be controlled. In general,
The vent of the extruder can be used as the fiber inlet.

【0019】押出機としては、特に限定する物ではない
が、特にユニット構造の二軸押出機のような多軸の押出
機が簡便である。多軸押出機としては、最も一般的な二
軸押出機が好ましく、同方向、異方向、噛み合い型、非
噛み合い型、どのタイプでも良い。また、スクリュとし
ても、深溝や浅溝、1条、2条、3条ネジ等が利用でき
る。二軸押出機は、単軸押出機に比較すると、樹脂供給
量とスクリュ回転数を独立に制御できるため、強化繊維
の添加量を制御しやすい。また、ユニット構造であれ
ば、開繊度合や繊維長の制御機構部を設けやすく、かつ
その位置も変えやすい点で有利である。
Although the extruder is not particularly limited, a multi-screw extruder such as a twin-screw extruder having a unit structure is particularly convenient. As the multi-screw extruder, the most common twin-screw extruder is preferable, and any type of co-direction, different direction, meshing type, non-meshing type may be used. Further, as the screw, a deep groove, a shallow groove, a single-thread, a two-thread, a three-thread screw or the like can be used. Compared with the single screw extruder, the twin screw extruder can control the resin supply amount and the screw rotation speed independently, so that it is easier to control the addition amount of the reinforcing fiber. Further, the unit structure is advantageous in that a control mechanism for controlling the degree of opening and the fiber length can be easily provided, and the position thereof can be easily changed.

【0020】また、樹脂や繊維から発生する揮発成分や
強化繊維が抱き込む気泡による、物性の低下や外観不良
を防止する目的から、開繊度合や繊維長の制御機構部以
降に、脱気口を設けることが望ましい。脱気する場合
は、脱気口の上流部を、公知の短フライトピッチや浅溝
のスクリュ、更に逆フライトやニーディングディスクを
使用して、シールする事が望ましいが、それによって強
化繊維の破損が起こらないようにする必要がある。
For the purpose of preventing deterioration in physical properties and poor appearance due to volatile components generated from resin and fibers and bubbles embraced by the reinforcing fibers, a deaeration port is provided after the opening degree and fiber length control mechanism. Is desirably provided. In the case of deaeration, it is desirable to seal the upstream part of the deaeration port using a known short flight pitch or shallow groove screw, and further using a reverse flight or kneading disc, but this may damage the reinforcing fibers. Need to be done.

【0021】繊維供給後のスクリュのフライト上、混練
部または、円や楕円筒部等の少なくとも一部及び/又は
シリンダの内壁の少なくとも一部に凹凸を施した制御機
構部を設けることが重要であり、次の例が挙げられる。
On the flight of the screw after the fiber supply, it is important to provide a kneading section, or at least a part of a circular or elliptical cylindrical part and / or a control mechanism part having irregularities on at least a part of the inner wall of the cylinder. There are the following examples.

【0022】図2a、c、eは本発明で好ましい加工を
施した楕円筒部の側面図であり、図2b、d、fは本発
明で好ましい加工を施したシリンダの切開斜視図であ
る。図2aはシリンダとスクリュ外径間0.1〜5mm
程度のクリアランスを有するスクリュの例であり、円周
方向に特定ピッチおよび深さの突起を有している。ピッ
チ、深さは、目的とする制御の程度によって変更でき、
ピッチが狭いと単繊維化しやすくなり、長いと繊維束が
残りやすくなる。また、b.は同様な加工をシリンダに
施した例で、a.b.各々単独で用いたり、組み合わせ
て用いることもできる。組み合わせて用いるときは、突
起の山と谷を各々噛み合わせたり、山同志を近接させる
事もできる。c.やd.は約45度に交差する溝の例
で、a.に比較すると繊維長が短くなる傾向を示す。ま
た、e.やf.はランダムに突起を設けた例で、束の繊
維が残りやすくなる。また、スクリュ断面は円形の場合
を例示してあるが、楕円形状も可能で、特に噛み合い型
の二軸押出機の場合は、セルフクリーニング性を維持す
るために、楕円形状が望ましい。また、加工を部分的に
施したり、異なる加工を組み合わせて用いることもでき
る。更に、開繊度合や繊維長の制御のために、制御機構
部の長さを変えたり、必要に応じ両端部で径を変えた
り、ピッチや深さの異なる突起を組み合わせて用いるこ
ともできる。好ましい制御機構部の長さは、スクリュ径
の0.1〜10倍、より好ましくは0.2〜5倍であ
る。図3a、c、eはスクリュフライト上に好ましい加
工を施した二条ネジのスクリュの側面図であり、図3
b、d、fは内壁面に好ましい加工を施したシリンダの
切開斜視図である。これらは、図2の例よりも繊維束を
残したい場合に有効である。また、一条や三条等の多条
ネジにも適用できる。本発明は、これらの例に限定され
るものではなく、目的とする開繊度合や繊維長に応じ
て、”櫛”のごとき機能を有する加工全てを包含する物
である。更に、多軸スクリュの場合は、1本のスクリュ
のみ、又は全てのスクリュ等任意の本数に加工すること
ができる。
FIGS. 2a, 2c, and 2e are side views of an elliptical cylinder portion preferably processed in the present invention, and FIGS. 2b, 2d, and 2f are cutaway perspective views of a cylinder processed in a preferable manner in the present invention. Fig. 2a shows the distance between the cylinder and screw outer diameter of 0.1 to 5 mm.
This is an example of a screw having a certain degree of clearance, and has a protrusion with a specific pitch and depth in the circumferential direction. The pitch and depth can be changed depending on the desired degree of control.
If the pitch is narrow, it becomes easy to form a single fiber, and if it is long, the fiber bundle tends to remain. B. Is an example in which similar processing is performed on a cylinder, and a. b. Each of them can be used alone or in combination. When used in combination, the peaks and valleys of the protrusions can be engaged with each other, or the peaks can be brought close to each other. c. And d. Is an example of a groove intersecting at about 45 degrees, wherein a. , The fiber length tends to be shorter. E. And f. Is an example in which projections are provided at random, and the fibers of the bundle tend to remain. Further, although the case where the screw cross section is circular is illustrated, an elliptical shape is also possible. In particular, in the case of a mesh type twin screw extruder, an elliptical shape is desirable in order to maintain self-cleaning properties. Further, processing may be partially performed, or different processing may be used in combination. Furthermore, in order to control the degree of fiber opening and the fiber length, the length of the control mechanism may be changed, the diameter may be changed at both ends if necessary, or a combination of projections having different pitches and depths may be used. The preferred length of the control mechanism is 0.1 to 10 times, more preferably 0.2 to 5 times the screw diameter. FIGS. 3a, 3c and 3e are side views of a double-start screw with a preferred processing on the screw flight,
b, d, and f are cutaway perspective views of a cylinder whose inner wall surface is preferably processed. These are more effective when the fiber bundle is to be left than in the example of FIG. In addition, the present invention can be applied to a single-thread or three-thread screw. The present invention is not limited to these examples, but encompasses all processes having a function such as "comb" according to the desired degree of fiber opening and fiber length. Further, in the case of a multi-screw screw, it is possible to process only one screw or all screws or any number of screws.

【0023】本発明で使用される熱可塑性樹脂は、押出
機によって成形することができる熱可塑性樹脂であれば
特に制限はなく、例えば、ポリエチレン、ポリプロピレ
ン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレ
ン、スチレン−ブタジエン−アクリロニトリル共重合
体、ナイロン11、ナイロン12、ナイロン6やナイロ
ン66等の脂肪族ナイロン、脂肪族ナイロンとテレフタ
ル酸等の共重合体である芳香族ポリアミド、各種共重合
ポリアミド、ポリカーボネート、ポリアセタール、ポリ
メチルメタアクリレート、ポリスルホン、ポリフェニレ
ンオキサイド、ポリブチレンテレフタレート、ポリエチ
レンテレフタレート、ポリシクロヘキサンジエチレンテ
レフタレート、ポリブチレンナフタレート等のポリエス
テルおよびそれらの共重合体、それらポリエステルをハ
ードセグメントしポリテトラメチレングリコール等のポ
リエーテルやポリカプロラクトン等のポリエステルをソ
フトセグメントとする共重合ポリエステル、特公平3−
72099号公報に記載されているようなサーモトロピ
ック液晶ポリマ、ポリフェニレンスルフィド、ポリエー
テルエーテルケトン、ポリエーテルスルフォン、ポリエ
ーテルイミド、ポリアミドイミド、ポリイミド、ポリウ
レタン、ポリエーテルアミドおよびポリエステルアミド
等が挙げられ、これらは単独または2種以上組み合わせ
て用いることも可能である。
The thermoplastic resin used in the present invention is not particularly limited as long as it can be molded by an extruder. Examples thereof include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and styrene. -Butadiene-acrylonitrile copolymer, aliphatic polyamide such as nylon 11, nylon 12, nylon 6, nylon 66, etc., aromatic polyamide which is a copolymer of aliphatic nylon and terephthalic acid, various copolymerized polyamides, polycarbonate, polyacetal Polyesters such as polymethyl methacrylate, polysulfone, polyphenylene oxide, polybutylene terephthalate, polyethylene terephthalate, polycyclohexanediethylene terephthalate, polybutylene naphthalate and the like; Polymers, copolyester them polyesters and polyester soft segments such as polyether or polycaprolactone such as a hard segment and polytetramethylene glycol, KOKOKU 3-
Thermotropic liquid crystal polymers, polyphenylene sulfide, polyether ether ketone, polyether sulfone, polyether imide, polyamide imide, polyimide, polyurethane, polyether amide, polyester amide and the like described in US Pat. May be used alone or in combination of two or more.

【0024】最も好ましい樹脂は、ポリブチレンテレフ
タレート、ポリエチレンテレフタレート、ポリシクロヘ
キサンジメチレンテレフタレート、ポリエチレンテレフ
タレート共重合系液晶ポリマ、ナイロン11、ナイロン
12、ナイロン6、ナイロン66、芳香族ナイロン、ポ
リフェニレンスルフィド、ABS樹脂である。
Most preferred resins are polybutylene terephthalate, polyethylene terephthalate, polycyclohexane dimethylene terephthalate, polyethylene terephthalate copolymer liquid crystal polymer, nylon 11, nylon 12, nylon 6, nylon 66, aromatic nylon, polyphenylene sulfide, ABS resin. It is.

【0025】本発明に使用される連続した強化繊維とし
ては、連続した単繊維を集束したロービングを使用する
ことが望ましい。強化繊維としては、通常樹脂の補強用
として用いられているものならば特に限定されるもので
はなく、ガラス繊維,炭素繊維,金属繊維および有機繊
維(ナイロン、ポリエステル、アラミド、ポリフェニレ
ンスルフィド、液晶ポリマ、アクリル等)等を使用する
ことが可能であるが、ガラス繊維や炭素繊維が最も望ま
しい。
As the continuous reinforcing fibers used in the present invention, it is desirable to use a roving in which continuous single fibers are bundled. The reinforcing fiber is not particularly limited as long as it is generally used for reinforcing a resin. Glass fiber, carbon fiber, metal fiber and organic fiber (nylon, polyester, aramid, polyphenylene sulfide, liquid crystal polymer, Although acrylic and the like can be used, glass fiber and carbon fiber are most desirable.

【0026】これら強化繊維の種類に依存して、開繊度
合や繊維長の制御し易さが異なる。ガラス繊維の場合
は、一般に使用されているEガラスや高強度・高弾性率
のTガラスが好適である。炭素繊維の場合は、ガラス繊
維よりも折れ易い傾向を示すため、制御機構部の長さを
短くしたり、より高強度や高弾性率の炭素繊維を用い
て、繊維長や開繊度合を制御する事が望ましい。
The degree of opening and the ease of controlling the fiber length vary depending on the type of these reinforcing fibers. In the case of glass fibers, generally used E glass and T glass having high strength and high elastic modulus are suitable. In the case of carbon fiber, it tends to break more easily than glass fiber, so the length of the control mechanism is shortened, and the fiber length and degree of opening are controlled using carbon fiber with higher strength and high elastic modulus. It is desirable to do.

【0027】更に、有機繊維の場合は、一般に極めて破
損しにくいため、繊維長が制御しにくい傾向を示す。こ
の破損し易さは、繊維の種類や強度に依存するため、ス
クリュ加工形状と組み合わせて、繊維長を制御する必要
が有る。
Further, in the case of organic fibers, they are generally very hard to be broken, so that the fiber length tends to be difficult to control. Since the easiness of breakage depends on the type and strength of the fiber, it is necessary to control the fiber length in combination with the screw processing shape.

【0028】また、繊維径は通常樹脂の補強用として使
用されるものであれば特に限定されるものではなく、好
ましくは、直径1〜20μmの繊維を使用することがで
きる。特に1〜9μm程度の細径繊維の機械的性質向上
効果が大きい。繊維の集束本数においても特に限定され
るものはないが、単繊維やモノフィラメントを10〜2
0000本集束したものがハンドリングの点で望まし
い。
The fiber diameter is not particularly limited as long as it is usually used for reinforcing a resin, and fibers having a diameter of 1 to 20 μm can be preferably used. In particular, the effect of improving the mechanical properties of small diameter fibers of about 1 to 9 μm is great. Although there is no particular limitation on the number of bundles of fibers, a single fiber or a monofilament is
A bundle of 0000 is desirable in terms of handling.

【0029】通常これら強化繊維のロ−ビングは、樹脂
との界面接着性向上のためのシランカップリング剤等の
表面処理を行って使用することもできる。例えば、ポリ
エステル樹脂に対しては、特公平4−47697号公報
等公知の表面処理を行うことができる。これらの表面処
理は、前もって処理した強化繊維を用いても良いし、強
化繊維を押出機に投入する直前に行って、連続的に本発
明の構造体を製造することもできる。熱可塑性樹脂と繊
維の比率は、特に限定されるものではなく、最終使用目
的に応じて任意の組成比で繊維強化熱可塑性樹脂組成物
及び成形品を製造することができるが、好ましくは、繊
維の含有量が0.5〜90重量%、さらに好ましくは、
1〜70重量%が、機械的性質や表面平滑性の点から好
ましい。
Usually, the roving of these reinforcing fibers can be used after being subjected to a surface treatment such as a silane coupling agent for improving the interfacial adhesion to the resin. For example, a known surface treatment such as Japanese Patent Publication No. 4-47697 can be applied to a polyester resin. These surface treatments may use previously treated reinforcing fibers, or may be performed immediately before the reinforcing fibers are introduced into the extruder to continuously produce the structure of the present invention. The ratio between the thermoplastic resin and the fibers is not particularly limited, and a fiber-reinforced thermoplastic resin composition and a molded article can be produced at an arbitrary composition ratio depending on the final use purpose. Is 0.5 to 90% by weight, more preferably,
1 to 70% by weight is preferable from the viewpoint of mechanical properties and surface smoothness.

【0030】本発明の繊維強化熱可塑性構造物は、特定
の開繊度合および繊維長制御機構部を設けた押出機とス
トランドダイを用いて、棒状構造物を押出し、ペレタイ
ズする事によって得られる繊維強化熱可塑性ペレット構
造物にできる。このペレット構造物は、射出成形、イン
ジェクションプレス成形、チューブ、パイプやシート等
の押出成形、ブロー成形等公知の成形法で成形でき、従
来のプルトルージョン法よりも流動性や外観に優れた成
形品が得られる。成形の際は、強化繊維の破損を押さえ
るため、ノズルやゲート形状を大きくし、成形機スクリ
ュの溝深さをペレットサイズ以上とする事が望ましい。
更に本発明は、シートダイを用い、ポリッシングロール
や圧延ロール、更にはダブルベルトプレス等を用いて得
られるシート構造物も包含する。この際、繊維マットや
他の熱可塑性や架橋樹脂シートと積層することもでき
る。シートの場合は、極力単繊維化する事が望ましく、
スタンピング成形等の流動性が良く、外観の良好な成形
品が得られる。また、本発明は、本発明の制御機構を射
出成形機、ブロー成形機、チューブやパイプ、シート成
形機のスクリュやシリンダに設け、開繊度合と繊維長を
制御すると同時に、成形して得られる各種構造物をも包
含する。
The fiber-reinforced thermoplastic structure of the present invention is obtained by extruding and pelletizing a rod-like structure using an extruder and a strand die provided with a specific degree of opening and a fiber length control mechanism. Can be a reinforced thermoplastic pellet structure. This pellet structure can be molded by a known molding method such as injection molding, injection press molding, extrusion molding of tubes, pipes and sheets, and blow molding, and is a molded product having better fluidity and appearance than the conventional pultrusion method. Is obtained. At the time of molding, in order to suppress breakage of the reinforcing fibers, it is desirable to increase the shape of the nozzle or gate and to set the groove depth of the molding machine screw to be equal to or larger than the pellet size.
Further, the present invention also includes a sheet structure obtained by using a sheet die, using a polishing roll or a rolling roll, and further using a double belt press or the like. At this time, it can be laminated with a fiber mat or another thermoplastic or crosslinked resin sheet. In the case of a sheet, it is desirable to make it as a single fiber as much as possible,
A molded article having good fluidity such as stamping molding and having a good appearance can be obtained. Further, the present invention is obtained by providing the control mechanism of the present invention in an injection molding machine, a blow molding machine, a tube or a pipe, a screw or a cylinder of a sheet molding machine, controlling the degree of opening and the fiber length, and simultaneously molding. Various structures are also included.

【0031】本発明の好ましい製造方法の特徴として、
公知の熱可塑性樹脂のアロイ化や種々の添加剤等の添加
が同時に行える点が挙げられる。
As a feature of the preferred production method of the present invention,
Alloying of a known thermoplastic resin and addition of various additives can be performed at the same time.

【0032】本発明の繊維強化熱可塑性樹脂構造物に
は、目的に応じ所望の特性を付与するため、一般に熱可
塑性樹脂に用いられる公知の物質、例えば、酸化防止
剤、耐熱安定剤、紫外線吸収剤などの公知の安定剤、帯
電防止剤、難燃剤、難燃助剤、染料や含量等の着色剤、
潤滑剤、可塑剤、結晶化促進剤、結晶核剤等を配合する
事ができる。また、ガラスフレーク、ガラス粉、ガラス
ビーズ、シリカ,モンモリナイト、石英、タルク,クレ
ー、アルミナ、カーボンブラック、ウオラストナイト、
マイカ、炭酸カルシウム、金属粉等の無機充填剤を同時
に配合することも可能である。
In order to impart desired properties to the fiber-reinforced thermoplastic resin structure according to the present invention, known materials generally used for thermoplastic resins, for example, antioxidants, heat stabilizers, ultraviolet absorbers Known stabilizers such as agents, antistatic agents, flame retardants, flame retardant aids, coloring agents such as dyes and contents,
Lubricants, plasticizers, crystallization accelerators, nucleating agents and the like can be added. In addition, glass flakes, glass powder, glass beads, silica, montmorillonite, quartz, talc, clay, alumina, carbon black, wollastonite,
It is also possible to mix inorganic fillers such as mica, calcium carbonate and metal powder at the same time.

【0033】次に、本発明の好ましい製造方法の具体例
を図で説明する。図4は本発明で好ましく使用される二
条ネジスクリュ式二軸押出機の全体断面図であり、第1
の供給口4より熱可塑性樹脂を供給し、スクリュ6によ
って押出し方向に搬送されながら溶融され、ニーディン
グゾーン7にて完全に熱可塑性樹脂を溶融する。その
後、強化繊維の投入口5よりロービング状態の繊維を供
給して、順ネジのフルフライト8で構成されたスクリュ
によって溶融樹脂と繊維はスクリュ先端へと送られる。
投入口に隣接した制御機構部9によって、繊維を開繊し
繊維長を制御した後、ダイス10を通って繊維強化熱可
塑性樹脂構造物11を得る。尚、スクリュ凹凸面形成部
9に対応するシリンダ内壁12に、凹凸面形成部13を
形成することも可能である。
Next, a specific example of a preferred production method of the present invention will be described with reference to the drawings. FIG. 4 is an overall sectional view of a twin-screw twin-screw extruder preferably used in the present invention.
The thermoplastic resin is supplied from the supply port 4 and melted while being conveyed in the extrusion direction by the screw 6, and completely melted in the kneading zone 7. After that, the fibers in the roving state are supplied from the inlet 5 for the reinforcing fibers, and the molten resin and the fibers are sent to the screw tip by the screw composed of the full flight 8 of the forward screw.
After the fiber is opened and the fiber length is controlled by the control mechanism 9 adjacent to the inlet, the fiber-reinforced thermoplastic resin structure 11 is obtained through the die 10. In addition, it is also possible to form the uneven surface forming part 13 on the cylinder inner wall 12 corresponding to the screw uneven surface forming part 9.

【0034】[0034]

【実施例】以下に、実施例によって本発明を更に詳しく
説明するが、本発明はこれらに限定されるものではな
い。実施例、比較例中で示される各物性値は、10個の
サンプルについて測定した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. Each property value shown in Examples and Comparative Examples was measured for 10 samples.

【0035】アイゾット衝撃強度の評価方法は、AST
M D−256に従って測定し、曲げ弾性率の評価はA
STM D−790に従って測定した。シートの場合
は、シートから試験片を切り出して測定した。組成物中
の繊維の観察は、成形品の一部を500℃の電気炉内で
熱可塑性樹脂のみ燃焼させ、繊維含有量と繊維長を測定
した。繊維長は、重量平均繊維長(Lw)と数平均繊維
長(Ln)を求め、分布Lw/Lnを求めた。尚、成形
品のコーナー部分についても同様に燃焼させ繊維含有量
を測定した。繊維の開繊度合については、厚み1mmに
加工した構造物を軟X線写真で観察し、濃淡ムラの部分
が3mm角超ある場合をX、3mm以下の場合を△、無
い場合を○として判定した。また、シート押出時の吐出
安定性は、部分的にダイ詰まりを発生する場合をX、シ
ート幅方向に吐出速度にムラがある場合を△、無い場合
を○として判定した。
The method for evaluating the Izod impact strength is AST
It was measured according to MD-256, and the flexural modulus was evaluated as A
Measured according to STM D-790. In the case of a sheet, a test piece was cut out from the sheet and measured. In the observation of the fibers in the composition, a part of the molded product was burned with only the thermoplastic resin in an electric furnace at 500 ° C., and the fiber content and the fiber length were measured. As the fiber length, a weight average fiber length (Lw) and a number average fiber length (Ln) were obtained, and a distribution Lw / Ln was obtained. The corner portion of the molded product was similarly burned to measure the fiber content. Regarding the degree of fiber opening, the structure processed to a thickness of 1 mm was observed with a soft X-ray photograph, and X was determined when there was more than 3 mm square of shading unevenness, and Δ was determined when it was 3 mm or less, and O was determined when there was no unevenness. did. The discharge stability during sheet extrusion was determined as X when partial die clogging occurred, as Δ when there was unevenness in the discharge speed in the sheet width direction, and as ○ when there was no unevenness in the discharge speed in the sheet width direction.

【0036】樹脂の相対粘度は、オルソクロロフェノー
ルに0.5g/dlの濃度で溶解した後、25℃で測定
した。 [実施例1、比較例1−3]図4のごとく押出し方向に
2つの供給口を有するスクリュ径30mm,L/D4
5.5の同方向回転2軸押出機((株)日本製鋼所製T
EX30)を用い、2条ネジで相互の噛み合い3.5m
mのスクリュを使用し、第一の樹脂供給口と強化繊維投
入口の間にL/D=1の45度に傾いた5枚のニーディ
ングディスクからなるスクリュエレメントを、順逆の順
番に組み合わせて設けた。強化繊維投入口の吐出側にL
/D=1のフルフライトスクリュを介して、図2a.
(ピッチ1mm、先端角30度)加工を行ったL/D=
0.75、楕円断面のニュートラルエレメントを用いて
制御機構部とした。スクリュ式ペレット供給装置によっ
て樹脂供給口に、ポリエチレンテレフタレートペレット
(相対粘度1.35)を供給し、繊維投入口から直径1
7μm,1000m当たり2200gのガラスロービン
グ(日本電気硝子(株)製)を導入し、シリンダ温度2
80℃,スクリュ回転数200rpmの条件で、厚み4
mm,幅50mmのダイスからシート状に押出し、キャ
スティングロールで冷却後、繊維強化シートを得た。得
られたシートのガラス繊維含量は、25wt%あった。
The relative viscosity of the resin was measured at 25 ° C. after dissolving it in orthochlorophenol at a concentration of 0.5 g / dl. Example 1, Comparative Example 1-3 As shown in FIG. 4, a screw diameter of 30 mm having two supply ports in the extrusion direction, L / D4
5.5 co-rotating twin-screw extruder (T, manufactured by Japan Steel Works, Ltd.)
EX30), using two threads to engage each other 3.5 m
m, and screw elements composed of five kneading disks inclined at 45 degrees with L / D = 1 between the first resin supply port and the reinforcing fiber input port are combined in reverse order. Provided. L on the discharge side of the reinforcing fiber input port
Via a full flight screw with / D = 1, FIG. 2a.
(Pitch 1 mm, tip angle 30 degrees) L / D processed
The control mechanism was formed using a neutral element having an oval cross section of 0.75. A polyethylene terephthalate pellet (relative viscosity: 1.35) is supplied to a resin supply port by a screw-type pellet supply device, and a diameter of 1 mm is supplied from a fiber input port.
7 μm, 2200 g of glass roving per 1000 m (manufactured by NEC Corporation) was introduced, and cylinder temperature 2
At a temperature of 80 ° C and a screw rotation speed of 200 rpm, a thickness of 4
The sheet was extruded into a sheet from a die having a width of 50 mm and a width of 50 mm, and cooled with a casting roll to obtain a fiber reinforced sheet. The glass fiber content of the obtained sheet was 25% by weight.

【0037】比較のため、上記ポリエチレンテレフタレ
ートパウダと繊維径17μm、繊維長13mmのチョッ
プドストランドを用い、特開平3−7307号公報と同
様な抄紙法で、ガラス繊維含量25wt%の多孔質のウ
エブシートを作成した。このウエブを5枚重ね、約28
0℃でプレス成形し、シートを得た(比較例1)。
For comparison, a porous web sheet having a glass fiber content of 25 wt% was prepared by the same papermaking method as in JP-A-3-7307 using the above polyethylene terephthalate powder and chopped strands having a fiber diameter of 17 μm and a fiber length of 13 mm. It was created. Five of these webs are stacked and about 28
Press molding was performed at 0 ° C. to obtain a sheet (Comparative Example 1).

【0038】また、特開昭63−9511号公報と同様
な方法で、比較例1と同様のポリエチレンテレフタレー
トとガラス繊維をヘンシェルミキサで混合後、ラム式押
出機によりシ−ト状に押出し、ガラス繊維含量25%の
シートを得た(比較例2)。
Further, the same polyethylene terephthalate and glass fiber as in Comparative Example 1 were mixed in a Henschel mixer in the same manner as in JP-A-63-9511, and extruded in a sheet form using a ram extruder. A sheet having a fiber content of 25% was obtained (Comparative Example 2).

【0039】更に、実施例と同様なポリエチレンテレフ
タレートとガラスロービングを用い、公知のクロスヘッ
ドダイ式プルトルージョン法で、ペレット長13mmに
カッティングし、ガラス含量25wt%の長繊維補強ペ
レットを得た。このペレットを約280℃で、シート状
にプレス成形した(比較例3)。
Further, using the same polyethylene terephthalate and glass roving as in the example, cutting was performed to a pellet length of 13 mm by a known crosshead die-type pultrusion method to obtain a long fiber reinforced pellet having a glass content of 25 wt%. The pellets were press-formed into a sheet at about 280 ° C. (Comparative Example 3).

【0040】表1のごとく、シートの繊維長や分布およ
び機械的性質を測定したところ、本実施例では優れた機
械的性質が得られたが、比較例1、2では、溶融混練に
よって特定の繊維長分布が得られないため、繊維長が長
いにもかかわらず、低い衝撃強度しか得られなかった。
また、比較例3では、ガラスロービングが開繊していな
いため、プレス成形で樹脂とガラス繊維が分離してしま
い均一なシートが得られず、機械的性質が測定できなか
った。 [実施例2−4、比較例4−5]強化繊維投入口の吐出
側に隣接して図2a.(ピッチ0.5mm,先端角60
度)、図2e.(Rz=90μm)の加工を行ったL/
D=0.75、楕円断面のニュートラルエレメント(実
施例2、3)および図3e.(セレーション加工、溝深
さ1mm)の加工を行ったL/D=1の順フルフライト
エレメント(実施例4)を用い、スクリュ回転数150
rpmの条件押出した以外は、実施例1と同様に、シー
ト状に押出しキャスティングロールで冷却後、繊維強化
シートを得た。
As shown in Table 1, when the fiber length, distribution, and mechanical properties of the sheet were measured, excellent mechanical properties were obtained in this example. However, in Comparative Examples 1 and 2, specific properties were obtained by melt-kneading. Since no fiber length distribution was obtained, only a low impact strength was obtained despite the long fiber length.
In Comparative Example 3, since the glass roving was not opened, the resin and the glass fiber were separated by press molding, so that a uniform sheet could not be obtained, and the mechanical properties could not be measured. Example 2-4, Comparative Example 4-5 FIG. (Pitch 0.5mm, Tip angle 60
Degree), FIG. 2e. (Rz = 90 μm)
D = 0.75, neutral element with elliptical cross section (Examples 2, 3) and FIG. (Serial processing, groove depth 1 mm) Using a full-flight element with L / D = 1 (Example 4), screw rotation speed 150
A fiber-reinforced sheet was obtained after extrusion in the form of a sheet and cooling with a casting roll in the same manner as in Example 1 except that the extrusion was carried out at rpm.

【0041】比較のため、実施例4の加工した順フルフ
ライトエレメントの代わりに加工を行わない順フルフラ
イト(比較例4)および実施例2の加工したニュートラ
ルエレメントの代わりに加工しないニュートラルエレメ
ント(比較例5)を用いたシートも同様に成形した。
For comparison, a forward full flight without processing in place of the processed forward full flight element of Example 4 (Comparative Example 4) and a neutral element without processing in place of the processed neutral element of Example 2 (Comparative Example) A sheet using Example 5) was similarly formed.

【0042】表2のごとく、比較例4、5ではダイス圧
力が高く吐出ムラが生じ、シート中のガラス繊維の開繊
度合にムラがあったが、本実施例では良好なシートが得
られた。 [実施例5、比較例5−6]ガラス繊維含量を45wt
%とし、シートの代わりに4mm径の丸棒に押出し、約
10mm長にペレタイズした以外は、実施例2と同様
に、長繊維補強ペレットを製造した。
As shown in Table 2, in Comparative Examples 4 and 5, the die pressure was high and the discharge unevenness occurred, and the degree of opening of the glass fibers in the sheet was uneven. However, in this example, a good sheet was obtained. . Example 5, Comparative Example 5-6 The glass fiber content was 45 wt.
%, And extruded into a 4 mm-diameter round bar instead of a sheet, and pelletized to a length of about 10 mm to produce a long fiber reinforced pellet in the same manner as in Example 2.

【0043】比較のため、実施例5と同様のスクリュア
レンジで、10mm長のチョップドストランドを繊維投
入口から添加する方法(比較例6)、10mm長のチョ
ップドストランドを用いて、実施例1と同様なニーディ
ングディスクを繊維投入口以降にも用いる方法(比較例
7)、更に公知のプルトルージョン法(比較例8)でペ
レットを製造した。
For comparison, in the same screw arrangement as in Example 5, a method of adding a 10 mm-long chopped strand from the fiber inlet (Comparative Example 6) was carried out in the same manner as in Example 1 using a 10 mm-long chopped strand. Pellets were produced by a method in which a suitable kneading disk was used even after the fiber inlet (Comparative Example 7), and further by a known pultrusion method (Comparative Example 8).

【0044】表3のごとく、比較例6の場合はチョップ
ドストランドがスクリュに巻付かないため開繊せず、ダ
イ詰まりを発生しペレタイズできなかった。また、比較
例8はストランドの引取速度を速くすると切断してしま
うため生産性が悪く、射出成形時の流動性にも劣った。
本実施例のペレットは成形時の流動性が良く、射出成形
品の繊維長が短いにも拘らず、機械的性質がプルトルー
ジョン法並みであった。 [実施例6、比較例9]フルフライトスクリュを有する
射出成形機のベント口吐出口側隣接位置に、L/D=1
の図2e.およびf.の加工(溝深さ,ピッチ各1m
m)を施したスクリュおよびシリンダを用い、ホッパか
らポリブチレンテレフタレート樹脂(相対粘度1.4
5)を、ベント口から実施例1のガラスロービングを供
給し約250℃で射出成形した。
As shown in Table 3, in the case of Comparative Example 6, the chopped strand was not wound around the screw, so the fiber was not opened, the clogging of the die occurred, and pelletization was not possible. Further, in Comparative Example 8, if the strand take-up speed was increased, the strand was cut, resulting in poor productivity and poor fluidity during injection molding.
The pellets of this example had good fluidity during molding and had mechanical properties comparable to those of the pultrusion method, despite the fact that the fiber length of the injection molded product was short. [Embodiment 6 and Comparative Example 9] L / D = 1 at a position adjacent to the vent port discharge port side of an injection molding machine having a full flight screw.
Figure 2e. And f. Processing (groove depth, pitch 1m each)
m), a polybutylene terephthalate resin (relative viscosity 1.4
5) was injection-molded at about 250 ° C. by supplying the glass roving of Example 1 from the vent port.

【0045】また、加工を施さない場合(比較例9)と
比較した。
In addition, a comparison was made with the case where no processing was performed (Comparative Example 9).

【0046】表4のごとく、本実施例6は成形時の流動
性が良く、成形品外観不良も発生しなかった。 [実施例7、比較例10]フルフライトスクリュのブロ
ー成形機を用いた以外は、実施例6と同様にブロー成形
を行った。
As shown in Table 4, in Example 6, the fluidity at the time of molding was good, and the appearance of the molded product did not deteriorate. Example 7, Comparative Example 10 Blow molding was performed in the same manner as in Example 6, except that a blow molding machine for a full flight screw was used.

【0047】また、実施例7において加工を施したフル
フライトスクリュのかわりに加工を施さないフルフライ
トスクリュを用いた場合(比較例10)と比較した。
Further, a comparison was made with the case of using a non-processed full-flight screw in place of the processed full-flight screw in Example 7 (Comparative Example 10).

【0048】本実施例7では、溶融パリソンの中のLw
=4.9mm、Lw/Ln=2.1であり、吐出が安定
し良好な成形品が得られたが、比較例10では、Lw=
8.9mm、Lw/Ln=3.4で、パリソンが垂直に
垂れず左右に触れるため、大量のバリが発生した。 [実施例8−11、比較例11−13]ピッチ1mmの
図a.のスクリュエレメント、ポリブチレンテレフタレ
ートを用いた以外は実施例5と同様に、繊維含量を変え
た5mm長のペレットを製造し、射出成形して物性を測
定した(表5)。
In the seventh embodiment, Lw in the molten parison
= 4.9 mm, Lw / Ln = 2.1, and a stable molded article with stable discharge was obtained.
At 8.9 mm, Lw / Ln = 3.4, a large amount of burrs occurred because the parison touched right and left without sagging vertically. Example 8-11, Comparative Example 11-13 FIG. In the same manner as in Example 5, except that the screw element and polybutylene terephthalate were used, 5 mm-long pellets having different fiber contents were produced, injection-molded, and the physical properties were measured (Table 5).

【0049】比較のため繊維投入口から投入する代わり
に、樹脂投入口からガラスロービングを投入した。
For comparison, glass roving was introduced from the resin inlet instead of from the fiber inlet.

【0050】表5のごとく、本発明のペレット構造物
(実施例8−11)では、良好な物性が得られた。 [実施例12−15、比較例14]炭素繊維(東レ製”
トレカ”T−300B)ロ−ビングを用いた以外は実施
例5と同様の方法で、繊維含量を変え3mm長のペレッ
トを製造し、射出成形した。
As shown in Table 5, good physical properties were obtained with the pellet structure of the present invention (Examples 8-11). [Examples 12-15, Comparative Example 14] Carbon fiber (manufactured by Toray)
Except for using a trader "T-300B) roving, the same method as in Example 5 was used to produce a 3 mm long pellet with a different fiber content and injection molding.

【0051】また、比較のために繊維投入口から投入す
るかわりに樹脂投入口からも投入した。
For comparison, the resin was also introduced from the resin inlet instead of the fiber inlet.

【0052】表6のごとく、本発明のペレット構造物
(実施例12−15)では、繊維長が長く良好な物性が
得られた。
As shown in Table 6, in the pellet structure of the present invention (Examples 12 to 15), the fiber length was long and good physical properties were obtained.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【表5】 [Table 5]

【0058】[0058]

【表6】 [Table 6]

【0059】[0059]

【発明の効果】以上の説明および実施例から明らかなよ
うに、本発明では、開繊度合を制御して強化繊維を均一
に分散させると共に、その重量平均繊維長を長く保った
まま、混練作用によって特定の繊維長分布にする事によ
って、流動性、機械的性質や表面平滑性等に優れた繊維
強化熱可塑性樹脂構造物を得ることが可能であり、更に
連続した強化繊維がスクリュに巻き込まれることおよ
び、スクリュ外周及び/またはシリンダ内面に施した加
工によって、連続した強化繊維に櫛作用を及ぼし、強化
繊維の開繊度合や繊維長を制御することができる。これ
により、従来得られなかった高い生産性と成形時の良流
動性、優れた機械的性質や表面特性の繊維強化熱可塑性
構造物を得ることが可能であり、極めて工業的な価値の
高いものである。
As is apparent from the above description and Examples, in the present invention, the knitting action is performed while controlling the degree of fiber opening to uniformly disperse the reinforcing fibers and keeping the weight-average fiber length long. By making a specific fiber length distribution, it is possible to obtain a fiber-reinforced thermoplastic resin structure excellent in fluidity, mechanical properties, surface smoothness, etc., and further, continuous reinforcing fibers are caught in the screw In addition, by the process performed on the screw outer periphery and / or the cylinder inner surface, a comb action is exerted on the continuous reinforcing fibers, and the degree of opening and the fiber length of the reinforcing fibers can be controlled. As a result, it is possible to obtain a fiber-reinforced thermoplastic structure having high productivity and good fluidity during molding, excellent mechanical properties and surface properties, which have not been obtained conventionally, and which has extremely high industrial value. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、スクリュ径30mmの二軸押出機と
ポリエチレンテレフタレートを使用して、ガラスロービ
ングの巻き込まれ速度とスクリュ回転数の関係を示した
グラフである。破線は最外周スクリュフライトの周速、
実線はロービングの巻き込まれ速度を示す。
FIG. 1 is a graph showing a relationship between a winding speed of glass roving and a screw rotation speed using a twin screw extruder having a screw diameter of 30 mm and polyethylene terephthalate. The broken line indicates the peripheral speed of the outermost screw flight,
The solid line shows the roving entrainment speed.

【図2】 図2は本発明で好ましい加工を施したスクリ
ュおよびシリンダの切開斜視図である。
FIG. 2 is a cutaway perspective view of a screw and a cylinder that have been subjected to a preferred working in the present invention.

【図3】 図3a、c、eは本発明で好ましい加工を施
したスクリュの側面図であり、図3b、d、fは本発明
で好ましい加工を施したシリンダーの切開斜視図であ
る。
FIGS. 3a, 3c and 3e are side views of a screw which has been subjected to a preferred working in the present invention, and FIGS. 3b, 3d and 3f are cutaway perspective views of a cylinder which has been subjected to a preferred working in the present invention.

【図4】 図4は本発明で好ましく使用される供給口を
2ケ設けた押出機の全体断面図である。
FIG. 4 is an overall sectional view of an extruder provided with two supply ports preferably used in the present invention.

【符号の説明】[Explanation of symbols]

1.スクリュフルフライト部 2.フライト面 3.シリンダ内壁 4.第1の供給口 5.第2の供給口 6.スクリュ 7.ニーディングゾーン 8.順ネジのフルフライト 9.スクリュ凹凸面形成部 10.ダイス 11.繊維強化熱可塑性樹脂構造物 12.シリンダ内面 13.凹凸面形成部 1. Screw full flight section 2. Flight surface 3. 3. Inner wall of cylinder First supply port 5. Second supply port 6. Screw 7. Kneading zone 8. 8. Full flight of forward screw Screw uneven surface forming part 10. Dice 11. 11. Fiber-reinforced thermoplastic resin structure 12. Inner surface of cylinder Uneven surface forming part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 101:00 C08L 101:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C08L 101: 00 C08L 101: 00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂と強化繊維を含み、均一に
分散した強化繊維の重量平均繊維長と数平均繊維長の比
が1.1〜3であり、重量平均繊維長が2.0mm〜1
5mmであることを特徴とする繊維強化熱可塑性樹脂構
造物。
1. A ratio of a weight average fiber length to a number average fiber length of a uniformly dispersed reinforcing fiber containing a thermoplastic resin and a reinforcing fiber is from 1.1 to 3, and the weight average fiber length is from 2.0 mm to 2.0 mm. 1
A fiber-reinforced thermoplastic resin structure having a size of 5 mm.
【請求項2】 重量平均繊維長が4.5mm〜12mm
であることを特徴とする請求範囲第1項記載の繊維強化
熱可塑性樹脂構造物。
2. The weight-average fiber length is 4.5 mm to 12 mm.
The fiber-reinforced thermoplastic resin structure according to claim 1, wherein:
【請求項3】 繊維強化熱可塑性樹脂構造物がシート
状、棒状の形状を有するものである請求項1または2記
載の繊維強化熱可塑性樹脂構造物。
3. The fiber-reinforced thermoplastic resin structure according to claim 1, wherein the fiber-reinforced thermoplastic resin structure has a sheet shape or a rod shape.
【請求項4】 繊維強化熱可塑性樹脂構造物が押出成形
により得られたものである請求項1または2記載の繊維
強化熱可塑性樹脂構造物。
4. The fiber-reinforced thermoplastic resin structure according to claim 1, wherein the fiber-reinforced thermoplastic resin structure is obtained by extrusion molding.
【請求項5】 請求項3または4記載の繊維強化熱可塑
性樹脂構造物をカッティングして得られる繊維強化熱可
塑性ペレット構造物。
5. A fiber-reinforced thermoplastic pellet structure obtained by cutting the fiber-reinforced thermoplastic resin structure according to claim 3 or 4.
【請求項6】 ペレット長が、カッティング前の繊維強
化熱可塑性樹脂構造物の重量平均繊維長の1/2以上で
あり、ペレット中の重量平均繊維長がペレット長の0.
9以下であることを特徴とする請求項5記載の繊維強化
熱可塑性ペレット構造物。
6. The pellet length is at least の of the weight average fiber length of the fiber reinforced thermoplastic resin structure before cutting, and the weight average fiber length in the pellet is 0.1% of the pellet length.
The fiber-reinforced thermoplastic pellet structure according to claim 5, wherein the number is 9 or less.
JP2000361290A 1993-07-21 2000-11-28 Fiber-reinforced thermoplastic resin structure Pending JP2001192466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000361290A JP2001192466A (en) 1993-07-21 2000-11-28 Fiber-reinforced thermoplastic resin structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18052493 1993-07-21
JP5-180524 1993-07-21
JP2000361290A JP2001192466A (en) 1993-07-21 2000-11-28 Fiber-reinforced thermoplastic resin structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30144593A Division JP3646316B2 (en) 1993-07-21 1993-12-01 Manufacturing method of fiber reinforced thermoplastic resin structure and extruder for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001192466A true JP2001192466A (en) 2001-07-17

Family

ID=26500022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000361290A Pending JP2001192466A (en) 1993-07-21 2000-11-28 Fiber-reinforced thermoplastic resin structure

Country Status (1)

Country Link
JP (1) JP2001192466A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005161850A (en) * 2003-11-13 2005-06-23 Doshisha Method for manufacturing resin composition
JP2011178891A (en) * 2010-03-01 2011-09-15 Teijin Ltd Carbon fiber composite material
WO2015025800A1 (en) * 2013-08-23 2015-02-26 株式会社日本製鋼所 Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
RU2558516C1 (en) * 2012-07-31 2015-08-10 Тейдзин Лимитед Mat with optional orientation of fibres, and formed product out of fibre reinforced composite material
RU2558904C1 (en) * 2012-08-01 2015-08-10 Тейдзин Лимитед Mat with arbitrary orientation of fibres and moulded product of fibre-reinforced composite material
JP2016087896A (en) * 2014-10-31 2016-05-23 株式会社日本製鋼所 Twin screw extruder used for producing fiber-reinforced resin composition
JP2019198828A (en) * 2018-05-17 2019-11-21 エムケー精工株式会社 Washing device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537180B2 (en) * 2003-11-13 2010-09-01 学校法人同志社 Method for producing resin composition
JP2005161850A (en) * 2003-11-13 2005-06-23 Doshisha Method for manufacturing resin composition
JP2011178891A (en) * 2010-03-01 2011-09-15 Teijin Ltd Carbon fiber composite material
RU2558516C1 (en) * 2012-07-31 2015-08-10 Тейдзин Лимитед Mat with optional orientation of fibres, and formed product out of fibre reinforced composite material
US10738168B2 (en) 2012-08-01 2020-08-11 Teijin Limited Random mat and fiber-reinforced composite material shaped product
US11168186B2 (en) 2012-08-01 2021-11-09 Teijin Limited Random mat and fiber-reinforced composite material shaped product
RU2558904C1 (en) * 2012-08-01 2015-08-10 Тейдзин Лимитед Mat with arbitrary orientation of fibres and moulded product of fibre-reinforced composite material
WO2015025800A1 (en) * 2013-08-23 2015-02-26 株式会社日本製鋼所 Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
KR101957554B1 (en) * 2013-08-23 2019-03-12 더 재팬 스틸 워크스 엘티디 Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
US10427325B2 (en) 2013-08-23 2019-10-01 The Japan Steel Works, Ltd. Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
KR20160045111A (en) * 2013-08-23 2016-04-26 더 재팬 스틸 워크스 엘티디 Twin screw extruder for use in manufacturing fiber-reinforced resin composition and process for manufacturing fiber-reinforced resin composition
JP2015039879A (en) * 2013-08-23 2015-03-02 株式会社日本製鋼所 Twin screw extruder used for producing fiber-reinforced resin composition and production method of fiber-reinforced resin composition
JP2016087896A (en) * 2014-10-31 2016-05-23 株式会社日本製鋼所 Twin screw extruder used for producing fiber-reinforced resin composition
JP2019198828A (en) * 2018-05-17 2019-11-21 エムケー精工株式会社 Washing device
JP7011976B2 (en) 2018-05-17 2022-02-10 エムケー精工株式会社 Cleaning equipment

Similar Documents

Publication Publication Date Title
US6060010A (en) Fiber reinforced thermoplastic resin structure, process for production of same, and extruder for production of the same
KR100475398B1 (en) A method of forming a light-weight, fiber-reinforced thermoplastic resin product and a light-weight molded product
JP3646316B2 (en) Manufacturing method of fiber reinforced thermoplastic resin structure and extruder for manufacturing the same
JP2001192466A (en) Fiber-reinforced thermoplastic resin structure
JP3584890B2 (en) Thermoplastic resin molded article and method for producing the same
JPH081662A (en) Production of fiber-reinforced thermoplastic resin pellet, fiber-reinforced thermoplastic resin pellet, and die device
JPS63132036A (en) Manufacture of fiber reinforced composite material
JPH0860001A (en) Fiber-reinforced thermoplastic resin pellet and production thereof
JPH0859889A (en) Fiber-reinforced thermoplastic resin sheet and its production
JP3683080B2 (en) Resin composition, injection molded product having hollow portion, and injection molding method
JPH09235382A (en) Raw material for electromagnetic wave-shielding material and its production
JPH081664A (en) Production of fiber-reinforced thermoplastic resin structure, fiber-reinforced thermoplastic resin structure, and extruder
KR102309200B1 (en) Cleaning agent and cleaning method for molding machine cleaning
JPH09216966A (en) Fiber-reinforced thermoplastic resin molding, its production, composite article, and fiber-reinforced thermoplastic resin composition
JPH09296053A (en) Fiber-reinforced thermoplastic resin molding
JPH10237284A (en) Fiber reinforced thermoplastic resin composition and molded article
JPH09234734A (en) Carbon fiber reinforced thermoplastic resin pellet and its production
EP0241590B1 (en) Mixing mechanism for compounding filled plastics
JPH05228920A (en) Screw type kneader
JP2006001116A (en) Splittable shaping die for producing long fiber-reinforced thermoplastic resin structure and method for producing long fiber-reinforced thermoplastic resin structure using the die
JP3140545B2 (en) In-line two-stage extruder
JPH11170334A (en) Method and mold for producing tubular member
JPH02273206A (en) Manufacture of thermoplastic composite
JPH03126519A (en) Series two-stage extruding machine
JPH0517631A (en) Long-fiber-reinforced polyolefin resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928