JP2002299147A - Laminated ceramic capacitor - Google Patents
Laminated ceramic capacitorInfo
- Publication number
- JP2002299147A JP2002299147A JP2001098450A JP2001098450A JP2002299147A JP 2002299147 A JP2002299147 A JP 2002299147A JP 2001098450 A JP2001098450 A JP 2001098450A JP 2001098450 A JP2001098450 A JP 2001098450A JP 2002299147 A JP2002299147 A JP 2002299147A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- pseudo
- internal
- ceramic capacitor
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、積層セラミック
コンデンサに属し、特に容量精度に優れた積層セラミッ
クコンデンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor, and more particularly to a multilayer ceramic capacitor having excellent capacitance accuracy.
【0002】[0002]
【従来の技術】積層セラミックコンデンサは、一般に図
3に積層方向断面図として示すように、セラミック誘電
体層22と内部電極23,24とが交互に積層され、し
かも内部電極の一方の端部及び他方の端部がその積層体
20の両側に互い違いに露出するように形成され、そし
て同じ電位の内部電極23,23同士(及び24,24同
士)が積層体20側面の端子電極27(又は28)によっ
て接続されている。端子電極の外面は外部回路との接続
及び固定にも利用される。2. Description of the Related Art A multilayer ceramic capacitor generally has a ceramic dielectric layer 22 and internal electrodes 23 and 24 alternately stacked as shown in FIG. 3 as a sectional view in the stacking direction. The other end is formed so as to be alternately exposed on both sides of the laminate 20, and the internal electrodes 23, 23 (and 24, 24) having the same potential are connected to the terminal electrodes 27 (or 28) on the side surface of the laminate 20. ). The outer surface of the terminal electrode is also used for connection and fixing to an external circuit.
【0003】このような積層セラミックコンデンサは、
以下のような工程を経て製造される。まず、誘電体層と
なるセラミック粉末及び有機バインダーを含むスラリー
をシート状に成形し、得られたグリーンシートの表面に
金属粉末含有ペーストを内部電極パターンに印刷する。
こうして印刷されたグリーンシートを複数枚積層し、そ
の最上面及び/又は最下面に印刷されていないグリーン
シートを重ねる。そして、所定の大きさとなるように積
層方向に切断した後、残存バインダーを脱脂し、続いて
焼成する。その後、積層体の側面に端子電極となる金属
粉末含有ペーストを塗布し、焼き付けることによって、
積層セラミックコンデンサとなる。[0003] Such a multilayer ceramic capacitor includes:
It is manufactured through the following steps. First, a slurry containing a ceramic powder to be a dielectric layer and an organic binder is formed into a sheet, and a paste containing metal powder is printed on the surface of the obtained green sheet in an internal electrode pattern.
A plurality of green sheets printed in this manner are stacked, and an unprinted green sheet is stacked on the uppermost surface and / or lowermost surface. Then, after cutting in the laminating direction so as to have a predetermined size, the remaining binder is degreased and subsequently fired. Then, by applying and baking a metal powder-containing paste to be a terminal electrode on the side surface of the laminate,
It becomes a multilayer ceramic capacitor.
【0004】[0004]
【発明が解決しようとする課題】上記の脱脂工程では、
印刷などの前工程で酸化された金属粉末の表面酸素も残
存バインダー中の炭素によって還元されてバインダーと
同時に雰囲気に奪われていく。In the above degreasing step,
The surface oxygen of the metal powder oxidized in the previous process such as printing is also reduced by the carbon in the remaining binder, and is taken into the atmosphere at the same time as the binder.
【0005】しかし、内部電極に対して残存バインダー
の量が多いと、金属粉末表面の酸素が過剰に奪われる。
発明者らの検討結果によれば、その現象が特に内部電極
のうち積層体の側面より露出している部分で顕著であ
り、その露出部の酸素が奪われ、その部分が過焼結され
ることで端子電極との接合性を悪化させ、容量抜けなど
の不良に至ることが判明した。それ故、この発明の課題
は、端子電極との接合性を改善し、容量精度に優れた積
層セラミックコンデンサを提供することにある。[0005] However, if the amount of the remaining binder is large relative to the internal electrodes, oxygen on the surface of the metal powder is excessively deprived.
According to the study results of the inventors, the phenomenon is particularly remarkable in a portion of the internal electrode exposed from the side surface of the laminate, oxygen in the exposed portion is deprived, and the portion is over-sintered. As a result, it was found that the bondability with the terminal electrode was degraded, resulting in a defect such as loss of capacitance. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a multilayer ceramic capacitor which has improved jointability with a terminal electrode and has excellent capacitance accuracy.
【0006】[0006]
【課題を解決するための手段】その課題を解決するため
に、この発明は、互いに電位の異なる第1、第2の内部
電極がセラミック誘電体層を挟んで交互に積層され、第
1内部電極同士を接続する第1の端子電極がその積層体
の一方の側面に形成され、第2内部電極同士を接続する
第2の端子電極が他方の側面に形成されている積層セラ
ミックコンデンサにおいて、第1の端子電極に接続され
る第1の擬似電極が、第1の内部電極が形成された誘電
体層間と隣り合う誘電体層間であって、少なくともその
内部電極の第1の端子電極との接続側端部の幅方向両端
に対応する位置に形成され、第2の端子電極に接続され
る第2の擬似電極が、第2の内部電極が形成された誘電
体層間と隣り合う誘電体層間であって、少なくともその
内部電極の第1の端子電極との接続側端部の幅方向両端
に対応する位置に形成されていることを特徴とする。In order to solve the problem, the present invention is directed to a first internal electrode having first and second internal electrodes having different potentials alternately stacked with a ceramic dielectric layer interposed therebetween. In a multilayer ceramic capacitor in which a first terminal electrode connecting them is formed on one side surface of the laminate and a second terminal electrode connecting the second internal electrodes is formed on the other side surface, The first pseudo electrode connected to the first terminal electrode is a dielectric layer adjacent to the dielectric layer on which the first internal electrode is formed, and at least a connection side of the internal electrode to the first terminal electrode. A second pseudo electrode formed at a position corresponding to both ends in the width direction of the end and connected to the second terminal electrode is a dielectric layer adjacent to the dielectric layer on which the second internal electrode is formed. And at least a first of its internal electrodes Characterized in that it is formed at a position corresponding to both widthwise ends of the connecting end portion of a child electrodes.
【0007】このように擬似電極が形成されているの
で、脱脂の際に奪われようとする酸素が擬似電極からも
供給される。従って、内部電極から酸素が過剰に奪われ
ることが防止され、それらの内部電極と端子電極との接
合性が良好となる。一方、擬似電極はその直上又は直下
の内部電極と同じ側の端子電極に接続されていて、その
内部電極と同電位であることから、元々コンデンサの容
量電極として機能していない。従って、設計上、容量値
に影響しない。よって、内部電極と端子電極との接合性
が改善される結果、容量抜けが防止される分だけ容量精
度が向上する。[0007] Since the pseudo electrode is formed in this manner, oxygen that is about to be deprived during degreasing is also supplied from the pseudo electrode. Accordingly, excessive deprivation of oxygen from the internal electrodes is prevented, and the bondability between the internal electrodes and the terminal electrodes is improved. On the other hand, the pseudo electrode is connected to a terminal electrode on the same side as the internal electrode immediately above or below it and has the same potential as the internal electrode, and therefore does not originally function as a capacitor electrode of the capacitor. Therefore, the capacitance value is not affected in design. Therefore, as a result of the improvement of the joining property between the internal electrode and the terminal electrode, the capacitance accuracy is improved by the amount corresponding to the prevention of the capacitance loss.
【0008】尚、擬似電極に用いられる材質としては、
内部電極に用いられる材質と同じかそれよりもイオン化
傾向の大きい金属が好ましい。そのような金属からなる
擬似電極の表面に大気中酸化等により形成された金属酸
化物は内部電極よりも酸素を放出しやすいからでる。The materials used for the pseudo electrode include:
A metal having the same or higher ionization tendency than the material used for the internal electrode is preferable. This is because the metal oxide formed on the surface of the pseudo electrode made of such a metal by oxidation in the atmosphere or the like releases oxygen more easily than the internal electrode.
【0009】更に、前記第1の内部電極が形成された誘
電体層間と隣り合う全ての誘電体層間に前記第1の擬似
電極が、また前記第2の内部電極が形成された誘電体層
間と隣り合う全ての誘電体層間に前記第2の擬似電極が
形成されていると好ましい。これにより、内部電極と端
子電極との全ての接合が改善されるからである。Further, the first pseudo electrode is provided between all the dielectric layers adjacent to the dielectric layer on which the first internal electrode is formed, and between the dielectric layer on which the second internal electrode is formed. It is preferable that the second pseudo electrode is formed between all adjacent dielectric layers. This is because all bonding between the internal electrode and the terminal electrode is improved.
【0010】また、前記第1又は第2の擬似電極と前記
第1又は第2の内部電極との積層方向の間隔をA、第1
又は第2の擬似電極の接続側端部から非接続側端部に至
るまでの長さをBとするとき、Aが30μm以下、Bが
5A以上であると好ましい。Aが30μm以下のとき、
内部電極から奪われようとする酸素の一部が擬似電極か
らの酸素に効率よく代替されるし、Bが5A以上のとき
十分に代替されるからである。The distance between the first or second pseudo electrode and the first or second internal electrode in the stacking direction is A,
Alternatively, when the length from the connection side end to the non-connection side end of the second pseudo electrode is B, it is preferable that A is 30 μm or less and B is 5 A or more. When A is 30 μm or less,
This is because part of the oxygen that is about to be deprived from the internal electrode is efficiently replaced by oxygen from the pseudo electrode, and is sufficiently replaced when B is 5 A or more.
【0011】更にまた、前記第1又は第2の擬似電極
が、前記第1又は第2の内部電極の幅方向両端に各々対
応する位置に分離して形成されていると好ましい。内部
電極のうちで幅方向両端部分の表面酸素が最も奪われや
すいことから、その部分に対応する位置にだけ擬似電極
を設けることにより、擬似電極に用いられる材料を節約
することができるからである。Furthermore, it is preferable that the first or second pseudo electrode is formed separately at positions corresponding to both ends in the width direction of the first or second internal electrode. This is because the surface oxygen at both end portions in the width direction among the internal electrodes is most easily deprived, and by providing the pseudo electrode only at a position corresponding to that portion, the material used for the pseudo electrode can be saved. .
【0012】[0012]
【発明の実施の形態】−実施形態1− 図1は、この発明の積層セラミックコンデンサの実施形
態を示す積層方向断面図である。積層セラミックコンデ
ンサ1は、多数(図面では便宜上9枚)の誘電体層2a〜
2iが積層され、その層間に第1の内部電極3a〜3
c、第2の内部電極4a〜4c、第1の擬似電極5a〜
5d又は第2の擬似電極6a〜6dが形成された積層構
造をなし、その積層体10の一方の側に第1の端子電極
7、他方の側に第2の端子電極が形成されている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 FIG. 1 is a sectional view in the lamination direction showing an embodiment of a multilayer ceramic capacitor according to the present invention. The multilayer ceramic capacitor 1 has a large number (9 in the drawing, for convenience) of dielectric layers 2a to 2c.
2i are laminated, and the first internal electrodes 3a-3
c, second internal electrodes 4a to 4c, first pseudo electrodes 5a to 5c
The laminate 10 has a laminated structure in which 5d or the second pseudo electrodes 6a to 6d are formed. The first terminal electrode 7 is formed on one side of the laminated body 10 and the second terminal electrode is formed on the other side.
【0013】内部電極3a〜3cは、8つの誘電体層間
のうち誘電体層2c,2d間より始まって1つおきに設
けられ、積層体10の一方の側で端子電極7と接続し、
そこから他方の側に長く延びている。他方の内部電極4
a〜4cは、内部電極3a〜3cと交互に且つ反転する
方向に設けられている。最も下の誘電体層2a,2b間
及び最も上の誘電体層2h,2i間には内部電極は形成
されていない。The internal electrodes 3a to 3c are provided every other one of the eight dielectric layers starting from between the dielectric layers 2c and 2d, and are connected to the terminal electrode 7 on one side of the laminated body 10,
It extends long from there to the other side. The other internal electrode 4
a to 4c are provided alternately and in reverse directions with the internal electrodes 3a to 3c. No internal electrode is formed between the lowermost dielectric layers 2a and 2b and between the uppermost dielectric layers 2h and 2i.
【0014】また、擬似電極5a〜5dは、誘電体層2
b,2c間より始まって誘電体層2h,2i間に至るまで
内部電極3a〜3cと交互に、且つ平面視で内部電極3
a〜3cの端子電極7との接続部分に重なるように、更
に同じ平面内に内部電極4a〜4cのいずれかが存在す
る場合はそれと所定の絶縁性領域を隔てて形成されてい
る。他方の擬似電極6a〜6dも、誘電体層2a,2b
間より始まって誘電体層2g,2h間に至るまで内部電
極4a〜4cと交互に、且つ平面視で内部電極4a〜4
cの端子電極8との接続部分に重なるように、更に同じ
平面内に内部電極3a〜3cのいずれかが存在する場合
はそれと所定の絶縁性領域を隔てて形成されている。In addition, the pseudo electrodes 5a to 5d are
b and 2c, and alternately with the internal electrodes 3a to 3c until reaching between the dielectric layers 2h and 2i.
If any one of the internal electrodes 4a to 4c is present in the same plane, it is formed so as to overlap a connection portion between the terminal electrodes 7a and 3c and a predetermined insulating region. The other pseudo electrodes 6a to 6d also have the dielectric layers 2a and 2b.
Between the dielectric layers 2g and 2h and alternately with the internal electrodes 4a to 4c and in plan view.
If any one of the internal electrodes 3a to 3c is present in the same plane, it is formed so as to overlap a connection portion with the terminal electrode 8 of c.
【0015】上記誘電体層は、チタン酸バリウムなどの
セラミック誘電体材料を主成分とする。内部電極、擬似
電極及び端子電極は、いずれもニッケル、銅又はそれら
の合金からなる。但し、擬似電極と内部電極との関係で
は、脱脂時の酸素供給能力の観点から、擬似電極となる
金属のイオン化傾向が内部電極となる金属のそれよりも
低くならないように選定するのが好ましい。例えば、内
部電極がニッケルからなるときは、擬似電極をマグネシ
ウムやクロムの酸化物で形成するとよい。The dielectric layer is mainly composed of a ceramic dielectric material such as barium titanate. Each of the internal electrode, the pseudo electrode, and the terminal electrode is made of nickel, copper, or an alloy thereof. However, the relationship between the pseudo electrode and the internal electrode is preferably selected from the viewpoint of the oxygen supply capability during degreasing so that the ionization tendency of the metal forming the pseudo electrode is not lower than that of the metal forming the internal electrode. For example, when the internal electrode is made of nickel, the pseudo electrode may be formed of magnesium or chromium oxide.
【0016】積層セラミックコンデンサ1は、以下のよ
うな工程を経て製造される。まず、誘電体層となるセラ
ミック粉末及び有機バインダーを含むスラリーをシート
状に成形し、得られたグリーンシートの表面に金属粉末
含有ペーストを内部電極パターン及び擬似電極パターン
に印刷する。こうして印刷されたグリーンシートを8枚
積層し、その最上面に印刷されていない1枚のグリーン
シートを重ねる。そして、所定の大きさとなるように積
層方向に切断した後、残存バインダーを脱脂し、続いて
焼成する。その後、積層体の側面に端子電極となる金属
粉末含有ペーストを塗布し、焼き付けることによって、
積層セラミックコンデンサとなる。The multilayer ceramic capacitor 1 is manufactured through the following steps. First, a slurry containing a ceramic powder to be a dielectric layer and an organic binder is formed into a sheet, and a paste containing a metal powder is printed on the surface of the obtained green sheet in an internal electrode pattern and a pseudo electrode pattern. Eight green sheets printed in this manner are stacked, and one unprinted green sheet is stacked on the uppermost surface. Then, after cutting in the laminating direction so as to have a predetermined size, the remaining binder is degreased and subsequently fired. Then, by applying and baking a metal powder-containing paste to be a terminal electrode on the side surface of the laminate,
It becomes a multilayer ceramic capacitor.
【0017】積層セラミックコンデンサ1においては、
内部電極3a〜3cの端子電極7との各接続部を上下か
ら挟むように擬似電極5a〜5dが形成されているの
で、脱脂の際に奪われようとする酸素が擬似電極5a〜
5dからも供給される。従って、内部電極3a〜3cか
ら酸素が過剰に奪われることが防止され、それらの内部
電極と端子電極7との接合性が良好となる。内部電極4
a〜4cと端子電極8との接合性についても同様であ
る。擬似電極5a〜5dは、端子電極7に接続されてい
て、その直上又は直下の内部電極3a〜3cと同電位で
あることから、内部電極3a〜3cとの間で容量成分を
形成しない。従って、設計上、容量値に影響しない。擬
似電極6a〜6dも同様である。よって、内部電極と端
子電極との接合性が改善される結果、容量抜けが防止さ
れる分だけ容量精度が向上する。In the multilayer ceramic capacitor 1,
Since pseudo electrodes 5a to 5d are formed so as to sandwich each connection portion of internal electrodes 3a to 3c with terminal electrode 7 from above and below, oxygen which is about to be deprived during degreasing is reduced to pseudo electrodes 5a to 5d.
It is also supplied from 5d. Accordingly, excessive deprivation of oxygen from the internal electrodes 3a to 3c is prevented, and the bonding between the internal electrodes and the terminal electrodes 7 is improved. Internal electrode 4
The same applies to the bondability between a to 4c and the terminal electrode 8. Since the pseudo electrodes 5a to 5d are connected to the terminal electrode 7 and have the same potential as the internal electrodes 3a to 3c immediately above or below the terminal electrodes 7, they do not form a capacitance component with the internal electrodes 3a to 3c. Therefore, the capacitance value is not affected in design. The same applies to the pseudo electrodes 6a to 6d. Therefore, as a result of the improvement of the joining property between the internal electrode and the terminal electrode, the capacitance accuracy is improved by the amount corresponding to the prevention of the capacitance loss.
【0018】−実施形態2− 図2に、この発明の積層セラミックコンデンサの第2の
実施形態に用いる誘電体層を平面図として示す。実施形
態1では、擬似電極を内部電極と端子電極との接続部分
全体に平面視で重なるように形成したが、この実施形態
2では接続部分の幅方向両端に分離して形成した。Embodiment 2 FIG. 2 is a plan view showing a dielectric layer used in a multilayer ceramic capacitor according to a second embodiment of the present invention. In the first embodiment, the pseudo electrode is formed so as to overlap the entire connection portion between the internal electrode and the terminal electrode in a plan view. In the second embodiment, the pseudo electrode is formed separately at both ends in the width direction of the connection portion.
【0019】即ち、図示の誘電体層12の主面には第1
の内部電極13が、図略の第1の端子電極と接続される
一方の端より始まって他方の端近くまで形成されてい
る。そして、他方の端からは図略の第2の端子電極と接
続される擬似電極16,16'が、内部電極13と所定の
絶縁性領域を隔てる所まで形成されている。擬似電極1
6と擬似電極16'とは内部電極13の幅方向両端に対
応する箇所に分離して配置されている。That is, the first surface of the dielectric layer 12 shown in FIG.
Are formed starting from one end connected to a first terminal electrode (not shown) and extending to near the other end. From the other end, pseudo electrodes 16 and 16 'connected to a second terminal electrode (not shown) are formed up to a position separating the internal electrode 13 from a predetermined insulating region. Pseudo electrode 1
6 and the pseudo electrode 16 ′ are separately arranged at locations corresponding to both ends in the width direction of the internal electrode 13.
【0020】誘電体層12の直上には誘電体層12と同
形同質の誘電体層が積層される。但し、その誘電体層の
主面には、第1の内部電極13及び擬似電極16,16'
を平面視で180度回転させた位置に第2の内部電極及
び擬似電極が形成される。脱脂時に内部電極の表面酸素
が最も奪われやすいのは端子電極との接続部分のうち両
端であることから、上記の分離した擬似電極16,16'
から供給される酸素で内部電極の脱酸素が十分に防止さ
れる。しかも擬似電極に消費される材料を節約すること
ができる。A dielectric layer having the same shape and the same quality as the dielectric layer 12 is stacked immediately above the dielectric layer 12. However, the first internal electrode 13 and the pseudo electrodes 16, 16 'are provided on the main surface of the dielectric layer.
Are rotated 180 degrees in plan view to form a second internal electrode and a pseudo electrode. Since the surface oxygen of the internal electrode is most easily deprived during degreasing at both ends of the connection portion with the terminal electrode, the separated pseudo electrodes 16, 16 ′ are separated.
Deoxygenation of the internal electrode is sufficiently prevented by the oxygen supplied from. Moreover, the material consumed for the pseudo electrode can be saved.
【0021】[0021]
【実施例】−実施例1− 図1に示す形状で下記仕様の狙い容量値10nFの積層
セラミックコンデンサを製造し、評価した。EXAMPLES Example 1 A multilayer ceramic capacitor having a shape shown in FIG. 1 and a target capacitance value of 10 nF having the following specifications was manufactured and evaluated.
【0022】[仕様] 平面視の大きさ:3.2×1.6mm 誘電体層:誘電率2700、総数19枚、厚さ40μm 内部電極:ニッケル、第1及び第2内部電極の総数8枚 擬似電極:ニッケル、第1及び第2擬似電極の総数10
枚 絶縁性領域の距離C:30μm[Specifications] Size in plan view: 3.2 × 1.6 mm Dielectric layer: dielectric constant 2700, total number 19, thickness 40 μm Internal electrode: nickel, total number 8 of first and second internal electrodes Pseudo-electrode: nickel, total number of first and second pseudo-electrodes 10
Sheet distance C: 30 μm
【0023】[評価]狙い容量値より20%以上容量が
低いものを容量抜けとし、1万個の測定値から容量抜け
発生率を算出した。評価結果を表1に示す。間隔Aは内
部電極とその直上及び直下の擬似電極との間隔、長さB
は擬似電極の接続側端部から非接続側端部までの長さ、
発生率Pは容量抜け発生率を示す。[Evaluation] A capacity loss of 20% or more lower than the target capacity value was determined as a capacity loss, and a capacity loss occurrence rate was calculated from 10,000 measured values. Table 1 shows the evaluation results. The interval A is the interval between the internal electrode and the pseudo electrodes immediately above and below the internal electrode, and the length B
Is the length from the connection end to the non-connection end of the pseudo electrode,
The occurrence rate P indicates the occurrence rate of capacity loss.
【0024】[0024]
【表1】 注)No.1は擬似電極が全く形成されなかったものであ
る。[Table 1] Note) No. 1 is a case where no pseudo electrode was formed.
【0025】表1に見られるように、擬似電極を設ける
ことにより、容量抜けが防止されることが明らかであ
る。しかもAが30μm以下、BがAの5倍以上である
ときに最も容量抜けが有効に防止されることも判った。As can be seen from Table 1, it is clear that the provision of the pseudo electrode prevents the loss of capacitance. Moreover, it was also found that when A is 30 μm or less and B is 5 times or more than A, the loss of capacity is most effectively prevented.
【0026】−実施例2− 擬似電極の材質を表2に示すものに代える以外は実施例
1のNo.9と同形同質の積層セラミックコンデンサを
製造し、容量抜け発生率を測定した。測定結果を表2に
示す。Example 2 Example 1 was repeated except that the material of the pseudo electrode was changed to that shown in Table 2. A multilayer ceramic capacitor having the same shape and the same quality as that of No. 9 was manufactured, and the rate of occurrence of capacity loss was measured. Table 2 shows the measurement results.
【0027】[0027]
【表2】 [Table 2]
【0028】表2に見られるように、擬似電極の材質が
内部電極のそれよりもイオン化傾向の大きいMg及びC
rの場合は容量抜け発生率が小さく、イオン化傾向の小
さいAg及びPdの場合は容量抜け発生率が比較的大き
かった。Coの場合はイオン化傾向がNiと同等なので
容量抜け発生率も近似したものと認められる。As can be seen from Table 2, the material of the pseudo electrode is Mg and C which have a higher ionization tendency than that of the internal electrode.
In the case of r, the capacity loss occurrence rate was small, and in the case of Ag and Pd, which have a small ionization tendency, the capacity loss occurrence rate was relatively large. In the case of Co, since the ionization tendency is equal to that of Ni, it is recognized that the rate of occurrence of capacity loss is similar.
【0029】[0029]
【発明の効果】以上のように、この発明の積層セラミッ
クコンデンサは、内部電極の接続側端部の直上又は直下
の誘電体層間に擬似電極を設けているので、内部電極の
脱酸素が緩和され、端子電極との接合性が改善される結
果、容量精度が向上する。As described above, in the multilayer ceramic capacitor of the present invention, since the pseudo electrode is provided between the dielectric layers immediately above or immediately below the connection side end of the internal electrode, deoxygenation of the internal electrode is reduced. As a result, the bonding accuracy with the terminal electrode is improved, so that the capacitance accuracy is improved.
【図1】 実施形態1の積層セラミックコンデンサを示
す積層方向断面図である。FIG. 1 is a sectional view in the lamination direction showing a multilayer ceramic capacitor of a first embodiment.
【図2】 実施形態2の積層セラミックコンデンサに用
いられる誘電体層を示す平面図である。FIG. 2 is a plan view showing a dielectric layer used in the multilayer ceramic capacitor of Embodiment 2.
【図3】 従来の積層セラミックコンデンサを示す積層
方向断面図である。FIG. 3 is a sectional view in the lamination direction showing a conventional multilayer ceramic capacitor.
1 積層セラミックコンデンサ 2a〜2i,12,22 誘電体層 3a〜3c,13,23 第1の内部電極 4a〜4c,24 第2の内部電極 5a〜5d 第1の擬似電極 6a〜6d,16,16' 第2の擬似電極 7,27 第1の端子電極 8,28 第2の端子電極 10,20 積層体 DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 2a-2i, 12,22 Dielectric layer 3a-3c, 13,23 1st internal electrode 4a-4c, 24 2nd internal electrode 5a-5d 1st pseudo electrode 6a-6d, 16, 16 'Second pseudo electrode 7,27 First terminal electrode 8,28 Second terminal electrode 10,20 Stack
Claims (4)
がセラミック誘電体層を挟んで交互に積層され、第1の
内部電極同士を接続する第1の端子電極がその積層体の
一方の側面に形成され、第2の内部電極同士を接続する
第2の端子電極が他方の側面に形成されている積層セラ
ミックコンデンサにおいて、 第1の端子電極に接続される第1の擬似電極が、第1の
内部電極が形成された誘電体層間と隣り合う誘電体層間
であって、少なくともその内部電極の第1の端子電極と
の接続側端部の幅方向両端に対応する位置に形成され、 第2の端子電極に接続される第2の擬似電極が、第2の
内部電極が形成された誘電体層間と隣り合う誘電体層間
であって、少なくともその内部電極の第1の端子電極と
の接続側端部の幅方向両端に対応する位置に形成されて
いることを特徴とする積層セラミックコンデンサ。A first and a second internal electrode having different potentials are alternately laminated with a ceramic dielectric layer interposed therebetween, and a first terminal electrode connecting the first internal electrodes is formed on one side of the laminated body. And a second terminal electrode connecting the second internal electrodes to each other is formed on the other side surface, wherein the first pseudo electrode connected to the first terminal electrode is: A first internal electrode formed between adjacent dielectric layers and a dielectric layer adjacent to the dielectric layer, and formed at positions corresponding to at least both ends in the width direction of the connection side end of the internal electrode with the first terminal electrode; The second pseudo electrode connected to the second terminal electrode is located between the dielectric layer on which the second internal electrode is formed and the adjacent dielectric layer, and at least the internal electrode and the first terminal electrode are connected to each other. Positions corresponding to both ends in the width direction of the connection side end Multilayer ceramic capacitor, characterized in that it is formed.
間と隣り合う全ての誘電体層間に前記第1の擬似電極
が、且つ前記第2の内部電極が形成された誘電体層間と
隣り合う全ての誘電体層間に前記第2の擬似電極が形成
されている請求項1に記載の積層セラミックコンデン
サ。2. The method according to claim 1, wherein the first pseudo electrode is provided between all of the dielectric layers adjacent to the dielectric layer on which the first internal electrode is formed, and the dielectric layer on which the second internal electrode is formed. 2. The multilayer ceramic capacitor according to claim 1, wherein said second pseudo electrode is formed between all adjacent dielectric layers.
は第2の内部電極との積層方向の間隔をA、第1又は第
2の擬似電極の接続側端部から非接続側端部に至るまで
の長さをBとするとき、Aが30μm以下、Bが5A以
上である請求項1又は2に記載の積層セラミックコンデ
ンサ。3. The distance between the first or second pseudo electrode and the first or second internal electrode in the laminating direction is A, and the connection end of the first or second pseudo electrode to the non-connection side. 3. The multilayer ceramic capacitor according to claim 1, wherein when the length up to the end is B, A is 30 μm or less and B is 5 A or more. 4.
又は第2の内部電極の幅方向両端に各々対応する位置に
分離して形成されている請求項1〜3のいずれかに記載
の積層セラミックコンデンサ。4. The method according to claim 1, wherein the first or second pseudo electrode comprises the first or second pseudo electrode.
4. The multilayer ceramic capacitor according to claim 1, wherein the multilayer ceramic capacitor is formed separately at positions corresponding to both ends in the width direction of the second internal electrode. 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001098450A JP2002299147A (en) | 2001-03-30 | 2001-03-30 | Laminated ceramic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001098450A JP2002299147A (en) | 2001-03-30 | 2001-03-30 | Laminated ceramic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002299147A true JP2002299147A (en) | 2002-10-11 |
Family
ID=18952099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001098450A Pending JP2002299147A (en) | 2001-03-30 | 2001-03-30 | Laminated ceramic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002299147A (en) |
-
2001
- 2001-03-30 JP JP2001098450A patent/JP2002299147A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI486983B (en) | Low shaped multilayer ceramic capacitor | |
JP6421137B2 (en) | Multilayer ceramic capacitor | |
JP4283834B2 (en) | Multilayer capacitor | |
JP4059181B2 (en) | Manufacturing method of multi-terminal type multilayer ceramic electronic components | |
JP6309991B2 (en) | Multilayer ceramic capacitor | |
US9922767B2 (en) | Ceramic electronic component and manufacturing method therefor | |
US10510488B2 (en) | Multilayer ceramic capacitor | |
JP4375006B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP2020167199A (en) | Multilayer ceramic capacitor | |
JP7548195B2 (en) | Multilayer Ceramic Capacitors | |
JP7092052B2 (en) | Multilayer ceramic capacitors | |
JP5120450B2 (en) | Multilayer ceramic electronic components | |
JP2011100834A (en) | Multilayer capacitor | |
JP4840392B2 (en) | Multilayer capacitor | |
JPH11135356A (en) | Laminated ceramic capacitor | |
JP2005340664A (en) | Capacitor | |
JP2010093136A (en) | Multilayer ceramic electronic component and manufacturing method therefor | |
JP2000106322A (en) | Laminated ceramic capacitor | |
JP2002299147A (en) | Laminated ceramic capacitor | |
JP2005108890A (en) | Laminated ceramic capacitor | |
JP2002246752A (en) | Via hole structure of ceramic multilayer board | |
JP2005142302A (en) | Laminated coil component and manufacturing method thereof | |
JP2020167202A (en) | Multilayer ceramic capacitor | |
JP6064044B2 (en) | MULTILAYER DEVICE HAVING EXTERNAL CONNECTIONS AND METHOD FOR PRODUCING MULTILAYER DEVICE HAVING EXTERNAL CONNECTION | |
JP2000012375A (en) | Laminated ceramic electronic component |