JP2011100834A - Multilayer capacitor - Google Patents

Multilayer capacitor Download PDF

Info

Publication number
JP2011100834A
JP2011100834A JP2009254120A JP2009254120A JP2011100834A JP 2011100834 A JP2011100834 A JP 2011100834A JP 2009254120 A JP2009254120 A JP 2009254120A JP 2009254120 A JP2009254120 A JP 2009254120A JP 2011100834 A JP2011100834 A JP 2011100834A
Authority
JP
Japan
Prior art keywords
electrode
electrode portion
face
side surfaces
multilayer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009254120A
Other languages
Japanese (ja)
Other versions
JP5251834B2 (en
Inventor
Masaaki Togashi
正明 富樫
Shinya Onodera
伸也 小野寺
Kazuyuki Hasebe
和幸 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009254120A priority Critical patent/JP5251834B2/en
Publication of JP2011100834A publication Critical patent/JP2011100834A/en
Application granted granted Critical
Publication of JP5251834B2 publication Critical patent/JP5251834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer capacitor suppressing occurrence of failure such as cracks by a thermal shock. <P>SOLUTION: The multilayer capacitor 1 includes a capacitor element body 2 composed of a plurality of dielectric layers 10, internal electrodes 3, 4 disposed within the capacitor element body 2 and including main electrode sections 31, 41 and extraction electrode sections 32, 42, and terminal electrodes 5, 6 disposed on an outer surface of the capacitor element body 2 and provided with side face electrode sections 51, 61 and end face electrode sections 52, 62. Separation distance G between the terminal electrodes 5, 6 is shorter than electrode widths W2, W4 of the side face electrode sections 51, 61. The maximum thickness D2<SB>max</SB>of the end face electrode sections 52, 62 is smaller than the minimum thickness D1<SB>min</SB>of a part corresponding to the first and second extraction widths W1, W3 from among the side face electrode sections 51, 61. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、両端面が略正方形を呈する積層コンデンサに関する。   The present invention relates to a multilayer capacitor whose both end faces are substantially square.

従来から、異なる誘電体層上にそれぞれ形成された2種類の内部電極を交互に積層して直方体形状の素体を形成し、その素体の端面及び端面に隣接する側面の一部を覆うように端子電極を設けた積層コンデンサが知られている(例えば特許文献1参照)。このような積層コンデンサでは、そのサイズが小型化するにつれて、各端面を略正方形とし、積層コンデンサの4つの側面のうち何れの側面を実装面としても回路基板に実装できるようになっている。   Conventionally, a rectangular parallelepiped element is formed by alternately laminating two types of internal electrodes respectively formed on different dielectric layers, and covers the end face of the element body and a part of the side surface adjacent to the end face. A multilayer capacitor in which a terminal electrode is provided is known (for example, see Patent Document 1). In such a multilayer capacitor, as its size is reduced, each end face is made substantially square, and any of the four side faces of the multilayer capacitor can be mounted on a circuit board as a mounting face.

特開2004−296940号公報JP 2004-296940 A

ところで、上述した積層コンデンサでは、端子電極の端面部分の厚みが側面部分の厚みよりも厚くなっていた。このため、積層コンデンサを基板にリフロー半田付けする際、金属等から形成される端子電極とセラミック等から形成される素体との熱膨張性の違いに伴うストレスが大きくなり、積層コンデンサに熱衝撃によるクラックなどの故障が発生する場合があった。   By the way, in the multilayer capacitor described above, the thickness of the end face portion of the terminal electrode is thicker than the thickness of the side face portion. For this reason, when reflow soldering a multilayer capacitor to a substrate, the stress associated with the difference in thermal expansion between the terminal electrode formed of metal or the like and the element body formed of ceramic or the like is increased, and the thermal shock is applied to the multilayer capacitor. Failures such as cracks may occur.

本発明は、熱衝撃によるクラックなどの故障の発生を抑制する積層コンデンサを提供することを目的とする。   An object of this invention is to provide the multilayer capacitor which suppresses generation | occurrence | production of failures, such as a crack by a thermal shock.

上記課題を解決するため、本発明に係る積層コンデンサは、互いに対向する略長方形の第1及び第2の側面と、第1及び第2の側面間を連結するように第1及び第2の側面の長辺方向に伸び且つ互いに対向する第3及び第4の側面と、第1及び第2の側面間を連結するように第1及び第2の側面の短辺方向に伸び且つ互いに対向する略正方形の第1及び第2の端面とを有し、且つ、第1及び第2の側面の対向方向に積層された複数の誘電体層から構成されるコンデンサ素体と、コンデンサ素体内に配置され、且つ、第1及び第2の端面の対向方向に伸びる第1主電極部と第3及び第4の側面に向けて第1の引出幅で伸びる第1引出電極部とを有する第1の内部電極と、コンデンサ素体内に配置され、且つ、第1及び第2の側面の対向方向において第1主電極部に対向し且つ第1及び第2の端面の対向方向に伸びる第2主電極部と第3及び第4の側面に向けて伸びる第2引出電極部とを有する第2の内部電極と、コンデンサ素体の外表面に配置され、且つ、第1、第2、第3及び第4の側面の第1の端面側に位置し且つ第1引出電極部に接続される第1側面電極部と第1の端面に位置する第1端面電極部とを有する第1の端子電極と、コンデンサ素体の外表面に配置され、且つ、第1、第2、第3及び第4の側面の第2の端面側に位置し且つ第2引出電極部に接続される第2側面電極部と第2の端面に位置する第2端面電極部とを有する第2の端子電極と、を備え、第1及び第2の端子電極の離間距離が、第1及び第2の端面の対向方向における第1側面電極部の電極幅及び第2側面電極部の電極幅よりも短く、且つ、第1端面電極部の最大厚みが、第1側面電極部のうち第1の引出幅に対応する部分の最小厚みよりも薄いことを特徴としている。   In order to solve the above-described problem, a multilayer capacitor according to the present invention includes first and second side surfaces that are connected to each other, and the first and second side surfaces of the substantially rectangular shape facing each other, and the first and second side surfaces. The third and fourth side surfaces extending in the long side direction and facing each other, and the first and second side surfaces extending in the short side direction so as to connect the first and second side surfaces and substantially facing each other A capacitor element body having a square first and second end faces and composed of a plurality of dielectric layers stacked in the opposing direction of the first and second side surfaces, and disposed in the capacitor element body And a first internal electrode having a first main electrode portion extending in a direction opposite to the first and second end faces and a first extraction electrode portion extending at a first extraction width toward the third and fourth side surfaces. The electrode is disposed in the capacitor body and is opposed to the first and second side surfaces. A second main electrode portion facing the first main electrode portion and extending in a facing direction of the first and second end faces and a second extraction electrode portion extending toward the third and fourth side surfaces. An internal electrode and a first electrode disposed on the outer surface of the capacitor body and located on the first end face side of the first, second, third and fourth side surfaces and connected to the first lead electrode portion A first terminal electrode having a side electrode part and a first end face electrode part located on the first end face; and disposed on an outer surface of the capacitor body; and first, second, third and fourth A second terminal electrode having a second side electrode part located on the second end face side of the side face and connected to the second extraction electrode part and a second end face electrode part located on the second end face; The distance between the first and second terminal electrodes is such that the electrode width of the first side electrode portion and the second side surface in the opposing direction of the first and second end faces. Shorter than the electrode width of the electrode portion, and the maximum thickness of the first end surface electrode portion, it is characterized in thinner than the minimum thickness of a portion corresponding to the first lead width of the first side surface electrode portions.

本発明に係る積層コンデンサでは、第1端面電極部の最大厚みが、第1側面電極部のうち第1の引出幅に対応する部分の最小厚みよりも薄くなっている。このため、積層コンデンサに加えられる熱衝撃などの急激な温度変化に伴って端子電極からコンデンサ素体へ伝わる応力が緩和され、熱衝撃によるクラックなどの故障の発生を抑制することができる。また、第1側面電極部のうち第1の引出幅に対応する部分の厚みが厚くなっていることから、第1引出電極部の露出面から第1の内部電極の内部へのめっき液の浸入を効果的に抑制できる。一方、第1端面電極部の厚みが薄くなっていることから、積層コンデンサの外形を同じサイズとしたまま素体外形を大きくでき、これにより、第1及び第2の内部電極の面積を広くして、積層コンデンサの静電容量を大きくさせることができる。   In the multilayer capacitor according to the present invention, the maximum thickness of the first end face electrode portion is thinner than the minimum thickness of the portion corresponding to the first lead width in the first side face electrode portion. For this reason, the stress transmitted from the terminal electrode to the capacitor body due to a rapid temperature change such as a thermal shock applied to the multilayer capacitor is relieved, and the occurrence of a failure such as a crack due to the thermal shock can be suppressed. Further, since the thickness of the portion corresponding to the first extraction width in the first side surface electrode portion is thick, the plating solution enters from the exposed surface of the first extraction electrode portion into the first internal electrode. Can be effectively suppressed. On the other hand, since the thickness of the first end face electrode portion is reduced, the outer shape of the element body can be enlarged while keeping the outer shape of the multilayer capacitor the same size, thereby increasing the areas of the first and second internal electrodes. Thus, the capacitance of the multilayer capacitor can be increased.

本発明に係る積層コンデンサでは、第1及び第2の内部電極の各引出電極部がコンデンサ素体の第3及び第4の側面方向に引き出されて、第1及び第2の端子電極に接続されている。このため、いずれかの側面を実装面として実装した場合であっても、積層コンデンサの等価直列インダクタンス(以下「ESL」と記す。)のばらつきを低減できる。また、本発明に係る積層コンデンサでは、第1及び第2の端子電極の離間距離が、第1及び第2の端面の対向方向における第1側面電極部の電極幅及び第2側面電極部の電極幅よりも短くなっている。この場合、第1側面電極部に接続される第1引出電極部の第1の引出幅や第2側面電極部に接続される第2引出電極部の引出幅を広くすることができ、第1及び第2引出電極部において互いに異なる方向に流れる電流を大きくでき、その結果、各電流によって発生する磁界が相殺され、積層コンデンサにおけるESLを低減することが可能となる。   In the multilayer capacitor according to the present invention, the lead electrode portions of the first and second internal electrodes are drawn in the third and fourth side surfaces of the capacitor body and connected to the first and second terminal electrodes. ing. For this reason, even when any one of the side surfaces is mounted as a mounting surface, variation in the equivalent series inductance (hereinafter referred to as “ESL”) of the multilayer capacitor can be reduced. In the multilayer capacitor according to the present invention, the distance between the first and second terminal electrodes is such that the electrode width of the first side electrode part and the electrode of the second side electrode part in the opposing direction of the first and second end faces. It is shorter than the width. In this case, the first extraction width of the first extraction electrode portion connected to the first side electrode portion and the extraction width of the second extraction electrode portion connected to the second side electrode portion can be increased. In addition, it is possible to increase currents flowing in different directions in the second extraction electrode portion. As a result, magnetic fields generated by the respective currents are canceled out, and ESL in the multilayer capacitor can be reduced.

好ましくは、第2引出電極部は、第3及び第4の側面に向けて第2の引出幅で伸び、第2端面電極部の最大厚みが、第2側面電極部のうち第2の引出幅に対応する部分の最小厚みよりも薄い。この場合、熱衝撃によるクラックなどの故障の発生を一層抑制でき、また、第2引出電極部の露出面から第2の内部電極の内部へのめっき液の浸入を抑制できる。一方、第2端面電極部の厚みが薄くなっていることから、コンデンサの外形を同じサイズとしたまま第1及び第2の内部電極の面積を一層広くでき、積層コンデンサの静電容量を更に大きくすることが可能となる。   Preferably, the second extraction electrode portion extends with a second extraction width toward the third and fourth side surfaces, and the maximum thickness of the second end surface electrode portion is the second extraction width of the second side electrode portions. It is thinner than the minimum thickness of the part corresponding to. In this case, the occurrence of a failure such as a crack due to thermal shock can be further suppressed, and the penetration of the plating solution from the exposed surface of the second extraction electrode portion into the second internal electrode can be suppressed. On the other hand, since the thickness of the second end face electrode portion is thin, the areas of the first and second internal electrodes can be further increased while keeping the outer shape of the capacitor the same, and the capacitance of the multilayer capacitor can be further increased. It becomes possible to do.

本発明によれば、熱衝撃によるクラックなどの故障の発生を抑制する積層コンデンサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the multilayer capacitor which suppresses generation | occurrence | production of failures, such as a crack by a thermal shock, can be provided.

積層コンデンサの斜視図である。It is a perspective view of a multilayer capacitor. 積層コンデンサの分解斜視図である。It is a disassembled perspective view of a multilayer capacitor. 図1におけるIII-III線断面図である。It is the III-III sectional view taken on the line in FIG. 積層コンデンサの側部の一部拡大断面図である。It is a partial expanded sectional view of the side part of a multilayer capacitor. 積層コンデンサの端部の一部拡大断面図である。It is a partially expanded sectional view of the edge part of a multilayer capacitor. (a)は、積層コンデンサを横方向に実装した場合のコンデンサ素体を示す図であり、(b)は、積層コンデンサを縦方向に実装した場合のコンデンサ素体を示す図である。(A) is a figure which shows the capacitor | condenser body when a multilayer capacitor is mounted in a horizontal direction, (b) is a figure which shows a capacitor | condenser body when a multilayer capacitor is mounted in a vertical direction.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

まず、図1〜図3を参照して、積層コンデンサ1の構成について説明する。積層コンデンサ1は、直方体形状をしたコンデンサ素体2と、コンデンサ素体2内に配置された内部電極3,4と、コンデンサ素体2の外表面に配置された端子電極5,6とを備えた積層コンデンサである。   First, the configuration of the multilayer capacitor 1 will be described with reference to FIGS. The multilayer capacitor 1 includes a rectangular parallelepiped capacitor element body 2, internal electrodes 3 and 4 disposed in the capacitor element body 2, and terminal electrodes 5 and 6 disposed on the outer surface of the capacitor element body 2. Multilayer capacitor.

コンデンサ素体2は、積層された複数の誘電体層10から構成され、その積層方向と同じ方向に互いに対向する長方形の第1及び第2の側面2a,2bと、第1及び第2の側面2a,2bの長辺方向に伸び且つ互いに対向する長方形の第3及び第4の側面2c,2dと、第1及び第2の側面2a,2bの短辺方向に伸び且つ互いに対向する略正方形の第1及び第2の端面2e,2fと、を含んでいる。第3及び第4の側面2c,2d及び第1及び第2の端面2e,2fは、第1及び第2の側面2a,2b間を連結するように伸びる。   The capacitor element body 2 is composed of a plurality of laminated dielectric layers 10, rectangular first and second side surfaces 2 a and 2 b facing each other in the same direction as the lamination direction, and first and second side surfaces. The rectangular third and fourth side surfaces 2c and 2d extending in the long side direction of 2a and 2b and facing each other, and the substantially square shape extending in the short side direction of the first and second side surfaces 2a and 2b and facing each other. 1st and 2nd end surface 2e, 2f are included. The third and fourth side surfaces 2c and 2d and the first and second end surfaces 2e and 2f extend so as to connect the first and second side surfaces 2a and 2b.

第1及び第2の端面2e,2fは、上述したように略正方形状を呈しているが、ここで用いる「略正方形」とは、積層コンデンサ1を回路基板に取り付ける際(図6参照)、何れの側面2a〜2dを実装面として実装した場合であっても、設計上、同一の実装構造と考えられるように、高さ方向の一辺と幅方向の一辺とが所定の交差範囲内の長さである正方形を意味する。例えば、対象製品のサイズが「1005(長さ1.0mm、高さ0.5mm、幅0.5mmからなる積層コンデンサ)」の場合、サイズ「1005」の端面における各長さは基準0.5mmに対して交差±0.05mmとなっており、各長さのずれが最大22.2%となるが、この程度の相違を有する形状も「略正方形」に含まれる。   The first and second end faces 2e and 2f have a substantially square shape as described above. The “substantially square” used here means that the multilayer capacitor 1 is attached to the circuit board (see FIG. 6). Regardless of which side surface 2a to 2d is mounted as a mounting surface, the length in one side in the height direction and the side in the width direction are within a predetermined intersection range so that the same mounting structure can be considered in design. Means a square. For example, when the size of the target product is “1005 (multilayer capacitor having a length of 1.0 mm, a height of 0.5 mm, and a width of 0.5 mm)”, each length on the end face of the size “1005” is a reference of 0.5 mm. The maximum deviation of each length is 22.2%, but shapes having such a difference are also included in the “substantially square”.

コンデンサ素体2の内部には、図2及び図3に示されるように、誘電体層10上に形成された第1の内部電極3と、別の誘電体層10上に形成された第2の内部電極4とが配置されている。第1の内部電極3と第2の内部電極4とは、誘電体層10を介して交互に複数積層される。誘電体層10は、例えば、チタン酸バリウムを主成分とし、誘電体セラミックを含むセラミックグリーンシートの焼結体から構成される。各内部電極3,4は、例えば、Ni,Ag,Pdなどの金属粉末にバインダ樹脂等を混合した導電性ペーストの焼結体から構成される。実際の積層コンデンサ1では、各誘電体層10間の境界が視認できない程度に一体化されている。   As shown in FIGS. 2 and 3, the capacitor body 2 includes a first internal electrode 3 formed on the dielectric layer 10 and a second internal electrode formed on another dielectric layer 10. The internal electrodes 4 are arranged. A plurality of first internal electrodes 3 and second internal electrodes 4 are alternately stacked with dielectric layers 10 interposed therebetween. The dielectric layer 10 is made of, for example, a sintered body of a ceramic green sheet containing barium titanate as a main component and including a dielectric ceramic. Each of the internal electrodes 3 and 4 is made of, for example, a sintered body of a conductive paste obtained by mixing a binder resin or the like with a metal powder such as Ni, Ag, or Pd. The actual multilayer capacitor 1 is integrated so that the boundary between the dielectric layers 10 is not visible.

第1の内部電極3は、略矩形の内部電極であり、誘電体層10上の中央部に配置される矩形の第1主電極部31と、第1主電極部31の第1の端面2e側の側部に連接して形成され且つ第3及び第4の側面2c,2dそれぞれに向けて伸びる第1引出電極部32とを有している。第1主電極部31は、その各側部が第3及び第4の側面2c,2dからそれぞれ離間しており、第1及び第2の端面2e,2fの対向方向に伸びるように形成されている。第3及び第4の側面2c,2dに引き出された第1引出電極部32は、第1引出電極部32の第1の引出幅W1よりも広い幅W2をそれぞれの側面2c,2dに有する第1の端子電極5に電気的且つ物理的に接続される。   The first internal electrode 3 is a substantially rectangular internal electrode, and has a rectangular first main electrode portion 31 disposed in the central portion on the dielectric layer 10 and a first end face 2 e of the first main electrode portion 31. And a first extraction electrode portion 32 formed to be connected to the side portion on the side and extending toward the third and fourth side surfaces 2c and 2d. The first main electrode portion 31 is formed such that each side portion thereof is separated from the third and fourth side surfaces 2c and 2d and extends in a direction opposite to the first and second end surfaces 2e and 2f. Yes. The first extraction electrode part 32 drawn out to the third and fourth side faces 2c, 2d has a width W2 wider than the first extraction width W1 of the first extraction electrode part 32 on the side faces 2c, 2d. One terminal electrode 5 is electrically and physically connected.

第2の内部電極4は、略矩形の内部電極であり、別の誘電体層10上の中央部に配置される矩形の第2主電極部41と、第2主電極部41の第2の端面2f側の側部に連接して形成され且つ第3及び第4の側面2c,2dそれぞれに向けて伸びる第2引出電極部42とを有している。第2主電極部41は、その各側部が第3及び第4の側面2c,2dからそれぞれ離間しており、第1及び第2の端面2e,2fの対向方向に伸びるように形成されている。第3及び第4の側面2c,2dに引き出された第2引出電極部42は、第2引出電極部42の第2の引出幅W3よりも広い幅W4をそれぞれの側面2c,2dに有する第2の端子電極6に電気的且つ物理的に接続される。   The second internal electrode 4 is a substantially rectangular internal electrode, and has a rectangular second main electrode portion 41 disposed in the central portion on another dielectric layer 10, and a second main electrode portion 41 of the second main electrode portion 41. A second extraction electrode portion 42 is formed to be connected to the side portion on the end surface 2f side and extend toward the third and fourth side surfaces 2c and 2d. The second main electrode portion 41 is formed such that each side portion thereof is spaced apart from the third and fourth side surfaces 2c and 2d and extends in the opposing direction of the first and second end surfaces 2e and 2f. Yes. The second extraction electrode portion 42 extracted to the third and fourth side surfaces 2c, 2d has a width W4 wider than the second extraction width W3 of the second extraction electrode portion 42 on each of the side surfaces 2c, 2d. The two terminal electrodes 6 are electrically and physically connected.

第1及び第2の内部電極3,4は、第1及び第2の側面2a,2bの対向方向において、複数の誘電体層10の内のいずれかの誘電体層10を介して交互に積層される。この積層により、第1及び第2主電極部31,41が第1及び第2の側面2a,2bの対向方向においてその略全面にわたって互いに対向し、積層コンデンサ1の静電容量部が構成される。なお、本実施形態では、後述するように、同一外形サイズの従来の積層コンデンサよりも内部電極3,4が大きくなるように形成されており、その結果、静電容量が同一サイズの従来品に比べて大きくなっている。また、第1引出電極部32及び第2引出電極部42それぞれが第3及び第4の側面2c,2dに向けて伸びるように構成されているため、いずれかの側面2a〜2dを実装面として実装した場合であっても、積層コンデンサ1のESLのばらつきを低減でき、また、各引出電極部32,42を流れる電流が逆向きとなり、その磁界が相殺されることから、積層コンデンサ1のESLを低減できる構造となっている。   The first and second internal electrodes 3 and 4 are alternately stacked via any one of the plurality of dielectric layers 10 in the opposing direction of the first and second side surfaces 2a and 2b. Is done. By this lamination, the first and second main electrode portions 31 and 41 are opposed to each other over substantially the entire surface in the opposing direction of the first and second side surfaces 2a and 2b, and the capacitance portion of the multilayer capacitor 1 is configured. . In this embodiment, as will be described later, the internal electrodes 3 and 4 are formed so as to be larger than the conventional multilayer capacitor having the same outer size. It is larger than that. In addition, since each of the first extraction electrode portion 32 and the second extraction electrode portion 42 is configured to extend toward the third and fourth side surfaces 2c and 2d, any one of the side surfaces 2a to 2d is used as a mounting surface. Even when the multilayer capacitor 1 is mounted, the ESL variation of the multilayer capacitor 1 can be reduced, and the current flowing through each of the extraction electrode portions 32 and 42 is reversed to cancel the magnetic field. It is a structure that can reduce.

第1の端子電極5は、第1〜第4の側面2a〜2dの第1の端面2e側の部分及び第1の端面2eの略全面を覆うようにコンデンサ素体2の外表面に配置される。第1〜第4の側面2a〜2dの第1の端面2e側に位置する部分が第1側面電極部51を構成し、第1の端面2eに位置する部分が第1端面電極部52を構成する。第1側面電極部51は、第1及び第2の端面2e,2fの対向方向における幅が電極幅W2であり、第3及び第4の側面2c,2dにおいて、第1の内部電極3の第1引出電極部32に接続される。   The first terminal electrode 5 is disposed on the outer surface of the capacitor body 2 so as to cover the first end surface 2e side portion of the first to fourth side surfaces 2a to 2d and the substantially entire surface of the first end surface 2e. The The part located in the 1st end surface 2e side of the 1st-4th side surfaces 2a-2d comprises the 1st side surface electrode part 51, and the part located in the 1st end surface 2e comprises the 1st end surface electrode part 52. To do. The width of the first side surface electrode portion 51 in the facing direction of the first and second end surfaces 2e and 2f is the electrode width W2, and the third side surface 2c and 2d have the width of the first inner electrode 3 One lead electrode part 32 is connected.

第2の端子電極6は、第1の端子電極5と対向するように、第1〜第4の側面2a〜2dの第2の端面2f側の部分及び第2の端面2fの略全面を覆うようにコンデンサ素体2の外表面に配置される。第1〜第4の側面2a〜2dの第2の端面2f側に位置する部分が第2側面電極部61を構成し、第2の端面2fに位置する部分が第2端面電極部62を構成する。第2側面電極部61は、第1及び第2の端面2e,2fの対向方向における幅が電極幅W4であり、第3及び第4の側面2c,2dにおいて、第2の内部電極4の第2引出電極部42に接続される。   The second terminal electrode 6 covers a portion on the second end face 2f side of the first to fourth side faces 2a to 2d and a substantially entire face of the second end face 2f so as to face the first terminal electrode 5. In this way, the capacitor body 2 is disposed on the outer surface. A portion located on the second end face 2f side of the first to fourth side faces 2a to 2d constitutes the second side face electrode part 61, and a part located on the second end face 2f constitutes the second end face electrode part 62. To do. The width of the second side surface electrode portion 61 in the opposing direction of the first and second end surfaces 2e and 2f is the electrode width W4. Connected to the two extraction electrode portions 42.

第1及び第2の端子電極5,6は、その横断面形状が略コ字(略U字)形状を呈し、互いに接続しないように離間した状態で内向きに対向しており、第1の端子電極5の内側の先端部と第2の端子電極6の内側の先端部との距離が離間距離Gとなるように配置されている。離間距離Gは、各端子電極5,6の電極幅W2,W4よりも短くなるようにされており、上述したように、積層コンデンサ1のESL値が低減されるようになっている。端子電極5,6は、例えば、Ag,Cu又はNiを主成分とした導電性金属粉末やガラスフリット等を含む導電性ペーストをコンデンサ素体2の外表面に付与し、焼き付けることによって形成される。必要に応じて、焼き付けられた電極の上にめっき層を形成してもよい。   The first and second terminal electrodes 5 and 6 have a substantially U-shaped cross-sectional shape, and face each other inward in a separated state so as not to be connected to each other. The distance between the inner tip of the terminal electrode 5 and the inner tip of the second terminal electrode 6 is a separation distance G. The separation distance G is shorter than the electrode widths W2 and W4 of the terminal electrodes 5 and 6, and the ESL value of the multilayer capacitor 1 is reduced as described above. The terminal electrodes 5 and 6 are formed, for example, by applying a conductive paste containing conductive metal powder mainly composed of Ag, Cu, or Ni, glass frit, or the like to the outer surface of the capacitor body 2 and baking it. . If necessary, a plating layer may be formed on the baked electrode.

続いて、各端子電極5,6の横断面形状における厚みの関係について図3〜図5を用いて更に詳細に説明する。   Next, the relationship between the thicknesses of the cross-sectional shapes of the terminal electrodes 5 and 6 will be described in more detail with reference to FIGS.

第1の端子電極5の第1側面電極部51は、積層コンデンサ1の中心部分から外側に向かって徐々にその厚みD1が増加するように形成されている。第1側面電極部51は、図4に示されるように、第1引出電極部32の第1引出幅W1に対応する部分において、積層コンデンサの中心部分側の一端での厚みがその対応部分での最小値D1minとなり、外側に向かって徐々に厚みD1を増し、外側の他端での厚みがその対応部分での最大値D1maxとなるように構成されている。 The first side electrode portion 51 of the first terminal electrode 5 is formed so that its thickness D1 gradually increases from the central portion of the multilayer capacitor 1 toward the outside. As shown in FIG. 4, the first side electrode portion 51 has a thickness corresponding to the first lead width W1 of the first lead electrode portion 32 at one end on the center portion side of the multilayer capacitor. minimum value D1 min next, outwardly gradually thickened D1, and is configured so that the thickness of the outside of the other end is the maximum value D1 max at the corresponding portion.

一方、第1の端子電極5の第1端面電極部52は、従来の積層コンデンサの端子電極よりも厚みが薄くなるように形成されており、その薄い厚みの範囲内で、図5に示されるように、積層コンデンサ1の外側部分(第3又は第4の側面2c,2d)から第1の端面2eに沿って中心側に向かって徐々にその厚みD2が増加するように第2の端面2eから外側に向かって突出形成されている。このように形成された第1端面電極部52では、略中央部において、その厚みD2が最大値D2maxとなる。そして、最小厚みD1min等である第1側面電極部51と最大厚みD2max等である第1端面電極部52とを有する第1の端子電極5では、第1端面電極部52の最大厚みD2maxが第1側面電極部51のうち第1の引出幅W1に対応する部分の最小厚みD1minよりも薄いといった関係が形成される。 On the other hand, the first end face electrode portion 52 of the first terminal electrode 5 is formed to be thinner than the terminal electrode of the conventional multilayer capacitor, and is shown in FIG. 5 within the range of the thin thickness. As described above, the second end face 2e is gradually increased from the outer portion (third or fourth side face 2c, 2d) of the multilayer capacitor 1 toward the center side along the first end face 2e. It protrudes from the outside toward the outside. In the first end electrode portion 52 formed as described above, in the substantially central portion, the thickness D2 is the maximum value D2 max. And in the 1st terminal electrode 5 which has the 1st side surface electrode part 51 which is minimum thickness D1min etc., and the 1st end surface electrode part 52 which is maximum thickness D2max etc., maximum thickness D2 of the 1st end surface electrode part 52 is shown. The relationship that max is thinner than the minimum thickness D1 min of the part corresponding to the 1st extraction width W1 among the 1st side surface electrode parts 51 is formed.

第2の端子電極6でも、上述した第1の端子電極5と線対称となる形状を備えており、第2側面電極部61は、積層コンデンサ1の中心部分から外側に向かって徐々にその厚みD2が増加するように形成されている。また、第2側面電極部61は、図示省略するが、第1側面電極部51と同様に、第2引出電極部42の第2の引出幅W3に対応する部分において、積層コンデンサの中心部分側の一端での厚みがその対応部分での最小値D1minとなり、外側に向かって徐々に厚みD1を増し、外側の他端での厚みがその対応部分での最大値D1maxとなるように構成されている。 The second terminal electrode 6 also has a shape that is line symmetric with the first terminal electrode 5 described above, and the second side electrode portion 61 gradually increases in thickness from the central portion of the multilayer capacitor 1 toward the outside. It is formed so that D2 increases. Further, although not shown, the second side electrode portion 61 is not shown in the figure, and in the portion corresponding to the second lead width W3 of the second lead electrode portion 42, as in the first side electrode portion 51, the central portion side of the multilayer capacitor. The thickness at one end is the minimum value D1 min at the corresponding portion, the thickness D1 is gradually increased toward the outside, and the thickness at the other end is the maximum value D1 max at the corresponding portion. Has been.

一方、第2の端子電極6の第2端面電極部62は、従来の端子電極よりも厚みが薄くなるように形成されており、その薄い厚みの範囲内で、図示省略するが、第1端面電極部52と同様に、積層コンデンサ1の外側部分から第2の端面2fに沿って中心側に向かって徐々にその厚みD2が増加するように第2の端面2fから外側に向かって突出形成されている。このように形成された第2端面電極部62では、略中央部において、その厚みD2が最大値D2maxとなる。そして、最小厚みD1min等である第2側面電極部61と最大厚みD2max等である第2端面電極部62とを有する第2の端子電極6でも、第2端面電極部62の最大厚みD2maxが第2側面電極部61のうち第2の引出幅W3に対応する部分の最小厚みD1minよりも薄いといった関係が形成される。なお、このような厚みをもった端子電極5,6は従来技術を用いて作成することができるため、その説明は省略する。 On the other hand, the second end face electrode portion 62 of the second terminal electrode 6 is formed so as to be thinner than the conventional terminal electrode, and the first end face is omitted in the range of the thin thickness, although not shown. Similarly to the electrode portion 52, the multilayer capacitor 1 is formed to project outward from the second end surface 2f so that its thickness D2 gradually increases from the outer portion along the second end surface 2f toward the center. ing. In the second end electrode portion 62 formed as described above, in the substantially central portion, the thickness D2 is the maximum value D2 max. Even in the second terminal electrode 6 having the second side surface electrode portion 61 having the minimum thickness D1 min and the like and the second end surface electrode portion 62 having the maximum thickness D2 max and the like, the maximum thickness D2 of the second end surface electrode portion 62 is obtained. The relationship that max is thinner than the minimum thickness D1 min of the part corresponding to the 2nd extraction width W3 among the 2nd side surface electrode parts 61 is formed. In addition, since the terminal electrodes 5 and 6 having such a thickness can be formed using a conventional technique, the description thereof is omitted.

以上のように、本実施形態に係る積層コンデンサ1では、第1端面電極部52の最大厚みD2maxが、第1側面電極部51のうち第1の引出幅W1に対応する部分の最小厚みD1minよりも薄くなっている。また、第2端面電極部62の最大厚みD2maxが、第2側面電極部61のうち第2の引出幅W3に対応する部分の最小厚みD1minよりも薄くなっている。このため、積層コンデンサ1に加えられる熱衝撃などの急激な温度変化に伴う端子電極5,6からコンデンサ素体2へ伝わる応力が緩和され、熱衝撃によるクラックなどの故障の発生を抑制することができる。 As described above, in the multilayer capacitor 1 according to this embodiment, the maximum thickness D2 max of the first end face electrode portion 52 is the minimum thickness D1 of the portion corresponding to the first lead width W1 in the first side face electrode portion 51. It is thinner than min . The maximum thickness D2 max of the second end electrode portion 62 is thinner than the minimum thickness D1 min of a portion corresponding to the second lead width W3 of the second side surface electrode portions 61. For this reason, the stress transmitted from the terminal electrodes 5 and 6 to the capacitor body 2 due to a rapid temperature change such as a thermal shock applied to the multilayer capacitor 1 is relieved, and the occurrence of a failure such as a crack due to the thermal shock can be suppressed. it can.

また、第1及び第2側面電極部51,61のうち第1及び第2の引出幅W1,W3に対応する部分の厚みがそれぞれ厚くなっていることから、第1及び第2引出電極部32,42の露出面から第1及び第2の内部電極3,4の内部へのめっき液の浸入を効果的に抑制できる。その一方、第1及び第2端面電極部52,62の厚みが薄くなっていることから、積層コンデンサ1の外形を同じサイズ(図3の全長L2参照)としたままコンデンサ素体2の長さL1を大きくでき、これにより、第1及び第2の内部電極3,4の面積を広くして、積層コンデンサ1の静電容量を大きくさせることができる。   Moreover, since the thickness of the part corresponding to 1st and 2nd extraction width W1, W3 among the 1st and 2nd side surface electrode parts 51 and 61 is thick, respectively, the 1st and 2nd extraction electrode part 32 is shown. , 42 can effectively suppress the penetration of the plating solution into the first and second internal electrodes 3, 4. On the other hand, since the thicknesses of the first and second end face electrode portions 52 and 62 are reduced, the length of the capacitor body 2 with the outer shape of the multilayer capacitor 1 being the same size (see the full length L2 in FIG. 3). L1 can be increased, whereby the areas of the first and second internal electrodes 3 and 4 can be increased, and the capacitance of the multilayer capacitor 1 can be increased.

また、本実施形態に係る積層コンデンサ1では、第1及び第2の端面2e,2fが略正方形となっていることから、図6に示されるように、いずれの側面2a〜2dを実装面とした場合でも、同一の実装形状とすることができる。しかも、第1及び第2の内部電極3,4の各引出電極部32,42がコンデンサ素体2の第3及び第4の側面2c,2d方向に引き出されて、第1及び第2の端子電極5,6に接続されているため、いずれかの側面2a〜2dを実装面として実装した場合であっても、積層コンデンサ1のESLのばらつきを低減できる。この結果、積層コンデンサ1であれば、実装方向を気にすることなく積層コンデンサ1を基板Sに実装することができるので、実装作業が効率化される。   In the multilayer capacitor 1 according to this embodiment, since the first and second end faces 2e and 2f are substantially square, as shown in FIG. 6, any one of the side faces 2a to 2d is defined as a mounting face. Even in this case, the same mounting shape can be obtained. In addition, the lead electrode portions 32 and 42 of the first and second inner electrodes 3 and 4 are drawn in the direction of the third and fourth side surfaces 2c and 2d of the capacitor element body 2, and the first and second terminals. Since it is connected to the electrodes 5 and 6, even when any one of the side surfaces 2a to 2d is mounted as a mounting surface, variations in ESL of the multilayer capacitor 1 can be reduced. As a result, if the multilayer capacitor 1 is used, the multilayer capacitor 1 can be mounted on the substrate S without worrying about the mounting direction, thereby improving the efficiency of the mounting operation.

また、本実施形態に係る積層コンデンサ1では、第1及び第2の端子電極5,6の離間距離Gが、第1及び第2の端面2e,2fの対向方向における第1側面電極部51の電極幅W2及び第2側面電極部61の電極幅W4よりも短くなっている。この場合、第1側面電極部51に接続される第1引出電極部32の第1の引出幅W1や第2側面電極部61に接続される第2引出電極部42の第2の引出幅W3を広くすることができ、第1及び第2引出電極部32,42において互いに異なる方向に流れる電流を大きくでき、その結果、各電流によって発生する磁界が相殺され、積層コンデンサ1におけるESLを低減することが可能となる。   In the multilayer capacitor 1 according to this embodiment, the separation distance G between the first and second terminal electrodes 5 and 6 is such that the first side surface electrode portion 51 has a separation distance G in the facing direction of the first and second end surfaces 2e and 2f. The electrode width W2 and the electrode width W4 of the second side surface electrode portion 61 are shorter. In this case, the first extraction width W1 of the first extraction electrode portion 32 connected to the first side surface electrode portion 51 and the second extraction width W3 of the second extraction electrode portion 42 connected to the second side surface electrode portion 61. The current flowing in different directions in the first and second extraction electrode portions 32 and 42 can be increased, and as a result, the magnetic field generated by each current is canceled, and the ESL in the multilayer capacitor 1 is reduced. It becomes possible.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上述した第1及び第2の内部電極3,4は、本実施形態では、第1及び第2の端面2e,2fに露出して端子電極5,6に接続される構成となっていないが、第1及び第2の内部電極3,4が第1及び第2の端面2e,2fに向かって引き出される引出電極部を更に有し、これら引出電極部が第1及び第2の端子電極5,6に接続されるようにしてもよい。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the first and second inner electrodes 3 and 4 described above are not configured to be exposed to the first and second end faces 2e and 2f and connected to the terminal electrodes 5 and 6 in this embodiment. However, the first and second inner electrodes 3 and 4 further have an extraction electrode portion that is extracted toward the first and second end faces 2e and 2f, and these extraction electrode portions are the first and second terminal electrodes. 5 and 6 may be connected.

1…積層コンデンサ、2…コンデンサ素体、3…第1の内部電極、4…第2の内部電極、5…第1の端子電極、6…第2の端子電極、10…誘電体層、31…第1主電極部、32…第1引出電極部、41…第2主電極部、42…第2引出電極部、51…第1側面電極部、52…第1端面電極部、61…第2側面電極部、62…第2端面電極部。   DESCRIPTION OF SYMBOLS 1 ... Multilayer capacitor, 2 ... Capacitor body, 3 ... 1st internal electrode, 4 ... 2nd internal electrode, 5 ... 1st terminal electrode, 6 ... 2nd terminal electrode, 10 ... Dielectric layer, 31 ... 1st main electrode part, 32 ... 1st extraction electrode part, 41 ... 2nd main electrode part, 42 ... 2nd extraction electrode part, 51 ... 1st side electrode part, 52 ... 1st end surface electrode part, 61 ... 1st 2 side electrode parts, 62 ... 2nd end surface electrode part.

Claims (2)

互いに対向する略長方形の第1及び第2の側面と、前記第1及び第2の側面間を連結するように前記第1及び第2の側面の長辺方向に伸び且つ互いに対向する第3及び第4の側面と、前記第1及び第2の側面間を連結するように前記第1及び第2の側面の短辺方向に伸び且つ互いに対向する略正方形の第1及び第2の端面とを有し、且つ、前記第1及び第2の側面の対向方向に積層された複数の誘電体層から構成されるコンデンサ素体と、
前記コンデンサ素体内に配置され、且つ、前記第1及び第2の端面の対向方向に伸びる第1主電極部と前記第3及び第4の側面に向けて第1の引出幅で伸びる第1引出電極部とを有する第1の内部電極と、
前記コンデンサ素体内に配置され、且つ、前記第1及び第2の側面の対向方向において前記第1主電極部に対向し且つ前記第1及び第2の端面の対向方向に伸びる第2主電極部と前記第3及び第4の側面に向けて伸びる第2引出電極部とを有する第2の内部電極と、
前記コンデンサ素体の外表面に配置され、且つ、前記第1、第2、第3及び第4の側面の前記第1の端面側に位置し且つ前記第1引出電極部に接続される第1側面電極部と前記第1の端面に位置する第1端面電極部とを有する第1の端子電極と、
前記コンデンサ素体の外表面に配置され、且つ、前記第1、第2、第3及び第4の側面の前記第2の端面側に位置し且つ前記第2引出電極部に接続される第2側面電極部と前記第2の端面に位置する第2端面電極部とを有する第2の端子電極と、を備え、
前記第1及び第2の端子電極の離間距離が、前記第1及び第2の端面の対向方向における前記第1側面電極部の電極幅及び前記第2側面電極部の電極幅よりも短く、且つ、
前記第1端面電極部の最大厚みが、前記第1側面電極部のうち前記第1の引出幅に対応する部分の最小厚みよりも薄いことを特徴とする積層コンデンサ。
First and second substantially rectangular side surfaces facing each other, and third and third surfaces extending in the long side direction of the first and second side surfaces so as to connect the first and second side surfaces and facing each other. A fourth side surface and substantially square first and second end surfaces extending in the short side direction of the first and second side surfaces and facing each other so as to connect the first and second side surfaces. And a capacitor body composed of a plurality of dielectric layers stacked in the opposing direction of the first and second side surfaces,
A first main electrode portion disposed in the capacitor body and extending in a direction opposite to the first and second end faces and a first lead extending toward the third and fourth side faces with a first lead width. A first internal electrode having an electrode portion;
A second main electrode portion disposed in the capacitor body and facing the first main electrode portion in the facing direction of the first and second side surfaces and extending in the facing direction of the first and second end surfaces And a second internal electrode having a second extraction electrode portion extending toward the third and fourth side surfaces,
A first electrode disposed on the outer surface of the capacitor body and located on the first end face side of the first, second, third and fourth side surfaces and connected to the first lead electrode portion. A first terminal electrode having a side electrode part and a first end face electrode part located on the first end face;
A second electrode disposed on the outer surface of the capacitor body and located on the second end face side of the first, second, third and fourth side surfaces and connected to the second lead electrode portion. A second terminal electrode having a side electrode part and a second end face electrode part located on the second end face;
A separation distance between the first and second terminal electrodes is shorter than an electrode width of the first side electrode part and an electrode width of the second side electrode part in a facing direction of the first and second end faces; and ,
The multilayer capacitor, wherein a maximum thickness of the first end face electrode portion is thinner than a minimum thickness of a portion corresponding to the first lead width in the first side face electrode portion.
前記第2引出電極部は、前記第3及び第4の側面に向けて第2の引出幅で伸び、
前記第2端面電極部の最大厚みが、前記第2側面電極部のうち前記第2の引出幅に対応する部分の最小厚みよりも薄いことを特徴とする請求項1に記載の積層コンデンサ。
The second extraction electrode portion extends with a second extraction width toward the third and fourth side surfaces,
2. The multilayer capacitor according to claim 1, wherein a maximum thickness of the second end surface electrode portion is thinner than a minimum thickness of a portion of the second side surface electrode portion corresponding to the second lead width.
JP2009254120A 2009-11-05 2009-11-05 Multilayer capacitor Active JP5251834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254120A JP5251834B2 (en) 2009-11-05 2009-11-05 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254120A JP5251834B2 (en) 2009-11-05 2009-11-05 Multilayer capacitor

Publications (2)

Publication Number Publication Date
JP2011100834A true JP2011100834A (en) 2011-05-19
JP5251834B2 JP5251834B2 (en) 2013-07-31

Family

ID=44191796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254120A Active JP5251834B2 (en) 2009-11-05 2009-11-05 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JP5251834B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576538B2 (en) 2011-01-28 2013-11-05 Murata Manuacturing Co., Ltd. Electronic component and substrate module
KR20140117296A (en) 2013-03-26 2014-10-07 가부시키가이샤 무라타 세이사쿠쇼 Ceramic electronic component
JP2015035573A (en) * 2013-08-08 2015-02-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component to be embedded in board and multilayer ceramic electronic component embedded printed circuit board
US10115528B2 (en) 2015-12-25 2018-10-30 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
JP2020004832A (en) * 2018-06-27 2020-01-09 株式会社村田製作所 Multilayer ceramic electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201636A (en) * 1993-12-30 1995-08-04 Taiyo Yuden Co Ltd Multilayer electronic device and its production
JP2001076957A (en) * 1999-09-08 2001-03-23 Murata Mfg Co Ltd Ceramic electronic component
JP2003007566A (en) * 2001-06-25 2003-01-10 Kyocera Corp Laminated electronic component
JP2004140183A (en) * 2002-10-17 2004-05-13 Murata Mfg Co Ltd Multilayer capacitor
JP2008071811A (en) * 2006-09-12 2008-03-27 Tdk Corp Multilayer capacitor and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201636A (en) * 1993-12-30 1995-08-04 Taiyo Yuden Co Ltd Multilayer electronic device and its production
JP2001076957A (en) * 1999-09-08 2001-03-23 Murata Mfg Co Ltd Ceramic electronic component
JP2003007566A (en) * 2001-06-25 2003-01-10 Kyocera Corp Laminated electronic component
JP2004140183A (en) * 2002-10-17 2004-05-13 Murata Mfg Co Ltd Multilayer capacitor
JP2008071811A (en) * 2006-09-12 2008-03-27 Tdk Corp Multilayer capacitor and electronic apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576538B2 (en) 2011-01-28 2013-11-05 Murata Manuacturing Co., Ltd. Electronic component and substrate module
KR20140117296A (en) 2013-03-26 2014-10-07 가부시키가이샤 무라타 세이사쿠쇼 Ceramic electronic component
US9667174B2 (en) 2013-03-26 2017-05-30 Murata Manufacturing Co., Ltd. Ceramic electronic component
JP2015035573A (en) * 2013-08-08 2015-02-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component to be embedded in board and multilayer ceramic electronic component embedded printed circuit board
US10115528B2 (en) 2015-12-25 2018-10-30 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
JP2020004832A (en) * 2018-06-27 2020-01-09 株式会社村田製作所 Multilayer ceramic electronic component

Also Published As

Publication number Publication date
JP5251834B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5062237B2 (en) Multilayer capacitor, mounting structure thereof, and manufacturing method thereof
JP4905498B2 (en) Multilayer ceramic electronic components
JP6107080B2 (en) Multilayer capacitor
JP4450084B2 (en) Multilayer capacitor and multilayer capacitor mounting structure
JPWO2007080852A1 (en) Multilayer capacitor
JP2006253371A (en) Multi-terminal multilayer capacitor and its manufacturing method
JP5267548B2 (en) Multilayer capacitor
JP2007142296A (en) Stacked capacitor
JP2018157029A (en) Electronic component
JP2009123965A (en) Laminated capacitor
US20110096464A1 (en) Multilayer capacitor
JP2007317786A (en) Multilayer capacitor
JP5929279B2 (en) Multilayer capacitor
JP5267363B2 (en) Multilayer electronic components
JP2016111247A (en) Multilayer ceramic capacitor
JP5251834B2 (en) Multilayer capacitor
JP2009130219A (en) Multilayer capacitor
JP5170066B2 (en) Multilayer capacitor
JP4924698B2 (en) Electronic component mounting structure
JP5278476B2 (en) Multilayer capacitor
JP4961818B2 (en) Multilayer capacitor
JP6201477B2 (en) Multilayer capacitor
JP6459717B2 (en) Multilayer ceramic capacitor
JP6380065B2 (en) Multilayer ceramic capacitor
JP5321630B2 (en) Multilayer capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3