JP2002294029A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JP2002294029A
JP2002294029A JP2001096061A JP2001096061A JP2002294029A JP 2002294029 A JP2002294029 A JP 2002294029A JP 2001096061 A JP2001096061 A JP 2001096061A JP 2001096061 A JP2001096061 A JP 2001096061A JP 2002294029 A JP2002294029 A JP 2002294029A
Authority
JP
Japan
Prior art keywords
epoxy resin
spherical silica
resin composition
weight
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001096061A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mizuno
恭宏 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001096061A priority Critical patent/JP2002294029A/en
Publication of JP2002294029A publication Critical patent/JP2002294029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition capable of being filled with molten spherical silica at a high filling ratio. SOLUTION: An epoxy resin composition for sealing a semiconductor comprises (A) an epoxy resin, (B) a phenol resin, (C) a hardening accelerator and (D) a molten spherical silica which remains in an amount of 75-100 wt.% on a sieve having an aperture of 20 μm when it is sieved by a dry method using the sieve, and remains in an amount of 50-97 wt.% on the sieve when it is sieved by a wet method. The content of the molten spherical silica is 88-93 wt.% of the whole epoxy resin composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動性、耐半田ク
ラック性に優れた特性を有する半導体封止用エポキシ樹
脂組成物及び半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation having excellent fluidity and solder crack resistance, and to a semiconductor device.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、I
C、LSI等の半導体部品を、外的刺激(機械的・熱的
衝撃、化学的作用等)から保護するためには、生産性や
コストの点を考慮してエポキシ樹脂組成物で封入成形す
るのが一般的になっている。近年の半導体素子の高集積
度化に伴い、その寸法の増大とは相反して、最近の電子
機器の小型化による半導体装置の寸法の小型化・薄型化
が進み、更にプリント回路基板への実装方法も従来のピ
ン挿入型から表面実装型へ移行してきたため、表面実装
半田処理時の熱衝撃による半導体装置のクラックや、半
導体素子・リードフレームとエポキシ樹脂組成物の硬化
物との界面での剥離といった問題が生じ易くなり、耐熱
性に優れたエポキシ樹脂組成物が強く求められている。
これらの半田クラックや剥離は、半田処理前の半導体装
置自身が吸湿し、半田処理時の高温下でその水分が水蒸
気爆発を起こすことによって生じると考えられており、
これを防ぐためにエポキシ樹脂組成物に低吸水性を付与
する等の手法がよく用いられ、その低吸水化の手法の一
つとして溶融シリカを高充填化し、樹脂成分の含有量を
減少させる技術がある。しかしながら、従来の溶融シリ
カをエポキシ樹脂組成物に90重量%以上配合すると、
小粒子シリカの凝集により分散性が悪化し半導体用封止
材料に適用するには問題があった。
2. Description of the Related Art Conventionally, diodes, transistors, I
In order to protect semiconductor components such as C and LSI from external stimuli (mechanical / thermal shock, chemical action, etc.), encapsulation molding is performed with an epoxy resin composition in consideration of productivity and cost. Is becoming more common. Contrary to the increase in the size of semiconductor devices in recent years, the size of semiconductor devices has become smaller and thinner due to the recent downsizing of electronic devices, contrary to the increase in size, and furthermore, mounting on printed circuit boards. Since the method has also shifted from the conventional pin insertion type to the surface mount type, cracks in semiconductor devices due to thermal shock during surface mount soldering and peeling at the interface between the semiconductor element / lead frame and the cured epoxy resin composition Such a problem is likely to occur, and an epoxy resin composition having excellent heat resistance is strongly demanded.
It is considered that these solder cracks and peeling are caused by the moisture absorption of the semiconductor device itself before the soldering process and the water vapor explosion at a high temperature during the soldering process.
In order to prevent this, techniques such as imparting low water absorption to the epoxy resin composition are often used, and as one of the techniques for reducing the water absorption, a technique of highly filling the fused silica and reducing the content of the resin component is known. is there. However, when the conventional fused silica is added to the epoxy resin composition at 90% by weight or more,
Dispersibility deteriorates due to aggregation of the small-particle silica, and there is a problem in applying to a sealing material for semiconductors.

【0003】[0003]

【発明が解決しようとする課題】本発明は、流動性、曲
げ強度、低吸水性に優れた半導体封止用エポキシ樹脂組
成物及び耐半田クラック性に優れた半導体装置を提供す
るものである。
SUMMARY OF THE INVENTION The present invention provides an epoxy resin composition for semiconductor encapsulation having excellent fluidity, bending strength, and low water absorption, and a semiconductor device having excellent solder crack resistance.

【0004】[0004]

【課題を解決するための手段】本発明は、[1](A)
エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進
剤、(D)目開き20μmの乾式篩いで篩うと、篩い上
に75〜100重量%残存し、湿式篩いで篩うと、篩い
上に50〜97重量%残存する溶融球状シリカを全エポ
キシ樹脂組成物中88〜93重量%含有することを特徴
とする半導体封止用エポキシ樹脂組成物、[2]溶融球
状シリカが、最大粒径1.5μm以下のシリカを付着し
てなる請求項1記載の半導体封止用エポキシ樹脂組成
物、[3]第[1]項又は[2]項記載の半導体封止用
エポキシ樹脂組成物を用いて半導体素子を封止してなる
ことを特徴とする半導体装置、である。
Means for Solving the Problems The present invention provides [1] (A)
Epoxy resin, (B) phenolic resin, (C) curing accelerator, (D) When sieved with a dry sieve having an opening of 20 μm, 75 to 100% by weight remains on the sieve, and when sieved with a wet sieve, 50% on the sieve. The epoxy resin composition for encapsulating a semiconductor, characterized in that the epoxy resin composition contains 88 to 93% by weight of the remaining fused spherical silica in the total epoxy resin composition. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein silica of 5 μm or less is adhered, and the semiconductor using the epoxy resin composition for semiconductor encapsulation according to [3] [1] or [2]. A semiconductor device characterized by sealing an element.

【0005】[0005]

【発明の実施の形態】本発明に用いるエポキシ樹脂とし
ては、1分子内にエポキシ基を2個以上有するモノマ
ー、オリゴマー、ポリマー全般を言い、その分子量、分
子構造を特に限定するものではないが、例えばビフェニ
ル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ス
チルベン型エポキシ樹脂、フェノールノボラック型エポ
キシ樹脂、クレゾールノボラック型エポキシ樹脂、トリ
フェノールメタン型エポキシ樹脂、アルキル変性トリフ
ェノールメタン型エポキシ樹脂、ナフトール型エポキシ
樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタ
ジエン変性フェノール型エポキシ樹脂、フェノールアラ
ルキル型エポキシ樹脂(フェニレン骨格、ジフェニレン
骨格等を有する)、ナフトールアラルキル樹脂(フェニ
レン骨格、ジフェニレン骨格等を有する)等が挙げら
れ、これらは単独でも混合して用いても差し支えない。
微粒子を付着させた溶融球状シリカを高充填化するに
は、ビフェニル型エポキシ樹脂のような低粘度樹脂が好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having two or more epoxy groups in one molecule, and their molecular weight and molecular structure are not particularly limited. For example, biphenyl epoxy resin, bisphenol epoxy resin, stilbene epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, triphenolmethane epoxy resin, alkyl-modified triphenolmethane epoxy resin, naphthol epoxy resin, triazine Nucleus-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, phenol aralkyl type epoxy resin (having a phenylene skeleton, diphenylene skeleton, etc.), naphthol aralkyl resin (phenylene skeleton, diphenylene Down having a skeleton or the like), and these are no problem be used singly or in admixture.
A low-viscosity resin such as a biphenyl-type epoxy resin is preferable for highly filling the fused spherical silica with the fine particles attached.

【0006】本発明に用いるフェノール樹脂としては、
1分子内にフェノール性水酸基を2個以上有するモノマ
ー、オリゴマー、ポリマー全般を言い、その分子量、分
子構造を特に限定するものではないが、例えばフェノー
ルノボラック樹脂、クレゾールノボラック樹脂、ジシク
ロペンタジエン変性フェノール樹脂、テルペン変性フェ
ノール樹脂、トリフェノールメタン型樹脂、フェノール
アラルキル樹脂(フェニレン骨格、ジフェニレン骨格等
を有する)やナフトールアラルキル樹脂(フェニレン骨
格、ジフェニレン骨格等を有する)等が挙げられ、これ
らは単独でも混合して用いても差し支えない。これらの
内では、特にフェノールノボラック樹脂、ジシクロペン
タジエン変性フェノール樹脂、フェノールアラルキル樹
脂(フェニレン骨格、ジフェニレン骨格等を有する)、
ナフトールアラルキル樹脂(フェニレン骨格、ジフェニ
レン骨格等を有する)、テルペン変性フェノール樹脂等
が好ましい。これらの配合量としては、全エポキシ樹脂
のエポキシ基数と全フェノール樹脂のフェノール性水酸
基数の比が0.8〜1.3が好ましい。
The phenolic resin used in the present invention includes:
Monomers, oligomers, and polymers generally having two or more phenolic hydroxyl groups in one molecule are not particularly limited in molecular weight and molecular structure. For example, phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin And terpene-modified phenolic resins, triphenolmethane-type resins, phenol aralkyl resins (having a phenylene skeleton, diphenylene skeleton, etc.) and naphthol aralkyl resins (having a phenylene skeleton, diphenylene skeleton, etc.), and the like. Can be used. Among them, phenol novolak resin, dicyclopentadiene-modified phenol resin, phenol aralkyl resin (having a phenylene skeleton, diphenylene skeleton, etc.),
A naphthol aralkyl resin (having a phenylene skeleton, a diphenylene skeleton, and the like), a terpene-modified phenol resin, and the like are preferable. The ratio of the number of epoxy groups in all epoxy resins to the number of phenolic hydroxyl groups in all phenolic resins is preferably 0.8 to 1.3.

【0007】本発明に用いる硬化促進剤としては、エポ
キシ基とフェノール性水酸基との硬化反応を促進させる
ものであればよく、一般に封止材料に使用するものを用
いることができる。例えば1,8−ジアザビシクロ
(5,4,0)ウンデセン−7、トリフェニルホスフィ
ン、2−メチルイミダゾール、テトラフェニルホスホニ
ウム・テトラフェニルボレート等が挙げられ、これらは
単独でも混合して用いても差し支えない。
As the curing accelerator used in the present invention, any one can be used as long as it promotes a curing reaction between an epoxy group and a phenolic hydroxyl group, and those generally used for a sealing material can be used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate and the like can be mentioned, and these may be used alone or in combination. .

【0008】従来半導体封止用エポキシ樹脂組成物に用
いられている溶融球状シリカは、その配合量が多くなる
に従い、エポキシ樹脂組成物の硬化物の吸水率が低くな
り、半田クラックや剥離を防止できるが、この溶融球状
シリカをエポキシ樹脂組成物中に90〜93重量%程度
配合すると、該溶融球状シリカ中に存在する小粒子のシ
リカが凝集し溶融球状シリカを均一に分散させることが
困難となり、流動性が悪化し成形性が悪くなるという欠
点があった。
[0008] As the amount of fused spherical silica conventionally used in an epoxy resin composition for semiconductor encapsulation increases, the water absorption of a cured product of the epoxy resin composition decreases, preventing solder cracking and peeling. However, when this fused spherical silica is blended in the epoxy resin composition in an amount of about 90 to 93% by weight, the small particles of silica present in the fused spherical silica aggregate and it becomes difficult to uniformly disperse the fused spherical silica. However, there is a disadvantage that the fluidity is deteriorated and the moldability is deteriorated.

【0009】本発明で用いる溶融球状シリカは、目開き
20μmの乾式篩いで篩うと、篩い上に75〜100重
量%残存し、湿式篩いで篩うと、篩い上に50〜97重
量%残存する粒径構成ならよいが、より好ましくは大粒
子と凝集している小粒子の溶融球状シリカを回転粉体混
合装置等で予め混合することによって大粒子に小粒子を
付着させて、目開き20μmの乾式篩いで篩うと、篩い
上に小粒子が付着した溶融球状シリカが75〜100重
量%残存し、湿式篩いで篩うと、溶融シリカに付着して
いる小粒子が水によって流され、篩い上に小粒子の付着
していない溶融球状シリカが50〜97重量%残存する
溶融球状シリカが望ましい。この溶融球状シリカを用い
ることによりエポキシ樹脂組成物の流動性を維持しなが
ら高充填化が可能となり、その硬化物の強度等の特性が
改善され、その結果として半導体装置の耐半田クラック
性の向上が可能となることを見出したものである。乾式
篩い上75重量%未満であると小粒子が独立して存在
し、凝集し易く分散性が悪化する。湿式篩い上が50重
量%未満か97重量%を越えると、これを配合したエポ
キシ樹脂組成物は流動性が悪くなり成形性が低下するの
で好ましくない。
The fused spherical silica used in the present invention has a particle size of 75 to 100% by weight remaining on the sieve when sieved with a dry sieve having an opening of 20 μm, and 50 to 97% by weight when sieved with a wet sieve. The diameter configuration is good, but it is more preferable that the small particles adhere to the large particles by pre-mixing the fused spherical silica of the small particles that are agglomerated with the large particles with a rotary powder mixing device or the like, and a dry 20 μm mesh is used. When sieved, 75 to 100% by weight of the fused spherical silica having small particles attached on the sieve remains, and when sieved with a wet sieve, the small particles attached to the fused silica are washed away by water and small Desirably, fused spherical silica in which 50 to 97% by weight of fused spherical silica to which no particles are attached remains. By using this fused spherical silica, high filling is possible while maintaining the fluidity of the epoxy resin composition, and the properties such as the strength of the cured product are improved, and as a result, the solder crack resistance of the semiconductor device is improved. Have been found to be possible. If the content is less than 75% by weight on a dry sieve, small particles are present independently, easily agglomerated, and the dispersibility is deteriorated. When the content on the wet sieve is less than 50% by weight or more than 97% by weight, the epoxy resin composition containing the same is not preferable because the fluidity becomes poor and the moldability is reduced.

【0010】ボールミル、V型混合機、スーパーミキサ
ー等の回転粉体混合装置を用いて予め大粒子と小粒子の
溶融球状シリカを混合することにより、小粒子の溶融球
状シリカの凝集が崩れ、大粒子の溶融球状シリカの表面
に付着し、樹脂成分との混練時に小粒子の分散性がよく
なるためである。大粒子に小粒子を付着させた溶融球状
シリカの配合量は、全エポキシ樹脂組成物中88〜93
重量%が好ましい。88重量%未満だと耐半田クラック
性が悪く、93重量%を越えると流動性が悪い。溶融球
状シリカに付着した小粒子の最大粒径としは、1.5μ
m以下が流動性の点から好ましい。
[0010] Large particles and small particles of fused spherical silica are preliminarily mixed by using a rotary powder mixing device such as a ball mill, a V-type mixer, and a super mixer, so that the aggregation of small particles of fused spherical silica is broken. This is because the particles adhere to the surface of the fused spherical silica, and the dispersibility of the small particles is improved during kneading with the resin component. The compounding amount of the fused spherical silica in which the small particles are adhered to the large particles is 88 to 93 in all the epoxy resin compositions.
% By weight is preferred. If it is less than 88% by weight, the solder crack resistance is poor, and if it exceeds 93% by weight, the fluidity is poor. The maximum particle size of the small particles attached to the fused spherical silica is 1.5 μ
m or less is preferable from the viewpoint of fluidity.

【0011】本発明でいう目開き20μmの乾式篩いで
篩うと、篩い上に75〜100重量%残存し、湿式篩い
で篩うと、篩い上に50〜97重量%残存する溶融球状
シリカとは、目開き20μmの乾式篩いに約10g前後
精秤し篩った後、更に水を用いて同一の篩いを使って湿
式で篩った後の溶融球状シリカの残存量のことを指す。
本発明での溶融球状シリカに付着された最大粒径1.5
μm以下の溶融球状シリカの確認は、溶融球状シリカを
導電性接着剤で固定した後エアーを吹き付け、導電性接
着剤上に残存したものを走査型電子顕微鏡(SEM)を
用いて行う。
When sieved with a dry sieve having a mesh size of 20 μm as referred to in the present invention, 75 to 100% by weight of the fused spherical silica remains on the sieve and 50 to 97% by weight remains on the sieve when sieved with a wet sieve. It refers to the remaining amount of fused spherical silica after about 10 g of finely weighed and sieved on a dry sieve having an opening of 20 μm, and further sieved with water using the same sieve with water.
Maximum particle size 1.5 attached to fused spherical silica in the present invention
Confirmation of the fused spherical silica having a diameter of not more than μm is performed by fixing the fused spherical silica with a conductive adhesive and then blowing air thereon, and then using a scanning electron microscope (SEM) to remove what remains on the conductive adhesive.

【0012】本発明のエポキシ樹脂組成物は、(A)〜
(D)成分を必須成分とするが、これ以外に必要に応じ
て、カーボンブラック等の着色剤、カップリング剤、天
然ワックス、合成ワックス等の離型剤、及びシリコーン
オイル、ゴム等の低応力添加剤等の種々の添加剤を適宜
配合しても差し支えない。又本発明のエポキシ樹脂組成
物は、(A)〜(D)成分及びその他の添加剤等をミキ
サー等を用いて充分に均一に混合した後、更に熱ロール
又はニーダー等で溶融混練し、冷却後粉砕して得られ
る。本発明のエポキシ樹脂組成物を用いて、半導体素子
等の各種の電子部品を封止し、半導体装置を製造するに
は、トランスファーモールド、コンプレッションモール
ド、インジェクションモールド等の従来からの成形方法
で硬化成形すればよい。
The epoxy resin composition of the present invention comprises (A)
The component (D) is an essential component, but if necessary, a coloring agent such as carbon black, a coupling agent, a release agent such as a natural wax and a synthetic wax, and a low stress such as silicone oil and rubber. Various additives such as additives may be appropriately compounded. Further, the epoxy resin composition of the present invention is prepared by mixing the components (A) to (D) and other additives sufficiently and uniformly using a mixer or the like, and further melt-kneading with a hot roll or a kneader and cooling. It is obtained by subsequent grinding. Various electronic components such as semiconductor elements are encapsulated using the epoxy resin composition of the present invention, and semiconductor devices are manufactured by curing and molding using conventional molding methods such as transfer molding, compression molding, and injection molding. do it.

【0013】[0013]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらに限定されるものではない。配合割合は重量部とす
る。 実施例1 溶融シリカA:最大粒径1.1μmの溶融球状シリカ5
重量部と平均粒径22μmの溶融球状シリカ100重量
部をボールミルに投入し30分間攪拌し、平均粒径22
μmの溶融球状シリカに付着させた。これを目開き20
μmの乾式で少量ずつ篩ったところ、篩い上に78重量
%残存し、更に水を用いて湿式で篩ったところ、篩い上
に65重量%溶融球状シリカが残存した。又混合処理さ
れた溶融シリカを導電性接着剤で固定した後、エアーを
吹き付けたものをSEMで観察したところ、平均粒径2
2μmの溶融球状シリカの表面に最大粒径1.1μmの
溶融球状シリカが付着していた。この表面処理された溶
融球状シリカを溶融シリカAという。粒径構成を表1に
示す。 ビフェニル型エポキシ樹脂(融点105℃、エポキシ当量195) 4.3重量部 フェノールアラルキル樹脂(軟化点75℃、水酸基当量175) 3.5重量部 1、 8−ジアザビシクロ(5、4、0)ウンデセン−7(以下、DBUとい う) 0.1重量部 γ−アミノプロピルトリエトキシシラン 0.3重量部 カーボンブラック 0.3重量部 モンタン酸エステル 0.2重量部 カルナバワックス 0.2重量部 溶融シリカA 91.1重量部 を常温でスーパーミキサーを用いて混合し、70〜10
0℃でロール混練して、冷却後粉砕してエポキシ樹脂組
成物を得た。得られたエポキシ樹脂組成物を以下の方法
で評価した。結果を表2に示す。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples. The mixing ratio is by weight. Example 1 Fused silica A: fused spherical silica 5 having a maximum particle size of 1.1 μm
Parts by weight and 100 parts by weight of fused spherical silica having an average particle size of 22 μm were put into a ball mill and stirred for 30 minutes to give an average particle size of 22 μm.
Attached to μm fused spherical silica. Open this 20
When sieved little by little by a dry method of μm, 78% by weight remained on the sieve, and further, when sieved by water using water, 65% by weight of fused spherical silica remained on the sieve. After fixing the mixed fused silica with a conductive adhesive and then blowing it with air, it was observed by SEM that the average particle size was 2
Fused spherical silica having a maximum particle size of 1.1 μm was adhered to the surface of the 2 μm fused spherical silica. This surface-treated fused spherical silica is referred to as fused silica A. Table 1 shows the particle size composition. Biphenyl type epoxy resin (melting point 105 ° C, epoxy equivalent 195) 4.3 parts by weight Phenol aralkyl resin (softening point 75 ° C, hydroxyl equivalent 175) 3.5 parts by weight 1,8-diazabicyclo (5,4,0) undecene- 7 (hereinafter referred to as DBU) 0.1 part by weight γ-aminopropyltriethoxysilane 0.3 part by weight Carbon black 0.3 part by weight Montanic acid ester 0.2 part by weight Carnauba wax 0.2 part by weight Fused silica A 91.1 parts by weight were mixed at room temperature using a super mixer, and 70 to 10 parts by weight were mixed.
Roll kneading was performed at 0 ° C., followed by cooling and pulverization to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following method. Table 2 shows the results.

【0014】評価方法 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用金型を用いて、金型温度175℃、注
入圧力6.9MPa、硬化時間120秒で測定した。 熱時曲げ強度:熱時曲げ強度をJIS K 6911に
準じて(260℃で) 測定した。単位はN/mm2。 煮沸吸水率:トランスファー成形機を用いて、金型温度
175℃、注入圧力6.9MPa、硬化時間180秒で
直径50mm、厚さ3mmの円盤を成形し、175℃、
8時間で後硬化し、煮沸水中に24時間放置し、重量変
化を測定して吸水率を測定した。単位は重量%。 耐半田クラック性:マルチプランジャー成形機を用い
て、金型温度175℃、注入圧力9.8MPa、硬化時
間120秒の条件で80pQFP(厚さ2.0mm、チ
ップサイズ6mm×6mm)を成形した。ポストキュア
として175℃で8時間処理したパッケージ6個を、8
5℃、相対温度85%の環境下で168時間処理し、そ
の後IRリフロー処理(最大260℃で10秒)を行っ
た。顕微鏡で処理後パッケージの外部クラックを、又超
音波探傷装置で内部の剥離及びクラックの有無を観察
し、不良パッケージの個数を数えた。不良パッケージの
個数がn個であるとき、n/6と表示する。
Evaluation method Spiral flow: Measurement was performed using a mold for measuring spiral flow according to EMMI-1-66 at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. Hot bending strength: The hot bending strength was measured (at 260 ° C.) according to JIS K 6911. The unit is N / mm 2 . Boiling water absorption rate: Using a transfer molding machine, a disk having a diameter of 50 mm and a thickness of 3 mm was formed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 180 seconds.
It was post-cured in 8 hours, left in boiling water for 24 hours, and the change in weight was measured to determine the water absorption. The unit is% by weight. Solder crack resistance: 80 pQFP (2.0 mm thick, chip size 6 mm × 6 mm) was molded using a multi-plunger molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. . Six packages treated at 175 ° C for 8 hours as post cure
The treatment was performed for 168 hours in an environment of 5 ° C. and a relative temperature of 85%, followed by an IR reflow treatment (maximum 260 ° C. for 10 seconds). After processing with a microscope, external cracks of the package were observed, and the presence or absence of internal peeling and cracks was observed with an ultrasonic flaw detector, and the number of defective packages was counted. When the number of defective packages is n, n / 6 is displayed.

【0015】実施例2、3、比較例1〜5 溶融シリカB〜Eは、以下のようにして作成した。 溶融シリカB:最大粒径1.1μmの溶融球状シリカ1
0重量部と平均粒径22μmの溶融球状シリカ100重
量部をV型混合機に投入し30分間攪拌し、平均粒径2
2μmの溶融球状シリカに付着させた。これを目開き2
0μmの乾式で少量ずつ篩ったところ、篩い上に97重
量%残存し、更に水を用いて湿式で篩ったところ、篩い
上に58重量%の溶融球状シリカが残存した。又混合処
理された溶融シリカを導電性接着剤で固定した後、エア
ーを吹き付けたものをSEMで観察したところ、平均粒
径22μmの溶融球状シリカの表面に最大粒径1.1μ
mの溶融球状シリカが付着していた。この表面処理され
た溶融球状シリカを溶融シリカBという。粒径構成を表
1に示す。 溶融シリカC:平均粒径24μmの溶融シリカを目開き
20μmの乾式で少量ずつ篩ったところ、篩い上に80
重量%残存し、更に水を用いて湿式で篩ったところ、篩
い上に71重量%の溶融球状シリカが残存した。この溶
融シリカを導電性接着剤で固定した後、エアーを吹き付
けたものをSEMで観察したところ、平均粒径24μm
の溶融球状シリカの表面には付着物はなかった。溶融シ
リカCという。粒径構成を表1に示す。 溶融シリカD:最大粒径1.1μmの溶融球状シリカ1
5重量部と平均粒径22μmの溶融球状シリカ100重
量部をV型混合機に投入し30分間攪拌し、平均粒径2
2μmの溶融球状シリカに付着させた。これを目開き2
0μmの乾式で少量ずつ篩ったところ、篩い上に70重
量%残存し、更に水を用いて湿式で篩ったところ、篩い
上に46重量%の溶融球状シリカが残存した。又混合処
理された溶融シリカを導電性接着剤で固定した後、エア
ーを吹き付けたものをSEMで観察したところ、平均粒
径22μmの溶融球状シリカの表面に最大粒径1.1μ
mの溶融球状シリカが付着していた。この表面処理され
た溶融球状シリカを溶融シリカDという。粒径構成を表
1に示す。 溶融シリカE:平均粒径28μmの溶融球状シリカを目
開き20μmの乾式で少量ずつ篩ったところ、篩い上に
100重量%残存し、更に水を用いて湿式で篩ったとこ
ろ、篩い上に98重量%の溶融球状シリカが残存した。
平均粒径28μmの溶融シリカを導電性接着剤で固定し
た後、エアーを吹き付けたものをSEMで観察したとこ
ろ、平均粒径28μmの溶融球状シリカの表面に付着物
はなかった。溶融シリカEという。粒径構成を表1に示
す。表2の配合に従い、実施例1と同様にしてエポキシ
樹脂組成物を得て、実施例1と同様にして評価した。結
果を表2に示す。
Examples 2 and 3, Comparative Examples 1 to 5 Fused silicas B to E were prepared as follows. Fused silica B: fused spherical silica 1 having a maximum particle size of 1.1 μm
0 parts by weight and 100 parts by weight of fused spherical silica having an average particle size of 22 μm were charged into a V-type mixer and stirred for 30 minutes.
Attached to 2 μm fused spherical silica. Open this 2
When the mixture was sieved little by little with a dry method of 0 μm, 97% by weight remained on the sieve, and when the mixture was sieved wet with water, 58% by weight of fused spherical silica remained on the sieve. Further, after fixing the mixed fused silica with a conductive adhesive and observing the blown air with a SEM, the maximum particle size of 1.1 μm was formed on the surface of the fused spherical silica having an average particle size of 22 μm.
m of fused spherical silica. This surface-treated fused spherical silica is referred to as fused silica B. Table 1 shows the particle size composition. Fused Silica C: Fused silica having an average particle diameter of 24 μm was sieved little by little by a dry method with an opening of 20 μm.
% By weight and further sieved with water using water, 71% by weight of fused spherical silica remained on the sieve. After fixing this fused silica with a conductive adhesive, the air blown was observed by SEM to find that the average particle size was 24 μm.
There was no deposit on the surface of the fused spherical silica. It is called fused silica C. Table 1 shows the particle size composition. Fused silica D: fused spherical silica 1 having a maximum particle size of 1.1 μm
5 parts by weight and 100 parts by weight of fused spherical silica having an average particle size of 22 μm were put into a V-type mixer and stirred for 30 minutes to give an average particle size of 2 parts.
Attached to 2 μm fused spherical silica. Open this 2
When the mixture was sieved little by little with a dry method of 0 μm, 70% by weight remained on the sieve, and when the mixture was sieved with water using water, 46% by weight of fused spherical silica remained on the sieve. Further, after fixing the mixed fused silica with a conductive adhesive and observing the blown air with a SEM, the maximum particle size of 1.1 μm was formed on the surface of the fused spherical silica having an average particle size of 22 μm.
m of fused spherical silica. This surface-treated fused spherical silica is referred to as fused silica D. Table 1 shows the particle size composition. Fused Silica E: Fused spherical silica having an average particle size of 28 μm was sieved little by little in a dry manner with a mesh size of 20 μm, 100% by weight remained on the sieve, and further sieved in a wet manner using water. 98% by weight of fused spherical silica remained.
After fixing fused silica having an average particle size of 28 μm with a conductive adhesive, air was blown and observed by SEM. As a result, there was no deposit on the surface of the fused spherical silica having an average particle size of 28 μm. It is called fused silica E. Table 1 shows the particle size composition. According to the formulation in Table 2, an epoxy resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 2 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明に従うと、溶融球状シリカを高充
填しても、流動性が良好で成形性に優れた半導体封止用
エポキシ樹脂組成物が得られ、これを用いた半導体装置
は、曲げ強度及び耐半田クラック性に優れている。
According to the present invention, an epoxy resin composition for semiconductor encapsulation having good flowability and excellent moldability can be obtained even when the fused spherical silica is highly filled. Excellent bending strength and solder crack resistance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CC042 CC072 CC122 CD021 CD041 CD051 CD061 CD071 CD141 CE002 DJ017 EU116 EU136 EW016 EW176 FD017 FD156 GQ05 4J036 AA01 AB16 AC02 AD07 AD10 AE05 AE07 AF05 AF06 AF08 DC41 DC46 DD07 FA05 FB06 FB07 GA23 JA07 4M109 AA01 BA01 CA21 EA02 EB03 EB04 EB13 EB16 EC05 EC20 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J002 CC042 CC072 CC122 CD021 CD041 CD051 CD061 CD071 CD141 CE002 DJ017 EU116 EU136 EW016 EW176 FD017 FD156 GQ05 4J036 AA01 AB16 AC02 AD07 AD10 AE05 AE07 AF05 AF06 AF07 DC41 DC46 DD07 FA07 4M109 AA01 BA01 CA21 EA02 EB03 EB04 EB13 EB16 EC05 EC20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂、(C)硬化促進剤、(D)目開き20μmの乾式
篩いで篩うと、篩い上に75〜100重量%残存し、湿
式篩いで篩うと、篩い上に50〜97重量%残存する溶
融球状シリカを全エポキシ樹脂組成物中88〜93重量
%含有することを特徴とする半導体封止用エポキシ樹脂
組成物。
Claims: 1. An epoxy resin, (B) a phenolic resin, (C) a curing accelerator, and (D) a sieve with a dry sieve having a mesh size of 20 μm. An epoxy resin composition for encapsulating a semiconductor, comprising 50 to 97% by weight of fused spherical silica remaining on the sieve when sieved at 88 to 93% by weight of the total epoxy resin composition.
【請求項2】 溶融球状シリカが、最大粒径1.5μm
以下のシリカを付着してなる請求項1記載の半導体封止
用エポキシ樹脂組成物。
2. The fused spherical silica has a maximum particle size of 1.5 μm.
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the following silica is adhered.
【請求項3】 請求項1又は2記載の半導体封止用エポ
キシ樹脂組成物を用いて半導体素子を封止してなること
を特徴とする半導体装置。
3. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1 or 2.
JP2001096061A 2001-03-29 2001-03-29 Epoxy resin composition and semiconductor device Pending JP2002294029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096061A JP2002294029A (en) 2001-03-29 2001-03-29 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096061A JP2002294029A (en) 2001-03-29 2001-03-29 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002294029A true JP2002294029A (en) 2002-10-09

Family

ID=18950029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096061A Pending JP2002294029A (en) 2001-03-29 2001-03-29 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2002294029A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140959A (en) * 1988-11-22 1990-05-30 Nitto Denko Corp Semiconductor device
JPH05239321A (en) * 1992-02-28 1993-09-17 Toshiba Chem Corp Epoxy resin composition and semiconductor-sealing arrangement
JPH08104796A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Semiconductor-sealing resin composition and semiconductor device sealed with the composition
JPH10292094A (en) * 1997-02-20 1998-11-04 Toshiba Corp Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
JP2000319633A (en) * 1999-05-12 2000-11-21 C I Kasei Co Ltd Silica filter for epoxy resin sealing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140959A (en) * 1988-11-22 1990-05-30 Nitto Denko Corp Semiconductor device
JPH05239321A (en) * 1992-02-28 1993-09-17 Toshiba Chem Corp Epoxy resin composition and semiconductor-sealing arrangement
JPH08104796A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Semiconductor-sealing resin composition and semiconductor device sealed with the composition
JPH10292094A (en) * 1997-02-20 1998-11-04 Toshiba Corp Epoxy resin composition, resin-sealed semiconductor device prepared by using the sane, epoxy resin molding material, and composite epoxy resin tablet
JP2000319633A (en) * 1999-05-12 2000-11-21 C I Kasei Co Ltd Silica filter for epoxy resin sealing material

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP2004018803A (en) Epoxy resin composition and semiconductor device
JP4710200B2 (en) Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
JP2002012742A (en) Epoxy resin composition and semiconductor device
JP2008291155A (en) Sealing epoxy resin composition and semiconductor device
JP2773955B2 (en) Semiconductor device
JP2000281751A (en) Epoxy resin composition and semiconductor device
JP2000169671A (en) Epoxy resin composition and semiconductor device
JP3811154B2 (en) Resin composition for sealing and resin-sealed semiconductor device
JP2002080694A (en) Epoxy resin composition and semiconductor device
JP2002294029A (en) Epoxy resin composition and semiconductor device
JP2595854B2 (en) Epoxy resin composition and cured product thereof
JPH0588904B2 (en)
JP2000186183A (en) Epoxy resin composition for sealing and semiconductor device
JP5142427B2 (en) Epoxy resin composition and semiconductor device
JP2009173812A (en) Epoxy resin composition for sealing and semiconductor device
JP2002249546A (en) Sealing resin composition and semiconductor device
JP2006143784A (en) Epoxy resin composition and semiconductor device
JP2003064157A (en) Epoxy resin composition and semiconductor device
JP2000226497A (en) Epoxy resin composition and semiconductor device
JP2006022188A (en) Epoxy resin composition and method for producing the same and semiconductor device
JP2985706B2 (en) Epoxy resin composition for sealing and semiconductor device using the same
JPWO2005054331A1 (en) Epoxy resin composition and semiconductor device sealed with the same
JP3317473B2 (en) Epoxy resin composition
JP2003138099A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A977 Report on retrieval

Effective date: 20100914

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101102

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110315

Free format text: JAPANESE INTERMEDIATE CODE: A02