JP2002290011A - Thick film circuit board and its manufacturing method - Google Patents

Thick film circuit board and its manufacturing method

Info

Publication number
JP2002290011A
JP2002290011A JP2001084658A JP2001084658A JP2002290011A JP 2002290011 A JP2002290011 A JP 2002290011A JP 2001084658 A JP2001084658 A JP 2001084658A JP 2001084658 A JP2001084658 A JP 2001084658A JP 2002290011 A JP2002290011 A JP 2002290011A
Authority
JP
Japan
Prior art keywords
film circuit
circuit board
thick
thick film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001084658A
Other languages
Japanese (ja)
Other versions
JP4691809B2 (en
Inventor
Shuji Matsumoto
修次 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001084658A priority Critical patent/JP4691809B2/en
Publication of JP2002290011A publication Critical patent/JP2002290011A/en
Application granted granted Critical
Publication of JP4691809B2 publication Critical patent/JP4691809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a thick film circuit board provided with a copper conductor thick film circuit having high shape accuracy, a low resistance, and a sufficiently high adhesive strength to the circuit board. SOLUTION: After conductive paste containing a conductive component composed of copper powder, glass frit, and a cellulose resin as main ingredients and an organic vehicle is applied to the circuit board, the board is baked. At the time of baking the board, (a) the oxygen concentration is adjusted to 200-500 ppm in the temperature region until the temperature reaches 350 deg.C at temperature rising time, and (b) the baking atmosphere is adjusted to substantially contain no oxygen (for example, a nitrogen atmosphere) in the temperature region of >350 deg.C. Consequently, the cellulose resin can be removed surely and the circuit board can be baked sufficiently while the oxidation of the copper powder is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、厚膜回路基板に
関し、詳しくは、各種電子機器に用いることが可能な厚
膜回路基板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thick-film circuit board, and more particularly, to a thick-film circuit board that can be used for various electronic devices and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器などの製造工程におい
て、導電性ペーストをスクリーン印刷法や直接描画法に
よってガラスやセラミックスなどからなる基板上に塗布
した後、基板を焼成して、電極や配線などの所望の導体
パターンを形成する、いわゆる厚膜技術が広く用いられ
ている。
2. Description of the Related Art In recent years, in the manufacturing process of electronic equipment, etc., a conductive paste is applied on a substrate made of glass or ceramics by a screen printing method or a direct drawing method, and then the substrate is baked to form electrodes and wirings. A so-called thick film technique for forming a desired conductor pattern is widely used.

【0003】ところで、厚膜技術において用いられる導
電性ペーストとしては、通常、導電成分と、ガラスフリ
ットと、有機ビヒクルを配合したペースト組成物が用い
られており、導電成分としては、従来、銀、パラジウ
ム、銀−パラジウム合金などの貴金属の粉末が広く用い
られてきた。しかし、近年、卑金属である銅の粉末を導
電成分として用いた導電性ペーストが用いられるように
なっており、この銅粉末を導電成分とする導電性ペース
トは、銀、パラジウム、銀−パラジウム合金などの貴金
属粉末を導電成分とする導電性ペーストより安価で、コ
ストの削減を図ることが可能になるばかりでなく、配線
抵抗が小さく、かつ、銀、パラジウム、銀−パラジウム
合金などからなる電極や配線に比べて、耐マイグレーシ
ョン性にも優れているという特徴を有している。
Meanwhile, as a conductive paste used in the thick film technique, a paste composition containing a conductive component, a glass frit, and an organic vehicle is usually used. Noble metal powders such as palladium and silver-palladium alloys have been widely used. However, in recent years, conductive pastes using copper powder as a base metal as a conductive component have been used, and conductive pastes using the copper powder as a conductive component include silver, palladium, and silver-palladium alloys. Electrodes and wiring made of silver, palladium, silver-palladium alloy, etc., in addition to being less expensive than a conductive paste containing noble metal powder as a conductive component, and capable of reducing costs, and having a low wiring resistance. It has the feature that it is also superior in migration resistance as compared with.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述のよう
に銅粉末を導電成分とする導電性ペーストは、銀、パラ
ジウム、銀−パラジウム合金などの貴金属粉末を導電成
分とする導電性ペーストに比べて優れた点を有している
が、卑金属である銅は酸化されやすいため、焼成を行う
場合には、窒素雰囲気などの還元性雰囲気中で行うこと
が必要になる。
However, as described above, the conductive paste containing copper powder as a conductive component is compared with the conductive paste containing noble metal powder such as silver, palladium, and silver-palladium alloy as a conductive component. Although it has an excellent point, copper, which is a base metal, is easily oxidized. Therefore, when firing, it is necessary to perform firing in a reducing atmosphere such as a nitrogen atmosphere.

【0005】一方、導電性ペーストを焼成するにあたっ
ては、有機ビヒクルを除去することが必要になるが、銅
を導電成分とする導電性ペーストを焼成する場合におい
ては、焼成が窒素雰囲気などの還元性雰囲気中で行われ
ることになるため、従来は、熱分解性の高いアクリル樹
脂などを用いて、窒素雰囲気などの還元性雰囲気中で焼
成した場合にも、有機ビヒクルが十分に除去されるよう
にしている。
[0005] On the other hand, when firing the conductive paste, it is necessary to remove the organic vehicle. However, when firing a conductive paste containing copper as a conductive component, the firing is performed in a reducing atmosphere such as a nitrogen atmosphere. Conventionally, the organic vehicle is sufficiently removed even when baked in a reducing atmosphere such as a nitrogen atmosphere using a highly thermally decomposable acrylic resin. ing.

【0006】しかしながら、アクリル樹脂を有機ビヒク
ルとして用いた導電性ペーストにおいては、例えばファ
インライン性などの印刷性や塗膜表面の平滑性の低下、
曳糸性による作業性の低下などを招くという問題点があ
る。
However, in a conductive paste using an acrylic resin as an organic vehicle, for example, the printability such as fine line properties and the smoothness of the coating film surface are deteriorated.
There is a problem that workability is reduced due to spinnability.

【0007】また、印刷性を向上させるために、セルロ
ース系樹脂を有機ビヒクルとして使用した場合、焼成時
における除去(脱バインダー)を十分に行わせることが
困難になり、焼結性が低下して、形成される電極や配線
(厚膜導体)の抵抗の増大や、基板に対する接着強度の
低下を招くという問題点がある。
Further, when a cellulose-based resin is used as an organic vehicle in order to improve printability, it is difficult to sufficiently remove (debinder) at the time of sintering, and sinterability deteriorates. In addition, there is a problem that the resistance of the formed electrodes and wirings (thick film conductors) increases, and that the adhesive strength to the substrate decreases.

【0008】本願発明は、上記実情に鑑みてなされたも
のであり、銅粉末を導電成分とし、セルロース系樹脂を
主成分とする有機ビヒクルを含有する、印刷性に優れた
導電性ペーストを用いて、形状精度が高く、低抵抗で、
しかも基板に対する接着強度の大きい銅導体厚膜回路を
備えた厚膜回路基板を効率よく製造することが可能な厚
膜回路基板の製造方法及び該製造方法により製造される
信頼性の高い厚膜回路基板を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and uses a conductive paste having excellent printability, which contains copper powder as a conductive component and an organic vehicle containing a cellulose-based resin as a main component. , High shape accuracy, low resistance,
Moreover, a method of manufacturing a thick-film circuit board capable of efficiently manufacturing a thick-film circuit board having a copper conductor thick-film circuit having a large adhesive strength to a substrate, and a highly reliable thick-film circuit manufactured by the manufacturing method It is intended to provide a substrate.

【0009】[0009]

【課題を解決する手段】上記目的を達成するため、本願
発明(請求項1)の厚膜回路基板の製造方法は、導電性
ペーストを基板上に塗布して焼成することにより、基板
上に厚膜回路が形成された厚膜回路基板の製造方法であ
って、導電成分である銅粉末と、ガラスフリットと、セ
ルロース系樹脂を主成分とする有機ビヒクルを含有する
導電性ペーストを基板上に塗布する塗布工程と、前記導
電性ペーストが塗布された基板を、昇温時の温度が35
0℃に達するまでの温度領域では酸素濃度を200〜5
00ppmとし、350℃を超える温度領域では実質的に
酸素を含有しない雰囲気として焼成することにより、基
板上に銅導体厚膜回路を形成する焼成工程とを具備する
ことを特徴としている。
In order to achieve the above object, a method of manufacturing a thick film circuit board according to the present invention (claim 1) comprises applying a conductive paste to a substrate and firing the paste to form a thick paste on the substrate. A method for manufacturing a thick film circuit board on which a film circuit is formed, wherein a conductive paste containing copper powder as a conductive component, glass frit, and an organic vehicle containing a cellulose-based resin as a main component is applied to the substrate. And applying the conductive paste to the substrate on which the conductive paste is applied.
In the temperature range up to 0 ° C., the oxygen concentration is 200 to 5
A sintering step of forming a copper conductor thick film circuit on a substrate by sintering in an atmosphere containing substantially no oxygen in a temperature range exceeding 350 ° C. in a temperature range exceeding 350 ° C.

【0010】導電性ペーストとして、導電成分である銅
粉末と、ガラスフリットと、セルロース系樹脂を主成分
とする有機ビヒクルを含有する導電性ペーストを用い、
この導電性ペーストを基板上に塗布した後、基板を、昇
温時の温度が350℃に達するまでの温度領域では酸素
濃度を200〜500ppmとし、350℃を超える温度
領域では実質的に酸素を含有しない雰囲気として焼成す
ることにより、印刷性に優れるが、熱分解性の悪いセル
ロース系樹脂を配合した導電性ペーストを用いて、形状
精度の高い印刷を行うことを可能ならしめるとともに、
セルロース系樹脂を効率よく除去して、十分に焼結され
た銅導体の形成を可能ならしめることができるようにな
る。したがって、形状精度が高く、低抵抗で、しかも基
板への接着強度の大きい厚膜回路を備えた厚膜回路基板
を効率よく製造することが可能になる。
As the conductive paste, a conductive paste containing copper powder as a conductive component, glass frit, and an organic vehicle containing a cellulose resin as a main component is used.
After the conductive paste is applied on the substrate, the substrate is set to have an oxygen concentration of 200 to 500 ppm in a temperature region until the temperature at the time of temperature rise reaches 350 ° C., and substantially oxygen in a temperature region exceeding 350 ° C. By firing as an atmosphere that does not contain, excellent printability, but using a conductive paste blended with a cellulosic resin with poor thermal decomposition, while making it possible to perform printing with high shape accuracy,
Cellulose-based resin can be efficiently removed, and a sufficiently sintered copper conductor can be formed. Therefore, it is possible to efficiently manufacture a thick-film circuit board provided with a thick-film circuit having high shape accuracy, low resistance, and high adhesion strength to the substrate.

【0011】すなわち、本願発明(請求項1)の厚膜回
路基板の製造方法においては、良好な印刷性を確保する
ことが可能である反面、還元性雰囲気中では十分に除去
する(脱脂する)ことが困難なセルロース系樹脂を配合
した銅ペースト(導電性ペースト)を用いて、形状精度
の高い印刷を行う一方、350℃までの温度領域では酸
素濃度:200〜500ppm、350℃を超える温度領
域では実質的に酸素を含有しない雰囲気で焼成を行うこ
とにより、セルロース系樹脂(有機ビヒクル)を効率よ
く除去して、印刷精度(すなわち厚膜回路の形状精度)
の向上、厚膜回路の低抵抗化、基板への接着強度の向上
を図ることが可能になり、良好な特性を有し、信頼性の
高い厚膜回路基板を効率よく製造することが可能にな
る。
That is, in the method of manufacturing a thick film circuit board according to the present invention (claim 1), while it is possible to ensure good printability, it is sufficiently removed (degreased) in a reducing atmosphere. High-precision printing is performed using a copper paste (conductive paste) containing a cellulosic resin that is difficult to mix, while the oxygen concentration in the temperature range up to 350 ° C. is 200 to 500 ppm, and the temperature range exceeds 350 ° C. Then, by firing in an atmosphere containing substantially no oxygen, the cellulose-based resin (organic vehicle) is efficiently removed, and the printing accuracy (ie, the shape accuracy of the thick film circuit) is improved.
Of high thickness, low resistance of thick film circuit, and improvement of adhesion strength to the substrate, it is possible to efficiently manufacture a reliable and reliable thick film circuit board with good characteristics. Become.

【0012】なお、焼成工程において、350℃までの
温度領域では酸素濃度:200〜500ppmの雰囲気で
焼成を行うようにしているのは、酸素濃度が200ppm
未満になるとセルロース系樹脂の分解が不十分になっ
て、焼結性が低下し、十分な接着強度を得ることができ
なくなり、また、酸素濃度が500ppmより高くなる
と、銅粉末が酸化され、はんだ濡れ性の劣化や抵抗の増
大を招くことによる。また、焼成工程において、350
℃を超える温度領域では実質的に酸素を含有しない雰囲
気で焼成を行うようにしているのは、酸素を含有する雰
囲気で焼成を行うと銅粉末が酸化され、はんだ濡れ性の
劣化や抵抗の増大を招くことによる。
In the firing step, firing is performed in an atmosphere having an oxygen concentration of 200 to 500 ppm in a temperature range up to 350 ° C., because the oxygen concentration is 200 ppm.
If it is less than the above, the decomposition of the cellulosic resin becomes insufficient, the sinterability is reduced, and sufficient adhesive strength cannot be obtained, and if the oxygen concentration is higher than 500 ppm, the copper powder is oxidized and This is due to deterioration of wettability and increase in resistance. In the firing step, 350
The baking is performed in an atmosphere that does not substantially contain oxygen in a temperature range exceeding ℃ because when baking is performed in an atmosphere containing oxygen, copper powder is oxidized, and solder wettability is deteriorated and resistance is increased. By inviting.

【0013】なお、本願発明において、銅導体厚膜回路
とは、銅導体厚膜からなる回路(配線)に限定されるも
のではなく、ランドや電極などを含む広い概念である。
また、本願発明においては、導電成分として銅粉末を含
有する導電性ペーストを用いているので、通常、700
℃以下の温度で焼成を行うことにより、十分な焼き付け
を行うことが可能であり、焼成工程における熱エネルギ
ー使用量を抑制して、効率よく厚膜回路基板を製造する
ことができる。
In the present invention, the copper conductor thick film circuit is not limited to a circuit (wiring) made of a copper conductor thick film, but has a broad concept including lands and electrodes.
Further, in the present invention, since a conductive paste containing copper powder as a conductive component is used, it is usually 700
By baking at a temperature of not more than ° C., sufficient baking can be performed, and the amount of heat energy used in the baking step can be suppressed, and a thick-film circuit board can be manufactured efficiently.

【0014】また、請求項2の厚膜回路基板の製造方法
は、前記350℃を超える温度領域では窒素雰囲気とし
て焼成することを特徴としている。
Further, the method for manufacturing a thick film circuit board according to claim 2 is characterized in that in a temperature range exceeding 350 ° C., firing is performed in a nitrogen atmosphere.

【0015】350℃を超える温度領域における雰囲気
を窒素雰囲気とすることにより、「実質的に酸素を含有
しない雰囲気」を容易に、かつ、コストの大幅な上昇を
招くことなく確実に実現することが可能になり、本願発
明を実効あらしめることが可能になる。
By setting the atmosphere in the temperature range exceeding 350 ° C. to be a nitrogen atmosphere, it is possible to easily realize the “substantially oxygen-free atmosphere” easily and without significantly increasing the cost. This makes it possible to make the present invention effective.

【0016】また、請求項3の厚膜回路基板の製造方法
は、基板上に、幅が100μm以下である部分を含む銅
導体厚膜回路を形成することを特徴としている。
According to a third aspect of the present invention, there is provided a method of manufacturing a thick film circuit board, wherein a copper conductor thick film circuit including a portion having a width of 100 μm or less is formed on the board.

【0017】本願発明においては、セルロース系樹脂を
主成分とする有機ビヒクルを含有する導電性ペーストを
用いているので、印刷性が良好であり、従来のアクリル
樹脂を主成分とする有機ビヒクルを含有する導電性ペー
ストを用いる場合には困難であった、幅が100μm以
下である部分を含む微細な銅導体厚膜回路を確実に形成
することができるようになる。
In the present invention, since a conductive paste containing an organic vehicle containing a cellulose resin as a main component is used, printability is good, and a conventional organic vehicle containing an acrylic resin as a main component is used. It is possible to reliably form a fine copper conductor thick film circuit including a portion having a width of 100 μm or less, which has been difficult when a conductive paste is used.

【0018】また、本願発明(請求項4)の厚膜回路基
板は、請求項1〜3のいずれかに記載の厚膜回路基板の
製造方法により製造された厚膜回路基板であって、基板
上に銅導体厚膜回路が形成されていることを特徴として
いる。
A thick-film circuit board according to the present invention (claim 4) is a thick-film circuit board manufactured by the method for manufacturing a thick-film circuit board according to any one of claims 1 to 3, It is characterized in that a copper conductor thick film circuit is formed thereon.

【0019】本願発明(請求項4)の厚膜回路基板は、
基板上に銅導体厚膜回路が形成された厚膜回路基板であ
って、請求項1〜3のいずれかに記載の厚膜回路基板の
製造方法により製造されており、銅導体厚膜回路は、形
状精度に優れ、かつ、低抵抗で、基板への接着強度にも
優れているので、特性が良好で、信頼性の高い厚膜回路
基板を提供することが可能になる。
The thick film circuit board of the present invention (claim 4)
A thick film circuit board having a copper conductor thick film circuit formed on a substrate, which is manufactured by the method for manufacturing a thick film circuit board according to any one of claims 1 to 3, wherein the copper conductor thick film circuit is Since it has excellent shape accuracy, low resistance, and excellent adhesive strength to a substrate, it is possible to provide a thick film circuit substrate having good characteristics and high reliability.

【0020】[0020]

【発明の実施の形態】以下、本願発明の実施の形態を示
して、その特徴とするところをさらに詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described, and features thereof will be described in more detail.

【0021】[導電性ペーストの作製]導電成分である
銅粉末と、ほう珪酸鉛ガラスからなるガラスフリット
と、セルロース系樹脂を主成分とする有機ビヒクルと
を、以下の比率で配合し、十分に混練することにより、
導電性ペースト(銅ペースト)を作成した。 銅粉末 : 80重量部 ガラスフリット : 8重量部 有機ビヒクル : 12重量部
[Preparation of Conductive Paste] Copper powder as a conductive component, glass frit made of lead borosilicate glass, and an organic vehicle containing a cellulose-based resin as a main component are blended in the following ratio and sufficiently mixed. By kneading,
A conductive paste (copper paste) was prepared. Copper powder: 80 parts by weight Glass frit: 8 parts by weight Organic vehicle: 12 parts by weight

【0022】なお、この実施形態では、有機ビヒクルと
して、エチルセルロース系樹脂を主成分とし、これにア
ルキッド系樹脂を配合した樹脂原料をテルピネオール系
溶剤に溶解したものを用いた。なお、有機ビヒクルを構
成するセルロース系樹脂の種類や、配合する樹脂の種
類、溶剤の種類などに特別の制約はなく、例えば、上記
のアルキッド系樹脂の代わりにアクリル系樹脂を配合
し、これを、テルピネオール系溶剤の代わりにアルコー
ル系溶剤に溶解した有機ビヒクルを用いることも可能で
ある。
In this embodiment, as the organic vehicle, a resin material in which ethyl cellulose-based resin is used as a main component and an alkyd-based resin is mixed and dissolved in a terpineol-based solvent is used. There are no particular restrictions on the type of cellulosic resin constituting the organic vehicle, the type of resin to be mixed, the type of solvent, and the like.For example, instead of the alkyd resin, an acrylic resin is mixed, and Instead of the terpineol-based solvent, it is also possible to use an organic vehicle dissolved in an alcohol-based solvent.

【0023】[銅導体厚膜回路の形成]上記のようにし
て作製した導電性ペースト(銅ペースト)をアルミナ基
板上にスクリーン印刷法により塗布し、150℃で10
分間乾燥させる。それから、表1のNo.1〜3に示すよ
うに、昇温時の温度が350℃に達するまでの温度領域
では、本願発明の範囲内の酸素濃度(200〜500pp
m)とし、350℃を超える温度領域では酸素を含有し
ない窒素雰囲気として、600〜700℃にまで昇温
し、最高温度で1時間焼成することにより導電性ペース
トをアルミナ基板上に焼き付ける。
[Formation of Copper Conductor Thick Film Circuit] The conductive paste (copper paste) prepared as described above is applied on an alumina substrate by a screen printing method.
Let dry for minutes. Then, as shown in Nos. 1 to 3 in Table 1, in the temperature range until the temperature at the time of temperature rise reaches 350 ° C., the oxygen concentration (200 to 500 pp) within the range of the present invention is applied.
m), in a temperature range exceeding 350 ° C., the temperature is raised to 600 to 700 ° C. as a nitrogen atmosphere containing no oxygen, and the conductive paste is baked at the highest temperature for 1 hour to bake the conductive paste on the alumina substrate.

【0024】[0024]

【表1】 [Table 1]

【0025】このようにして形成した厚膜導体(銅導体
厚膜回路)のファインライン印刷性、配線抵抗、初期接
着強度及び熱エージング後の接着強度を測定し、評価し
た。その結果を表2に示す。
Fine line printability, wiring resistance, initial adhesive strength and adhesive strength after heat aging of the thick film conductor (copper conductor thick film circuit) thus formed were measured and evaluated. Table 2 shows the results.

【0026】[0026]

【表2】 [Table 2]

【0027】なお、比較のため、350℃までの酸素濃
度を5ppmとした場合(No.4)、350℃までの酸素濃
度を600ppmとした場合(No.5)、350℃を超えて
400℃まで酸素濃度を300ppmとした場合(No.
6)、有機ビヒクルとして、アクリル樹脂をテルピネオ
ール系溶剤に溶解したものを用いた場合(No.7)の、
本願発明の条件を満たさない各条件の下に、厚膜導体
(銅導体厚膜回路)を形成し、ファインライン印刷性、
配線抵抗、初期接着強度及び熱エージング後の接着強度
を測定し、評価した。その結果を表2に併せて示す。
For comparison, when the oxygen concentration up to 350 ° C. was 5 ppm (No. 4), and when the oxygen concentration up to 350 ° C. was 600 ppm (No. 5), the temperature exceeded 350 ° C. and 400 ° C. Up to 300 ppm oxygen concentration (No.
6), when an acrylic resin dissolved in a terpineol-based solvent is used as the organic vehicle (No. 7),
Under each condition that does not satisfy the conditions of the present invention, a thick film conductor (copper conductor thick film circuit) is formed, and fine line printability,
The wiring resistance, initial adhesive strength and adhesive strength after heat aging were measured and evaluated. The results are also shown in Table 2.

【0028】なお、表2におけるファインライン印刷性
は、#400のメッシュスクリーン版を用い、ラインが
75μm、ラインとラインの間のギャップが75μmのパ
ターンとなるように、基板上に50回の連続印刷を行っ
た後、印刷のかすれ及びにじみによるショートの発生の
有無を調べ、50回の印刷において、かすれ及びショー
トのいずれの発生もがまったく認められない場合を、フ
ァインライン印刷性が良好(○)であると判定し、それ
以外の場合を不良(×)であると判定したものである。
The fine line printability shown in Table 2 was measured by using a # 400 mesh screen plate, and printing was performed 50 times on the substrate such that the pattern was 75 μm in line and the gap between lines was 75 μm. After printing, the presence or absence of a short circuit due to blurring or bleeding of the printing is examined. If no blurring or short circuiting is observed at all in 50 printings, the fine line printability is good ((). ), And the other cases are determined to be defective (x).

【0029】また、表2における配線抵抗(mΩ/□)は、
長さ(L)及び幅(W)が100:1(L/W=100
/1)であるようなパターンの厚膜導体上の2点を、周
知の4端子法によって測定した後、膜厚換算によって求
めた値(シート抵抗値)である。なお、配線抵抗につい
ては、3.0mΩ/□を判定基準値とし、これ以下の場合
を良好(○)と判定し、これを超える場合を不良(×)
と判定した。
The wiring resistance (mΩ / □) in Table 2 is
Length (L) and width (W) are 100: 1 (L / W = 100
/ 1) is a value (sheet resistance value) obtained by measuring two points on a thick film conductor having a pattern as shown in FIG. The wiring resistance was determined to be 3.0 mΩ / □ as a criterion value. A value below this value was determined as good (○), and a value exceeding this value was determined as poor (×).
It was determined.

【0030】また、表2における接着強度(N)は、2
35±5℃に温度調整された銀(Ag)2%入りの共晶
はんだ中に、2mm×2mmの大きさを有する厚膜導体を5
±1secだけ浸漬し、かつ、この厚膜導体に対し、リー
ド線である直径0.8mmの錫メッキ導線をはんだ付け接
続した後、このリード線を引っ張り試験機によって20
mm/minの速度で引っ張ることによって測定した値であ
る。
The adhesive strength (N) in Table 2 is 2
In a eutectic solder containing 2% silver (Ag) adjusted to a temperature of 35 ± 5 ° C., a thick film conductor having a size of 2 mm × 2 mm
After dipping for ± 1 sec and soldering and connecting a 0.8 mm diameter tin-plated lead wire to this thick-film conductor, the lead wire was subjected to a tensile tester for 20 minutes.
It is a value measured by pulling at a speed of mm / min.

【0031】なお、表2の初期接着強度は、上述のリー
ド線のはんだ付け直後の接着強度を示しており、熱エー
ジング後の接着強度は、150℃の温度下で1000h
rにわたるエージング処理を施した後の接着強度を示し
ている。
The initial bonding strength in Table 2 indicates the bonding strength immediately after the above-mentioned lead wire was soldered. The bonding strength after heat aging was 1000 hours at a temperature of 150 ° C.
The bond strength after aging treatment over r is shown.

【0032】初期接着強度については、30Nを判定基
準値とし、これ以上の場合を良好(○)と判定し、これ
未満の場合を不良(×)と判定した。また、熱エージン
グ後の接着強度については、10Nを判定基準値とし、
これ以上の場合を良好(○)と判定し、これ未満の場合
を不良(×)と判定した。
Regarding the initial adhesive strength, 30 N was used as a criterion reference value. A case of 30 N or more was judged as good (○), and a case of less than 30 N was judged as bad (X). Also, regarding the adhesive strength after heat aging, 10 N was used as a criterion value,
The case of more than this was judged as good (O), and the case of less than this was judged as bad (X).

【0033】表2より、本願発明の範囲内にあるNo.1
〜3(実施例)については、すべての特性に関して判定
基準値を満足しているのに対して、本願発明の範囲外の
No.4〜7(比較例)においては、少なくとも一部の特
性について判定基準値を満足していないことがわかる。
From Table 2, it can be seen that No. 1 within the scope of the present invention.
3 to 3 (Examples) satisfy the criterion values for all the characteristics, but are outside the range of the present invention.
In Nos. 4 to 7 (Comparative Examples), it can be seen that at least some of the characteristics did not satisfy the criteria.

【0034】また、図1は、本願発明の実施形態にかか
る厚膜回路基板の要部構成を模式的に示す断面図であ
る。この厚膜回路基板は、図1に示すように、アルミナ
基板1の上面に、銅導体厚膜回路2が形成されており、
かつ、セラミックコンデンサなどの電子部品3がアルミ
ナ基板1に表面実装された構造を有している。
FIG. 1 is a cross-sectional view schematically showing a configuration of a main part of a thick film circuit board according to an embodiment of the present invention. In this thick film circuit board, as shown in FIG. 1, a copper conductor thick film circuit 2 is formed on the upper surface of an alumina substrate 1,
In addition, it has a structure in which electronic components 3 such as ceramic capacitors are surface-mounted on the alumina substrate 1.

【0035】なお、この厚膜回路基板は、以下に述べる
ような方法により製造される。 まず、アルミナ基板1上に、銅粉末を導電成分とし、
これに、セルロース系樹脂をテルピネオール系溶剤に溶
解した有機ビヒクルと、ほう珪酸鉛ガラスからなるガラ
スフリットとを添加して混練した導電性ペーストを所定
のパターンとなるように塗布する。 それから、塗布した導電性ペーストを、150℃、1
0分間の条件で乾燥させる。 その後、昇温時の温度が350℃に達するまでの温度
領域では、酸素濃度を200〜500ppmとし、350
℃を超える温度領域では窒素雰囲気として600〜70
0℃にまで昇温し、最高温度で1時間焼成することによ
り導電性ペーストを焼き付けて、アルミナ基板1上に銅
導体厚膜回路2を形成する。 次に、銅導体厚膜回路2が形成されたアルミナ基板1
上に、はんだ付けなどの方法で、セラミックコンデンサ
などの電子部品3を実装する。これにより、図1に示す
ような厚膜回路基板が得られる。
This thick film circuit board is manufactured by the following method. First, copper powder is used as a conductive component on an alumina substrate 1,
A conductive paste obtained by adding and kneading an organic vehicle in which a cellulose resin is dissolved in a terpineol-based solvent and a glass frit made of lead borosilicate glass is applied to form a predetermined pattern. Then, the applied conductive paste was heated at 150 ° C., 1
Dry for 0 minutes. Thereafter, in the temperature range until the temperature at the time of temperature rise reaches 350 ° C., the oxygen concentration is set to 200 to 500 ppm,
In the temperature range exceeding ℃, the nitrogen atmosphere is 600 to 70
The temperature is raised to 0 ° C., and the conductive paste is baked by baking at the highest temperature for one hour to form a copper conductor thick film circuit 2 on the alumina substrate 1. Next, the alumina substrate 1 on which the copper conductor thick film circuit 2 is formed
The electronic component 3 such as a ceramic capacitor is mounted thereon by a method such as soldering. Thus, a thick-film circuit board as shown in FIG. 1 is obtained.

【0036】この実施形態の厚膜回路基板の製造方法に
おいては、印刷性に優れるセルロース系樹脂を配合した
導電性ペーストを用いて、形状精度の高い印刷を行うと
ともに、350℃に達するまでの温度領域では、酸素濃
度を200〜500ppmとし、350℃を超える温度領
域では窒素雰囲気として600〜700℃にまで昇温す
ることにより、セルロース系樹脂を確実に除去すること
を可能ならしめるとともに、銅粉末が酸化されることを
防止しつつ、十分な焼成を行うことができるようにして
いるので、形状精度に優れ、かつ、低抵抗で、基板への
接着強度にも優れた銅導体厚膜回路を備えた、信頼性の
高い厚膜回路基板を確実に得ることができる。
In the method of manufacturing a thick-film circuit board according to this embodiment, printing is performed with high shape accuracy using a conductive paste containing a cellulosic resin having excellent printability, and the temperature until 350 ° C. is reached. In the temperature range, the oxygen concentration is set to 200 to 500 ppm, and in the temperature range exceeding 350 ° C., the temperature is raised to 600 to 700 ° C. in a nitrogen atmosphere, thereby enabling the cellulose resin to be reliably removed and the copper powder to be removed. A copper conductor thick film circuit that has excellent shape accuracy, low resistance, and excellent adhesion strength to the substrate because it is possible to perform sufficient firing while preventing oxidation of Thus, a highly reliable thick film circuit board provided can be obtained.

【0037】なお、上記実施形態では、基板としてアル
ミナ基板を用い、その表面に銅導体厚膜回路を形成する
ようにした場合を例にとって説明したが、本願発明は、
その他の基板、例えば低温焼結ガラスセラミックス基板
や、誘電体セラミックスからなる誘電体基板などに銅導
体厚膜回路が配設された厚膜回路基板を製造する場合な
どに広く適用することが可能であり、その場合にも、実
質的に上記実施形態の場合と同様の結果を得ることがで
きる。
In the above embodiment, the case where an alumina substrate is used as a substrate and a copper conductor thick film circuit is formed on the surface is described as an example.
It can be widely applied to the case of manufacturing a thick-film circuit board in which a copper conductor thick-film circuit is arranged on another substrate, for example, a low-temperature sintered glass ceramic substrate or a dielectric substrate made of dielectric ceramic. Yes, in this case, substantially the same result as in the above embodiment can be obtained.

【0038】本願発明は、さらにその他の点においても
上記実施形態に限定されるものではなく、導電性ペース
トを構成する銅粉末の粒径、ガラスフリットの種類、各
成分の配合割合、焼成時の温度プロファイル、厚膜導体
の具体的なパターンなどに関し、発明の要旨の範囲内に
おいて、種々の応用、変形を加えることが可能である。
The present invention is not limited to the above embodiment in other respects. The particle size of the copper powder constituting the conductive paste, the type of the glass frit, the mixing ratio of each component, With regard to the temperature profile, the specific pattern of the thick film conductor, and the like, various applications and modifications can be made within the scope of the invention.

【0039】[0039]

【発明の効果】上述のように、本願発明(請求項1)の
厚膜回路基板の製造方法は、導電性ペーストとして、導
電成分であると銅粉末と、ガラスフリットと、セルロー
ス系樹脂を主成分とする有機ビヒクルを含有する導電性
ペーストを用い、この導電性ペーストを基板上に塗布し
た後、基板を、昇温時の温度が350℃に達するまでの
温度領域では酸素濃度を200〜500ppmとし、35
0℃を超える温度領域では実質的に酸素を含有しない雰
囲気として焼成することにより、印刷性に優れるが、熱
分解性の悪いセルロース系樹脂を配合した導電性ペース
トを用いて、形状精度の高い印刷を行うことを可能なら
しめるとともに、セルロース系樹脂を効率よく除去し
て、十分に焼結された銅導体の形成を可能ならしめるこ
とができるようになる。したがって、形状精度が高く、
低抵抗で、しかも基板への接着強度の大きい厚膜回路を
備えた厚膜回路基板を効率よく製造することができる。
As described above, the method for manufacturing a thick film circuit board according to the present invention (claim 1) mainly uses copper powder, glass frit, and cellulose resin as conductive components as conductive components. After using a conductive paste containing an organic vehicle as a component and applying the conductive paste on the substrate, the substrate is heated to a temperature of 350 ° C. until the temperature reaches 350 ° C., and the oxygen concentration is 200 to 500 ppm. And 35
By firing in an atmosphere containing substantially no oxygen in a temperature range exceeding 0 ° C., printing with high form accuracy is achieved by using a conductive paste containing a cellulosic resin having excellent printability but having low thermal decomposition properties. Can be carried out, and the cellulosic resin can be efficiently removed, whereby a sufficiently sintered copper conductor can be formed. Therefore, the shape accuracy is high,
It is possible to efficiently manufacture a thick-film circuit board having a thick-film circuit having low resistance and high adhesive strength to the substrate.

【0040】また、請求項2の厚膜回路基板の製造方法
のように、350℃を超える温度領域における雰囲気を
窒素雰囲気とすることにより、「実質的に酸素を含有し
ない雰囲気」を容易に、かつ、コストの大幅な上昇を招
くことなく確実に実現することが可能になり、本願発明
を実効あらしめることができる。
Further, by setting the atmosphere in the temperature range exceeding 350 ° C. to be a nitrogen atmosphere as in the method for manufacturing a thick film circuit board according to the second aspect, the “atmosphere substantially containing no oxygen” can be easily performed. In addition, the present invention can be realized without causing a large increase in cost, and the present invention can be made effective.

【0041】また、本願発明の厚膜回路基板の製造方法
においては、セルロース系樹脂を主成分とする有機ビヒ
クルを含有する導電性ペーストを用いているので、印刷
性が良好であり、請求項3の厚膜回路基板の製造方法の
ように、従来のアクリル樹脂を主成分とする有機ビヒク
ルを含有する導電性ペーストを用いる場合には困難であ
った、幅が100μm以下である部分を含む微細な銅導
体厚膜回路を確実に形成することが可能になる。
In the method of manufacturing a thick film circuit board according to the present invention, since a conductive paste containing an organic vehicle containing a cellulose resin as a main component is used, printability is good. It is difficult to use a conventional conductive paste containing an organic vehicle whose main component is an acrylic resin as in the method of manufacturing a thick film circuit board. It is possible to reliably form a copper conductor thick film circuit.

【0042】本願発明(請求項4)の厚膜回路基板は、
基板上に銅導体厚膜回路が形成された厚膜回路基板であ
って、請求項1〜3のいずれかに記載の厚膜回路基板の
製造方法により製造されているので、銅導体厚膜回路
は、形状精度に優れ、かつ、低抵抗で、基板への接着強
度にも優れており、特性が良好で、信頼性の高い厚膜回
路基板を提供することができるようになる。
The thick film circuit board of the present invention (claim 4)
A thick-film circuit board having a copper-conductor thick-film circuit formed on a substrate, which is manufactured by the method for manufacturing a thick-film circuit board according to claim 1. Can provide a thick-film circuit board having excellent shape accuracy, low resistance, excellent bonding strength to a substrate, good characteristics, and high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の一実施形態にかかる厚膜回路基板の
要部構成を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a configuration of a main part of a thick film circuit board according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミナ基板 2 銅導体厚膜回路 3 電子部品 Reference Signs List 1 alumina substrate 2 copper conductor thick film circuit 3 electronic component

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導電性ペーストを基板上に塗布して焼成す
ることにより、基板上に厚膜回路が形成された厚膜回路
基板の製造方法であって、 導電成分である銅粉末と、ガラスフリットと、セルロー
ス系樹脂を主成分とする有機ビヒクルを含有する導電性
ペーストを基板上に塗布する塗布工程と、 前記導電性ペーストが塗布された基板を、昇温時の温度
が350℃に達するまでの温度領域では酸素濃度を20
0〜500ppmとし、350℃を超える温度領域では実
質的に酸素を含有しない雰囲気として焼成することによ
り、基板上に銅導体厚膜回路を形成する焼成工程とを具
備することを特徴とする厚膜回路基板の製造方法。
1. A method of manufacturing a thick-film circuit board having a thick-film circuit formed on a substrate by applying a conductive paste on the substrate and firing the same, the method comprising the steps of: An application step of applying a frit and a conductive paste containing an organic vehicle containing a cellulose-based resin as a main component on a substrate; and a step of raising the temperature of the substrate on which the conductive paste is applied to 350 ° C. In the temperature range up to
A baking process of forming a copper conductor thick film circuit on a substrate by baking in an atmosphere containing substantially no oxygen in a temperature range of 0 to 500 ppm and exceeding 350 ° C. A method for manufacturing a circuit board.
【請求項2】前記350℃を超える温度領域では窒素雰
囲気として焼成することを特徴とする請求項1記載の厚
膜回路基板の製造方法。
2. The method according to claim 1, wherein the baking is performed in a nitrogen atmosphere in the temperature range exceeding 350 ° C.
【請求項3】基板上に、幅が100μm以下である部分
を含む銅導体厚膜回路を形成することを特徴とする請求
項1又は2記載の厚膜回路基板の製造方法。
3. The method of manufacturing a thick film circuit board according to claim 1, wherein a copper conductor thick film circuit including a portion having a width of 100 μm or less is formed on the substrate.
【請求項4】請求項1〜3のいずれかに記載の厚膜回路
基板の製造方法により製造された厚膜回路基板であっ
て、基板上に銅導体厚膜回路が形成されていることを特
徴とする厚膜回路基板。
4. A thick-film circuit board manufactured by the method for manufacturing a thick-film circuit board according to claim 1, wherein a copper conductor thick-film circuit is formed on the board. Characteristic thick film circuit board.
JP2001084658A 2001-03-23 2001-03-23 Thick film circuit board and manufacturing method thereof Expired - Fee Related JP4691809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084658A JP4691809B2 (en) 2001-03-23 2001-03-23 Thick film circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084658A JP4691809B2 (en) 2001-03-23 2001-03-23 Thick film circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002290011A true JP2002290011A (en) 2002-10-04
JP4691809B2 JP4691809B2 (en) 2011-06-01

Family

ID=18940290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084658A Expired - Fee Related JP4691809B2 (en) 2001-03-23 2001-03-23 Thick film circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4691809B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167904A (en) * 2005-12-22 2007-07-05 Taiyo Ink Mfg Ltd Solder paste and conductor pattern formed using the same
US7550520B2 (en) 2005-05-31 2009-06-23 The University Of Alabama Method of preparing high orientation nanoparticle-containing sheets or films using ionic liquids, and the sheets or films produced thereby
US7888412B2 (en) 2004-03-26 2011-02-15 Board Of Trustees Of The University Of Alabama Polymer dissolution and blend formation in ionic liquids
WO2013147442A1 (en) * 2012-03-29 2013-10-03 주식회사 동진쎄미켐 Copper paste composition for printing, and method of forming metal pattern using same
US8668807B2 (en) 2008-02-19 2014-03-11 Board Of Trustees Of The University Of Alabama Ionic liquid systems for the processing of biomass, their components and/or derivatives, and mixtures thereof
US8784691B2 (en) 2009-07-24 2014-07-22 Board Of Trustees Of The University Of Alabama Conductive composites prepared using ionic liquids
US8883193B2 (en) 2005-06-29 2014-11-11 The University Of Alabama Cellulosic biocomposites as molecular scaffolds for nano-architectures
US9096743B2 (en) 2009-06-01 2015-08-04 The Board Of Trustees Of The University Of Alabama Process for forming films, fibers, and beads from chitinous biomass
US9278134B2 (en) 2008-12-29 2016-03-08 The Board Of Trustees Of The University Of Alabama Dual functioning ionic liquids and salts thereof
US9394375B2 (en) 2011-03-25 2016-07-19 Board Of Trustees Of The University Of Alabama Compositions containing recyclable ionic liquids for use in biomass processing
US10011931B2 (en) 2014-10-06 2018-07-03 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US10100131B2 (en) 2014-08-27 2018-10-16 The Board Of Trustees Of The University Of Alabama Chemical pulping of chitinous biomass for chitin
US10927191B2 (en) 2017-01-06 2021-02-23 The Board Of Trustees Of The University Of Alabama Coagulation of chitin from ionic liquid solutions using kosmotropic salts
US10941258B2 (en) 2017-03-24 2021-03-09 The Board Of Trustees Of The University Of Alabama Metal particle-chitin composite materials and methods of making thereof
US10982381B2 (en) 2014-10-06 2021-04-20 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing welded substrates
US11085133B2 (en) 2016-05-03 2021-08-10 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US11766835B2 (en) 2016-03-25 2023-09-26 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing welded substrates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036220A (en) * 1998-07-15 2000-02-02 Murata Mfg Co Ltd Conductive paste and ceramic electronic part using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225094A (en) * 1988-07-13 1990-01-26 Taiyo Yuden Co Ltd Manufacture of ceramic multilayer wiring board
JPH09275266A (en) * 1996-04-05 1997-10-21 Dainippon Printing Co Ltd Fine pattern and pattern forming method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036220A (en) * 1998-07-15 2000-02-02 Murata Mfg Co Ltd Conductive paste and ceramic electronic part using same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888412B2 (en) 2004-03-26 2011-02-15 Board Of Trustees Of The University Of Alabama Polymer dissolution and blend formation in ionic liquids
US7550520B2 (en) 2005-05-31 2009-06-23 The University Of Alabama Method of preparing high orientation nanoparticle-containing sheets or films using ionic liquids, and the sheets or films produced thereby
US8883193B2 (en) 2005-06-29 2014-11-11 The University Of Alabama Cellulosic biocomposites as molecular scaffolds for nano-architectures
JP4644112B2 (en) * 2005-12-22 2011-03-02 太陽ホールディングス株式会社 Solder paste and conductor pattern formed using the same
JP2007167904A (en) * 2005-12-22 2007-07-05 Taiyo Ink Mfg Ltd Solder paste and conductor pattern formed using the same
US8668807B2 (en) 2008-02-19 2014-03-11 Board Of Trustees Of The University Of Alabama Ionic liquid systems for the processing of biomass, their components and/or derivatives, and mixtures thereof
US9278134B2 (en) 2008-12-29 2016-03-08 The Board Of Trustees Of The University Of Alabama Dual functioning ionic liquids and salts thereof
US9096743B2 (en) 2009-06-01 2015-08-04 The Board Of Trustees Of The University Of Alabama Process for forming films, fibers, and beads from chitinous biomass
US8784691B2 (en) 2009-07-24 2014-07-22 Board Of Trustees Of The University Of Alabama Conductive composites prepared using ionic liquids
US9394375B2 (en) 2011-03-25 2016-07-19 Board Of Trustees Of The University Of Alabama Compositions containing recyclable ionic liquids for use in biomass processing
WO2013147442A1 (en) * 2012-03-29 2013-10-03 주식회사 동진쎄미켐 Copper paste composition for printing, and method of forming metal pattern using same
US10100131B2 (en) 2014-08-27 2018-10-16 The Board Of Trustees Of The University Of Alabama Chemical pulping of chitinous biomass for chitin
US10011931B2 (en) 2014-10-06 2018-07-03 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US10982381B2 (en) 2014-10-06 2021-04-20 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing welded substrates
US11555263B2 (en) 2014-10-06 2023-01-17 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US11766835B2 (en) 2016-03-25 2023-09-26 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing welded substrates
US11085133B2 (en) 2016-05-03 2021-08-10 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US11920263B2 (en) 2016-05-03 2024-03-05 Natural Fiber Welding, Inc. Methods, processes, and apparatuses for producing dyed and welded substrates
US10927191B2 (en) 2017-01-06 2021-02-23 The Board Of Trustees Of The University Of Alabama Coagulation of chitin from ionic liquid solutions using kosmotropic salts
US10941258B2 (en) 2017-03-24 2021-03-09 The Board Of Trustees Of The University Of Alabama Metal particle-chitin composite materials and methods of making thereof

Also Published As

Publication number Publication date
JP4691809B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP3734731B2 (en) Ceramic electronic component and method for manufacturing the same
JP2002290011A (en) Thick film circuit board and its manufacturing method
US6436316B2 (en) Conductive paste and printed wiring board using the same
JP2001307547A (en) Conductive composition and printed circuit board using the same
JP3419321B2 (en) Ceramic electronic component and method of manufacturing the same
JPH0817671A (en) Conductive paste
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH09190950A (en) Outer electrode of electronic part
JPH08153414A (en) Conductive paste
JP5215914B2 (en) Resistor film manufacturing method, resistor film, and resistor
JP2996016B2 (en) External electrodes for chip-type electronic components
JP3318299B2 (en) Pb-free low-temperature firing type conductive paint
JP3666308B2 (en) Conductive paste and ceramic electronic components
JPH10233119A (en) Copper conductor paste and substrate printed therewith
JP2550630B2 (en) Copper paste for conductive film formation
JP2000315421A (en) Copper conductive paste
JPS6127003A (en) Conductive paste composition
JP3405131B2 (en) Electronic components
JP2996015B2 (en) External electrodes for chip-type electronic components
JP4646362B2 (en) Conductor composition and wiring board using the same
JP2004119561A (en) Resistive paste and resistor
JPH0652721A (en) Conductor
JP2006128005A (en) Conductive paste and printed circuit board
JP2004362862A (en) Conductive paste composition for thick-film conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4691809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees