JP2002284581A - Method for firing cylindrical ceramic formed body - Google Patents

Method for firing cylindrical ceramic formed body

Info

Publication number
JP2002284581A
JP2002284581A JP2001090035A JP2001090035A JP2002284581A JP 2002284581 A JP2002284581 A JP 2002284581A JP 2001090035 A JP2001090035 A JP 2001090035A JP 2001090035 A JP2001090035 A JP 2001090035A JP 2002284581 A JP2002284581 A JP 2002284581A
Authority
JP
Japan
Prior art keywords
molded body
cylindrical ceramic
ceramic molded
firing
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001090035A
Other languages
Japanese (ja)
Inventor
Shoji Yamashita
祥二 山下
Takashi Shigehisa
高志 重久
Masahito Nishihara
雅人 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001090035A priority Critical patent/JP2002284581A/en
Publication of JP2002284581A publication Critical patent/JP2002284581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for firing a cylindrical ceramic formed body capable of baking large quantities of the same simultaneously and easily. SOLUTION: The method is characterized by firing the ceramic formed body on the condition of abutting the side face of the cylindrical ceramic formed body 1 on a base plate 9 and pressing the both end portions of the cylindrical ceramic formed body 1 toward the base plate. It is preferable that a presser bar pressure of the cylindrical ceramic formed body 1 toward the base plate is 0.2 to 0.8 times as high as a radial crushing strength after calcining the cylindrical ceramic formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は円筒状セラミック成
形体の焼成方法に関するものであり、例えば固体電解質
型燃料電池(SOFC)等に用いられる円筒状セラミッ
ク成形体の焼成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for firing a cylindrical ceramic molded body, and more particularly, to a method for firing a cylindrical ceramic molded body used for a solid oxide fuel cell (SOFC) or the like.

【0002】[0002]

【従来技術】従来、円筒状セラミックスは、セラミック
粉末とバインダーとを原料としてセラミックコンパウン
ドを調製し、このセラミックコンパウンドに水を加えて
成形したものを乾燥後、台板(セッタ)上に横置きし1
000℃〜2000℃の高温で焼成して作製していた。
しかし、焼成時に焼成収縮の不均一等によってそりが発
生し、歩留まりが低下するという問題があった。
2. Description of the Related Art Conventionally, cylindrical ceramics have been prepared by preparing a ceramic compound using ceramic powder and a binder as raw materials, adding water to the ceramic compound, drying the formed ceramic compound, and placing it horizontally on a base plate (setter). 1
It was manufactured by firing at a high temperature of 000 ° C to 2000 ° C.
However, there has been a problem that warpage occurs due to uneven firing shrinkage during firing and the yield decreases.

【0003】そこで、従来、特開平3−218982号
公報に開示されるように、未焼成の円筒状セラミック成
形体を吊り下げた状態で焼成する方法が採用されてい
る。また、特開平7−103661号公報に開示される
ように、円筒状セラミック成形体を吊り下げた状態で、
さらに回転を行いながら焼成する方法が採用されてい
る。
Therefore, as disclosed in Japanese Unexamined Patent Publication (Kokai) No. 3-218892, a method of firing an unfired cylindrical ceramic molded body in a suspended state has been adopted. Further, as disclosed in JP-A-7-103661, in a state where a cylindrical ceramic molded body is suspended,
Further, a method of firing while rotating is adopted.

【0004】さらに、特開平6−72772号公報に開
示されるように、円筒状セラミック成形体を傾斜したセ
ッタ上に載置して焼成する方法が採用されている。
Further, as disclosed in JP-A-6-72772, a method is employed in which a cylindrical ceramic compact is placed on an inclined setter and fired.

【0005】このような方法では、円筒状セラミック成
形体の焼成時におけるそりを低減できる。
[0005] According to such a method, warpage during firing of the cylindrical ceramic molded body can be reduced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
公報で開示された焼成方法では、基本的には円筒状セラ
ミック成形体を吊りながら焼成する方法であり、少量生
産に対しては有効であると考えられるが、一定形状をし
た円筒状セラミック成形体を同時に大量に作製する方法
としては不向きであり、大量の円筒状セラミックスを得
るためには、何回も焼成を行わなければならず、製造コ
ストが高くなったり、製造に長時間を要するという問題
があった。また、吊り下げるための特殊なジグが必要で
あり、このような特殊なジグにセットするのに長時間を
要するという問題もあった。
However, the sintering method disclosed in the above-mentioned publication is basically a method of sintering while suspending a cylindrical ceramic molded body, which is effective for small-quantity production. Although it is conceivable, it is not suitable as a method for simultaneously producing a large number of cylindrical ceramic molded bodies having a fixed shape, and in order to obtain a large amount of cylindrical ceramics, firing must be performed many times, and the production cost is increased. However, there has been a problem that the cost is high and the production takes a long time. In addition, a special jig for hanging is required, and there is a problem that it takes a long time to set the jig on such a special jig.

【0007】さらに、外径が10mm程度以上の大型の
円筒状セラミック成形体を焼成する場合には、吊り下げ
ジグへの取り付けも容易であったが、外径が小さくなる
につれて、従来のような吊り焼成では、吊り下げに長時
間を要したり、ジグセット時に円筒状セラミック成形体
の一部を壊してしまうという問題があった。
Further, when firing a large cylindrical ceramic molded body having an outer diameter of about 10 mm or more, it is easy to attach it to a hanging jig. In the hanging firing, there are problems that a long time is required for hanging and that a part of the cylindrical ceramic molded body is broken during jig setting.

【0008】本発明は、同時に大量に焼成できるととも
に、容易に焼成できる円筒状セラミック成形体の焼成方
法を提供することを目的とする。
An object of the present invention is to provide a method for firing a cylindrical ceramic molded body which can be fired simultaneously in a large amount and can be easily fired.

【0009】[0009]

【課題を解決するための手段】本発明の円筒状セラミッ
ク成形体の焼成方法は、円筒状セラミック成形体(仮焼
体も含む概念である。以下同様)の側面を台板上に当接
し、前記円筒状セラミック成形体の両端部を台板側に押
圧した状態で焼成することを特徴とする。
According to the method of firing a cylindrical ceramic molded body of the present invention, the side surface of a cylindrical ceramic molded body (including a calcined body; the same applies hereinafter) is brought into contact with a base plate. The firing is performed in a state where both ends of the cylindrical ceramic molded body are pressed toward the base plate.

【0010】このような焼成方法によれば、円筒状セラ
ミック成形体の両端部を台板側に押圧した状態で焼成す
ることにより、焼成中のセラミックスの変形に対して長
さ方向に抑制された状態にあり、その結果、焼成後の円
筒状セラミックスの径方向へのそり(円筒状セラミック
2の軸に対して直交する方向へのそり)を小さくするこ
とができる。これにより、従来のように、円筒状セラミ
ック成形体を吊り焼成しなくても、そりの小さな円筒状
セラミックスを得ることができる。
According to such a firing method, the cylindrical ceramic molded body is fired in a state where both ends are pressed toward the base plate, thereby suppressing deformation of the ceramic during firing in the length direction. As a result, the warp in the radial direction of the fired cylindrical ceramic (warp in the direction orthogonal to the axis of the cylindrical ceramic 2) can be reduced. Thus, a cylindrical ceramic having a small warpage can be obtained without suspending and firing the cylindrical ceramic molded body as in the related art.

【0011】ここで、円筒状セラミック成形体の台板側
への押圧力は、前記円筒状セラミック成形体の圧環強度
の0.2〜0.8倍であることが望ましい。このように
円筒状セラミック成形体の台板側への押圧力を適正化す
ることにより、そりの小さな円筒状セラミックスを得る
ことができるとともに、焼成後における円筒状セラミッ
クスの外形の変形率も小さくすることができる。
Here, the pressing force of the cylindrical ceramic molded body toward the base plate is preferably 0.2 to 0.8 times the radial crushing strength of the cylindrical ceramic molded body. By optimizing the pressing force of the cylindrical ceramic molded body to the base plate in this way, it is possible to obtain a cylindrical ceramic having a small warpage, and to reduce the deformation rate of the external shape of the cylindrical ceramic after firing. be able to.

【0012】さらに、本発明では、円筒状セラミック成
形体の上面に板状のセラミックスを載置して、または前
記円筒状セラミック成形体に板状のセラミックスを立て
掛けて、台板側に押圧することが望ましい。このような
方法により、円筒状セラミック成形体の台板側への押圧
力を適正化することができる。
Further, in the present invention, the plate-shaped ceramic is placed on the upper surface of the cylindrical ceramic molded body, or the plate-shaped ceramic is leaned on the cylindrical ceramic molded body, and pressed against the base plate. Is desirable. By such a method, the pressing force of the cylindrical ceramic molded body toward the base plate can be optimized.

【0013】また、本発明では、円筒状セラミック成形
体の直径が5mm以下であることが望ましい。このよう
な小径の円筒状セラミック成形体は、吊り焼成ではセッ
トに手間がかかり、また、セット時に円筒状セラミック
成形体を壊してしまうおそれがあるため、特に本発明の
焼成方法を用いる意義は大きい。
In the present invention, it is desirable that the diameter of the cylindrical ceramic molded body is 5 mm or less. In the case of such a small-diameter cylindrical ceramic molded body, it takes time and effort to set in hanging firing, and the cylindrical ceramic molded body may be broken at the time of setting. Therefore, it is particularly significant to use the firing method of the present invention. .

【0014】さらに、本発明では、台板には溝が形成さ
れており、該溝内に円筒状セラミック成形体が収容され
ていることが望ましい。このような台板を用いることに
より、円筒状セラミック成形体を所定位置に回転しない
状態で保持できるとともに、例えば、板状のセラミック
スを容易に立て掛けることもできる。
Further, in the present invention, it is preferable that a groove is formed in the base plate, and the cylindrical ceramic molded body is accommodated in the groove. By using such a base plate, the cylindrical ceramic molded body can be held at a predetermined position without rotating, and, for example, a plate-shaped ceramic can be easily leaned.

【0015】また、本発明では、円筒状セラミック成形
体に、該円筒状セラミック成形体とは異なる材料からな
る成形体が積層されていることが望ましい。このような
場合には、焼成時における円筒状セラミック成形体と積
層される成形体の焼成収縮量が異なりそりが発生し易い
ため、本発明を用いる意義が大きい。
In the present invention, it is preferable that a molded body made of a material different from that of the cylindrical ceramic molded body is laminated on the cylindrical ceramic molded body. In such a case, the amount of shrinkage in firing of the molded body laminated with the cylindrical ceramic molded body during firing is different, and warpage is likely to occur.

【0016】[0016]

【発明の実施の形態】円筒状セラミックスとして円筒状
固体電解質型燃料電池セルを例にして本発明の焼成方法
を説明する。本発明の円筒状セラミック成形体の焼成方
法によれば、先ず、図1に示すような円筒状セラミック
成形体1を作製する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The firing method of the present invention will be described with reference to a cylindrical solid oxide fuel cell as an example of a cylindrical ceramic. According to the method for firing a cylindrical ceramic molded body of the present invention, first, a cylindrical ceramic molded body 1 as shown in FIG. 1 is produced.

【0017】この円筒状セラミック成形体1は、例え
ば、自己支持管としての機能を有する円筒状の空気極成
形体を押出し成形により作製し、その後1200〜13
00℃の温度で5〜20時間程度脱バインダー・仮焼を
行い、円筒状空気極仮焼体2を作製する。
The cylindrical ceramic molded body 1 is prepared by, for example, extruding a cylindrical air electrode molded body having a function as a self-supporting tube, and thereafter producing the cylindrical air electrode molded body.
Binder removal and calcination are performed at a temperature of 00 ° C. for about 5 to 20 hours to produce a cylindrical air electrode calcined body 2.

【0018】次に、この空気極仮焼体2の表面に固体電
解質を構成する材料の固体電解質成形体3aを形成す
る。この固体電解質成形体3はY23等の周知の安定化
剤により安定化された平均粒子径が0.5〜3μmのZ
rO2からなる粉体を用いてスラリーを調製し、その後
ドクターブレード法などによりグリーンシートを作製
し、このグリーンシートの両端部が所定間隔を置いて離
間されるように、空気極仮焼体2の表面に巻きつけて形
成される。
Next, a solid electrolyte molded body 3a of a material constituting the solid electrolyte is formed on the surface of the air electrode calcined body 2. This solid electrolyte molded body 3 has a mean particle diameter of 0.5 to 3 μm stabilized by a known stabilizer such as Y 2 O 3.
A slurry is prepared using a powder of rO 2 , and then a green sheet is prepared by a doctor blade method or the like, and the air electrode calcined body 2 is prepared so that both ends of the green sheet are separated at a predetermined interval. It is formed by wrapping around the surface.

【0019】そして、この空気極仮焼体2/固体電解質
成形体3aを1000〜1300℃の温度で1〜5時間
程度仮焼し、その後集電体の積層箇所となる固体電解質
仮焼体3aの端面間を研磨し、空気極仮焼体2を露出さ
せ、露出した空気極仮焼体2表面及び固体電解質仮焼体
3aの両端部に、集電体成形体4を積層する。集電体成
形体4はLaCrO3系の材料を使用し、固体電解質仮
焼体3aと同様にグリーンシートを積層して形成され
る。
Then, the air electrode calcined body 2 / solid electrolyte molded body 3a is calcined at a temperature of 1000 to 1300 ° C. for about 1 to 5 hours, and thereafter, the solid electrolyte calcined body 3a to be a laminated portion of the current collector Is polished to expose the air electrode calcined body 2, and the current collector molded body 4 is laminated on the exposed surface of the air electrode calcined body 2 and both ends of the solid electrolyte calcined body 3a. The current collector molded body 4 is made of a LaCrO 3 -based material, and is formed by laminating green sheets in the same manner as the solid electrolyte calcined body 3a.

【0020】また、固体電解質成形体3aと同一材料を
用いてスクリーン印刷で薄層の固体電解質成形体3bと
なるグリーンシートを作製し、このグリーンシートの表
面に、Ni金属とY23等の周知の安定化剤で安定化さ
れたZrO2との混合粉末を含有する導電性ペーストを
塗布し、乾燥して、グリーンシート上に燃料極成形体5
を形成し、上記した固体電解質仮焼体3aの表面に、燃
料極成形体5が形成されたグリーンシート(固体電解質
成形体3b)を積層し、これにより、円筒状セラミック
成形体1が作製される。
A green sheet to be a thin solid electrolyte molded body 3b is prepared by screen printing using the same material as the solid electrolyte molded body 3a, and Ni metal and Y 2 O 3 etc. are formed on the surface of the green sheet. A conductive paste containing a mixed powder with ZrO 2 stabilized by a well-known stabilizer is applied, dried, and the fuel electrode molded body 5 is formed on a green sheet.
Is formed, and a green sheet (solid electrolyte molded body 3b) on which the fuel electrode molded body 5 is formed is laminated on the surface of the solid electrolyte calcined body 3a, whereby the cylindrical ceramic molded body 1 is produced. You.

【0021】次に、図2に示すように、断面が三角形状
の溝8が形成された台板9に、円筒状セラミック成形体
1を、その集電体成形体4が下を向くように、言い換え
れば、上面に燃料極成形体5を有するように収納し、円
筒状セラミック成形体1の側面を台板9の溝8内に当接
せしめる。台板9は、円筒状セラミック成形体1と焼成
中に反応せず、また、不純物が拡散しないという理由か
ら、焼成温度以上で熱処理されたジルコニアからなるこ
とが望ましい。また、溝8の形状は、円筒状セラミック
成形体1の上部が、台板9の上面から少々突出するよう
に作製されている。
Next, as shown in FIG. 2, a cylindrical ceramic molded body 1 is placed on a base plate 9 having a groove 8 having a triangular cross section so that the current collector molded body 4 faces downward. In other words, the fuel electrode molded body 5 is housed so as to have the upper surface, and the side surface of the cylindrical ceramic molded body 1 is brought into contact with the groove 8 of the base plate 9. The base plate 9 is preferably made of zirconia that has been heat-treated at a firing temperature or higher because it does not react with the cylindrical ceramic molded body 1 during firing and does not diffuse impurities. The shape of the groove 8 is such that the upper portion of the cylindrical ceramic molded body 1 slightly protrudes from the upper surface of the base plate 9.

【0022】この後、円筒状セラミック成形体1の両端
部を台板側に押圧するために、円筒状セラミック成形体
1の上面にセラミックを載置するが、この際、図3に示
すように、セラミックと円筒状セラミック成形体1が反
応しないように、セラミックと、円筒状セラミック成形
体1との間に、セラミック成形体11を介在させること
が望ましい。このセラミック成形体11としては、円筒
状セラミック成形体1の両端部の固体電解質との反応性
が低く、また、不純物の拡散がないという点から、粒子
径の大きな固体電解質材料からなることが望ましい。
Thereafter, ceramic is placed on the upper surface of the cylindrical ceramic molded body 1 in order to press both ends of the cylindrical ceramic molded body 1 toward the base plate. At this time, as shown in FIG. It is desirable to interpose a ceramic molded body 11 between the ceramic and the cylindrical ceramic molded body 1 so that the ceramic does not react with the cylindrical ceramic molded body 1. The ceramic molded body 11 is desirably made of a solid electrolyte material having a large particle diameter in view of low reactivity with the solid electrolyte at both ends of the cylindrical ceramic molded body 1 and no diffusion of impurities. .

【0023】そして、図4に示すように、円筒状セラミ
ック成形体1の両端部に配置されたセラミック成形体1
1上面に、円筒状セラミックを1/3に分割した円弧板
状のセラミック15を載置し、焼成する。セラミック1
5を載置した状態の縦断面図を図5に示す。この図5に
示すように、セラミック成形体11により、セラミック
15は、燃料極成形体5とは当接しないようになってお
り、これにより、円筒状セラミック成形体1の両端部が
台板9側に押圧されている。この円弧板状のセラミック
15は、不純物による拡散がないという理由から、ジル
コニアからなることが望ましい。
Then, as shown in FIG. 4, the ceramic molded bodies 1 arranged at both ends of the cylindrical ceramic molded body 1 are formed.
On one upper surface, an arcuate plate-shaped ceramic 15 obtained by dividing a cylindrical ceramic into 1/3 is placed and fired. Ceramic 1
FIG. 5 shows a vertical cross-sectional view of a state in which No. 5 is placed. As shown in FIG. 5, the ceramic 15 does not come into contact with the fuel electrode molded body 5 by the ceramic molded body 11, so that both ends of the cylindrical ceramic molded body 1 Pressed to the side. The arc-plate-shaped ceramic 15 is desirably made of zirconia because there is no diffusion due to impurities.

【0024】荷重の印加は、図6(a)、(b)に示す
ように、円筒状セラミック成形体1の板状のセラミック
スを立て掛けて行うようにしても良い。
As shown in FIGS. 6A and 6B, the load may be applied by leaning the plate-shaped ceramic of the cylindrical ceramic molded body 1.

【0025】円弧板状のセラミック15の重量は、円筒
状セラミック成形体1の両端部に、円筒状セラミック成
形体1の仮焼後の仮焼体の圧環強度の0.2〜0.8倍
の荷重が印加されるように調整されている。このよう
に、円筒状セラミック成形体1の両端部に、円筒状セラ
ミック成形体1を仮焼した後の圧環強度の0.2〜0.
8倍の荷重を印加したのは、この範囲ならば、円筒状セ
ラミック成形体1の台板9側への押圧力が適正化されて
いるため、そりの小さな円筒状セラミックスを得ること
ができるとともに、焼成後における円筒状セラミックス
の外径の変形率も小さくすることができるからである。
The weight of the arcuate plate-shaped ceramic 15 is 0.2 to 0.8 times the radial crushing strength of the calcined body of the cylindrical ceramic molded body 1 at both ends thereof. Is adjusted so as to apply a load. As described above, the crushing strength of the cylindrical ceramic molded body 1 after calcining the cylindrical ceramic molded body 1 on both ends of the cylindrical ceramic molded body 1 is 0.2 to 0.1 mm.
In this range, the load of 8 times is applied, because the pressing force of the cylindrical ceramic molded body 1 on the base plate 9 side is optimized, so that a cylindrical ceramic with a small warpage can be obtained. This is because the deformation rate of the outer diameter of the cylindrical ceramic after firing can be reduced.

【0026】一方、圧環強度の0.2倍よりも小さい荷
重では、円筒状セラミック成形体1が軸長方向に移動
し、軸長に対して垂直方向に変形し易く、そりが発生し
易い。また、0.8倍よりも大きいと、円筒状セラミッ
ク成形体1が径方向に変形して、荷重が印加される部分
が潰れ易くなり、真円性が低下する。
On the other hand, when the load is smaller than 0.2 times the radial crushing strength, the cylindrical ceramic molded body 1 moves in the axial direction, is easily deformed in the direction perpendicular to the axial length, and warpage is easily generated. On the other hand, when it is larger than 0.8 times, the cylindrical ceramic molded body 1 is deformed in the radial direction, the portion to which the load is applied is easily crushed, and the roundness is reduced.

【0027】尚、空気極仮焼体の肉厚は、固体電解質成
形体、燃料極成形体に比べて非常に大きいため、円筒状
セラミック成形体1の圧環強度は、空気極仮焼体の圧環
強度に支配される。
Since the thickness of the air electrode calcined body is much larger than that of the solid electrolyte molded body and the fuel electrode molded body, the radial crushing strength of the cylindrical ceramic molded body 1 is the same as that of the air electrode calcined body. Dominated by strength.

【0028】また、円筒状セラミック成形体1として
は、直径が5mm以下であることが望ましい。このよう
な小径の円筒状セラミック成形体1は、従来の吊り焼成
ではセットに手間がかかり、また、大量焼成が必要であ
るため好適である。この直径とは、円筒状セラミック成
形体1の最大外径をいう。
The diameter of the cylindrical ceramic molded body 1 is desirably 5 mm or less. Such a small-diameter cylindrical ceramic molded body 1 is suitable because it takes time and effort to set in a conventional hanging firing, and requires a large amount of firing. This diameter refers to the maximum outer diameter of the cylindrical ceramic molded body 1.

【0029】次に、円筒状セラミック成形体1の両端部
に、所定の荷重を印加した状態で大気などの酸化雰囲気
中、1300〜1600℃の温度で1〜10時間程度同
時に焼成することにより共焼結させ、円筒状の固体電解
質型燃料電池セルを作製する。
Next, both ends of the cylindrical ceramic molded body 1 are simultaneously fired at a temperature of 1300 to 1600 ° C. for about 1 to 10 hours in an oxidizing atmosphere such as the air while applying a predetermined load. Sintering is performed to produce a cylindrical solid oxide fuel cell.

【0030】以上のような円筒状セラミック成形体の焼
成方法では、円筒状セラミック成形体1の両端部を台板
9側に押圧した状態で焼成することにより、円筒状セラ
ミック成形体1の焼成中における長さ方向の変形が抑制
された状態にあり、その結果、焼成後の円筒状セラミッ
クスの径方向へのそり(円筒状セラミクックスの軸に対
して直交する方向へのそり)を小さくすることができ
る。これにより、従来のように、円筒状セラミック成形
体を吊り焼成しなくても、そりの小さな円筒状セラミッ
クスを得ることができる。
In the above-described method for firing the cylindrical ceramic molded body, the cylindrical ceramic molded body 1 is fired in a state where both ends are pressed against the base plate 9 so that the cylindrical ceramic molded body 1 is fired during firing. In the state where the deformation in the longitudinal direction is suppressed, the warp in the radial direction of the fired cylindrical ceramics (the warp in the direction perpendicular to the axis of the cylindrical ceramics) is reduced. Can be. Thus, a cylindrical ceramic having a small warpage can be obtained without suspending and firing the cylindrical ceramic molded body as in the related art.

【0031】尚、上記形態では、円筒状セラミック成形
体1を、空気極仮焼体2の表面に、固体電解質仮焼体3
a、固体電解質成形体3b、燃料極成形体5、集電体成
形体4を形成して構成した例について説明したが、本発
明は、上記例に限定されるものではなく、例えば、円筒
状の空気極仮焼体2のみ又は空気極成形体を焼成する場
合に、本発明を用いても良い。さらに、円筒状の空気極
仮焼体2の表面に固体電解質仮焼体3a、或いは、円筒
状の空気極仮焼体2の表面に固体電解質仮焼体3a、固
体電解質成形体3b、燃料極成形体5、若しくは、円筒
状の空気極仮焼体2の表面に固体電解質仮焼体3a、集
電体成形体4を形成して構成しても良い。
In the above embodiment, the cylindrical ceramic molded body 1 is provided on the surface of the air electrode calcined body 2 with the solid electrolyte calcined body 3
a, the example in which the solid electrolyte molded body 3b, the fuel electrode molded body 5, and the current collector molded body 4 are formed has been described. However, the present invention is not limited to the above example. The present invention may be used when only the air electrode calcined body 2 or the air electrode formed body is fired. Further, the solid electrolyte calcined body 3a is provided on the surface of the cylindrical air electrode calcined body 2, or the solid electrolyte calcined body 3a, the solid electrolyte molded body 3b is provided on the surface of the cylindrical air electrode calcined body 2. The solid electrolyte calcined body 3 a and the current collector molded body 4 may be formed on the surface of the molded body 5 or the cylindrical air electrode calcined body 2.

【0032】さらに、上記例では、円筒状燃料電池セル
用の円筒状セラミック成形体の焼成方法について説明し
たが、例えば円筒状の酸素センサ用の円筒状セラミック
成形体の焼成方法に適用しても良い。
Further, in the above example, the method of firing a cylindrical ceramic molded body for a cylindrical fuel cell has been described. However, the present invention may be applied to, for example, a method of firing a cylindrical ceramic molded body for a cylindrical oxygen sensor. good.

【0033】また、溝8の形状を断面三角形としたが、
四角形でもよく、特に限定されるものではないが、溝8
の内面で線接触することが望ましい。
The groove 8 has a triangular cross section.
It may be square, and is not particularly limited.
It is desirable to make a line contact on the inner surface of the.

【0034】また、空気極成形体の焼成について本発明
を適用しても良い。この場合には、脱バインダ工程を経
るため、台板への押圧力は、空気極成形体を仮焼した後
の圧環強度の0.2〜0.8倍であることが望ましい。
Further, the present invention may be applied to firing of an air electrode molded body. In this case, the pressing force on the base plate is desirably 0.2 to 0.8 times the radial crushing strength after calcining the air electrode molded body since the binder removal step is performed.

【0035】[0035]

【実施例】空気極を形成する粉末として市販の純度9
9.9%以上のLa23、CaCO 3、Mn23を出発
原料として、これをLa0.8Ca0.2MnO3の組成にな
るように秤量混合した後、1500℃で3時間仮焼し粉
砕して平均粒径5μmの固溶体粉末を得た。
EXAMPLE A commercially available powder having a purity of 9 as a powder forming an air electrode.
La of 9.9% or moreTwoOThree, CaCO Three, MnTwoOThreeDeparts
As a raw material, this is La0.8Ca0.2MnOThreeThe composition of
And calcined at 1500 ° C for 3 hours
This was crushed to obtain a solid solution powder having an average particle size of 5 μm.

【0036】また、この固溶体粉末にバインダーを添加
し、押し出し成形法で外径の異なる円筒状の空気極成形
体を作製した。前記空気極成形体は、乾燥後1250℃
で10時間脱バインダー・仮焼することにより、肉厚1
mm以上の円筒状の空気極仮焼体を作製した。
Further, a binder was added to the solid solution powder, and cylindrical air electrode molded articles having different outer diameters were produced by an extrusion molding method. The air electrode molded body is dried at 1250 ° C.
Debinding and calcining for 10 hours at
An air electrode calcined body having a cylindrical shape of not less than mm was produced.

【0037】次に、共沈法により得られたY23を8モ
ル%の割合で含有する平均粒径が1μmのZrO2粉末
に、トルエンとバインダーを添加してスラリーを調製
し、ドクターブレード法により厚み100μmの固体電
解質シートを作製した。
Next, toluene and a binder were added to ZrO 2 powder having an average particle diameter of 1 μm and containing Y 2 O 3 at a ratio of 8 mol% obtained by a coprecipitation method to prepare a slurry. A solid electrolyte sheet having a thickness of 100 μm was prepared by a blade method.

【0038】次に、市販の純度99.9%以上のLa2
3、Cr23、CaCO3を出発原料として、これをL
0.8Ca0.22CrO3の組成になるように秤量混合した
後、1500℃で3時間仮焼し粉砕して、平均粒径が2
μmの固溶体粉末を得た。この固溶体粉末にトルエンと
バインダーを添加してスラリーを調製し、ドクターブレ
ード法により厚み100μmの集電体シートを作製し
た。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 , and CaCO 3 ,
a 0.8 Ca 0.22 CrO 3 were weighed and mixed to obtain a composition, then calcined at 1500 ° C. for 3 hours and pulverized to obtain an average particle size of 2
A μm solid solution powder was obtained. Toluene and a binder were added to the solid solution powder to prepare a slurry, and a current collector sheet having a thickness of 100 μm was prepared by a doctor blade method.

【0039】燃料極を形成する粉末として、平均粒子径
1μmのNi粉末と平均粒径が0.5μmのZrO
2(8モル%Y23含有)とを7:3で混合して混合粉
末を作製した。この混合粉末にバインダーを添加し導電
性ペーストを作製した。上記した固体電解質シートと同
様にして、厚さ20μmの薄層の固体電解質シートを作
製し、その上部に導電性ペーストを厚さ30μmとなる
ようにスクリーン印刷によって塗布した。
As the powder forming the fuel electrode, Ni powder having an average particle diameter of 1 μm and ZrO having an average particle diameter of 0.5 μm are used.
2 (containing 8 mol% Y 2 O 3 ) at a ratio of 7: 3 to prepare a mixed powder. A binder was added to the mixed powder to prepare a conductive paste. A thin solid electrolyte sheet having a thickness of 20 μm was prepared in the same manner as the solid electrolyte sheet described above, and a conductive paste was applied to the upper portion thereof by screen printing so as to have a thickness of 30 μm.

【0040】前記円筒状空気極仮焼体に、両端部が所定
間隔をおいて離間するように、前記固体電解質シートを
ロール状に巻き付け、1100℃で3時間の仮焼を行っ
た。仮焼後、集電体シートの積層箇所となる固体電解質
仮焼体の両端部間の表面を、空気極仮焼体が露出するま
で表面上を平面研磨し、この平面研磨した部分に、前記
集電体シートを帯状に積層した。また、導電性ペースト
が塗布された薄層の固体電解質シートを、固体電解質仮
焼体の表面に巻きつけ、円筒状セラミック成形体を作製
した。
The solid electrolyte sheet was wound into a roll around the cylindrical air electrode calcined body so that both ends were separated at a predetermined interval, and calcined at 1100 ° C. for 3 hours. After calcining, the surface between both ends of the solid electrolyte calcined body, which is a laminated portion of the current collector sheet, is flat-polished on the surface until the air electrode calcined body is exposed. The current collector sheets were laminated in a belt shape. Further, a thin solid electrolyte sheet coated with the conductive paste was wound around the surface of the calcined solid electrolyte body to produce a cylindrical ceramic molded body.

【0041】その後、アルミナ台板の溝に前記円筒状セ
ラミック成形体を横にして収容し、共沈法により得られ
たY23を8モル%の割合で含有する平均粒径が10μ
mのZrO2粉末に、トルエンとバインダーを添加して
スラリーを調製し、ドクターブレード法により厚み20
0μmの固体電解質シートを作製し、この固体電解質シ
ートを円筒状セラミック成形体の両端部上面に配置し、
この固体電解質シート上に、ジルコニアチューブを半割
りしたセラミックスをかぶせ、大気中1500℃で6時
間の条件で共焼結を試みた。尚、円筒状セラミック成形
体の圧環強度は、空気極仮焼体の肉厚が非常に大きいた
め、空気極仮焼体の圧環強度とした。
Then, the cylindrical ceramic compact was placed sideways in the groove of the alumina base plate, and the average particle diameter containing 8 mol% of Y 2 O 3 obtained by the coprecipitation method was 10 μm.
m and ZrO 2 powder were mixed with toluene and a binder to prepare a slurry.
A solid electrolyte sheet having a thickness of 0 μm is prepared, and the solid electrolyte sheet is disposed on the upper surfaces of both ends of the cylindrical ceramic molded body.
A ceramic obtained by halving a zirconia tube was placed on this solid electrolyte sheet, and co-sintering was attempted at 1500 ° C. in air for 6 hours. Note that the radial crushing strength of the cylindrical ceramic molded body was defined as the radial crushing strength of the air electrode calcined body because the thickness of the air electrode calcined body was very large.

【0042】そして、得られた円筒状の固体電解質型燃
料電池セルのそりと変形率を測定した。得られた燃料電
池セルの成形後の外径、焼成時の荷重、そり量および変
形率の結果を表1にまとめた。これら変形率及びそりに
ついて以下に説明する。 (a)変形率 円筒状セラミックスの内径を測定して最大と最小の差を
最大値で割って、潰れ具合(=歪みの度合い)をあらわ
した。即ち、変形率={(最大内径−最小内径)/最大
径}×100により潰れ具合を表した。 (b)そり 両端を固定し円筒状セラミックスを軸方向に回転させた
ときの振れ{(最大外径−最小外径)/2}を一定間隔
でセル長手方向に対して求め、その最大値をセルの長さ
で割ったものである。即ち、そり=最大値{(最大外径
−最小外径)/2}/セル長さにより、そりを求めた。
焼成時の荷重は、セラミックスの重量を、固体電解質シ
ートの面積で割って、両端部にそれぞれ作用する荷重を
求めた。
Then, the warpage and deformation rate of the obtained cylindrical solid oxide fuel cell were measured. Table 1 summarizes the results of the outer diameter of the obtained fuel cell after molding, the load during firing, the amount of warpage, and the deformation ratio. These deformation rates and warpage will be described below. (A) Deformation rate The inner diameter of the cylindrical ceramic was measured, and the difference between the maximum and the minimum was divided by the maximum value to express the degree of crushing (= degree of distortion). That is, the degree of crushing was represented by a deformation rate = {(maximum inner diameter−minimum inner diameter) / maximum diameter} × 100. (B) Warpage The deflection {(maximum outer diameter−minimum outer diameter) / 2} when the cylindrical ceramics are rotated in the axial direction with both ends fixed is determined at regular intervals in the cell longitudinal direction, and the maximum value is determined. It is divided by the length of the cell. That is, the warpage was calculated from: warpage = maximum value {(maximum outer diameter−minimum outer diameter) / 2} / cell length.
The load at the time of firing was obtained by dividing the weight of the ceramic by the area of the solid electrolyte sheet to obtain loads acting on both ends.

【0043】[0043]

【表1】 [Table 1]

【0044】この表1から、円筒状セラミック成形体の
両端部に荷重を印加しなかった試料No.6では、そり
が非常に大きいことが判る。一方、円筒状セラミック成
形体の両端部に荷重を印加しながら焼成した場合には、
そりが小さくなることが判る。また、荷重が空気極仮焼
体の圧環強度に比較して小さな試料では変形率は小さく
なるが、そりが大きくなる傾向があり、一方、荷重を大
きくしていくと、そりは抑制されるが、変形率が大きく
なる傾向があることが判る。
From Table 1, it can be seen that Sample No. in which no load was applied to both ends of the cylindrical ceramic molded body. 6, it can be seen that the warpage is very large. On the other hand, when firing while applying a load to both ends of the cylindrical ceramic molded body,
It can be seen that the warpage becomes smaller. In addition, the deformation ratio is small for a sample whose load is small compared to the radial crushing strength of the calcined cathode, but the warpage tends to be large.On the other hand, when the load is increased, the warpage is suppressed. It can be seen that the deformation ratio tends to increase.

【0045】[0045]

【発明の効果】以上に説明した如く、本発明の円筒状セ
ラミック成形体の焼成方法によれば、円筒状セラミック
成形体の側面を台板上に当接し、円筒状セラミック成形
体の両端部を台板側に押圧した状態で焼成することによ
り、焼成中のセラミックスの変形が長さ方向に抑制で
き、焼成後の円筒状セラミックスの径方向へのそりを小
さくすることができる。従って、従来の吊り焼成よりも
大量生産を行うことができる。
As described above, according to the method for firing a cylindrical ceramic molded body of the present invention, the side surface of the cylindrical ceramic molded body is brought into contact with the base plate, and both ends of the cylindrical ceramic molded body are brought into contact with each other. By sintering while being pressed against the base plate, deformation of the ceramic during sintering can be suppressed in the length direction, and warpage of the cylindrical ceramic after sintering in the radial direction can be reduced. Therefore, mass production can be performed as compared with the conventional hanging firing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状セラミック成形体を示す概略断
面図である。
FIG. 1 is a schematic sectional view showing a cylindrical ceramic molded body of the present invention.

【図2】円筒状セラミック成形体を台板の溝内に収容し
た状態を示す断面図である。
FIG. 2 is a sectional view showing a state in which a cylindrical ceramic molded body is accommodated in a groove of a base plate.

【図3】円筒状セラミック成形体を台板の溝内に収容し
た状態を示す斜視図である。
FIG. 3 is a perspective view showing a state in which a cylindrical ceramic molded body is accommodated in a groove of a base plate.

【図4】円筒状セラミック成形体の上面にセラミックス
をかぶせた状態を示す横断面図である。
FIG. 4 is a cross-sectional view showing a state where a ceramic is covered on an upper surface of a cylindrical ceramic molded body.

【図5】図4の縦断面図である。FIG. 5 is a longitudinal sectional view of FIG.

【図6】円筒状セラミック成形体にセラミックスを立て
掛けた状態を示すもので、(a)は斜視図、(b)は横
断面図である。
6 (a) is a perspective view, and FIG. 6 (b) is a cross-sectional view showing a state in which ceramic is leaned on a cylindrical ceramic molded body.

【符号の説明】[Explanation of symbols]

1・・・円筒状セラミック成形体 8・・・溝 9・・・台板 15・・・セラミックス DESCRIPTION OF SYMBOLS 1 ... Cylindrical ceramic molded body 8 ... Groove 9 ... Base plate 15 ... Ceramics

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】円筒状セラミック成形体の側面を台板上に
当接し、前記円筒状セラミック成形体の両端部を台板側
に押圧した状態で焼成することを特徴とする円筒状セラ
ミック成形体の焼成方法。
1. A cylindrical ceramic molded body characterized in that the cylindrical ceramic molded body is fired in a state in which the side surface of the cylindrical ceramic molded body is brought into contact with a base plate and both ends of the cylindrical ceramic molded body are pressed toward the base plate. Firing method.
【請求項2】円筒状セラミック成形体の台板側への押圧
力は、前記円筒状セラミック成形体の圧環強度の0.2
〜0.8倍であることを特徴とする請求項1記載の円筒
状セラミック成形体の焼成方法。
2. The pressing force of the cylindrical ceramic molded body toward the base plate is 0.2% of the radial crushing strength of the cylindrical ceramic molded body.
2. The method for firing a cylindrical ceramic molded body according to claim 1, wherein the ratio is up to 0.8 times.
【請求項3】円筒状セラミック成形体の上面に板状のセ
ラミックスを載置して、または前記円筒状セラミック成
形体に板状のセラミックスを立て掛けて、台板側に押圧
することを特徴とする請求項1または2記載の円筒状セ
ラミック成形体の焼成方法。
3. A plate-shaped ceramic is placed on an upper surface of a cylindrical ceramic molded body, or a plate-shaped ceramic is leaned on the cylindrical ceramic molded body and pressed against a base plate. A method for firing a cylindrical ceramic molded body according to claim 1 or 2.
【請求項4】円筒状セラミック成形体の直径が5mm以
下であることを特徴とする請求項1乃至3のうちいずれ
かに記載の円筒状セラミック成形体の焼成方法。
4. The firing method for a cylindrical ceramic molded body according to claim 1, wherein the diameter of the cylindrical ceramic molded body is 5 mm or less.
【請求項5】台板には溝が形成されており、該溝内に円
筒状セラミック成形体が収容されていることを特徴とす
る請求項1乃至4のうちいずれかに記載の円筒状セラミ
ック成形体の焼成方法。
5. The cylindrical ceramic according to claim 1, wherein a groove is formed in the base plate, and the cylindrical ceramic molded body is accommodated in the groove. The method of firing the molded body.
【請求項6】円筒状セラミック成形体に、該円筒状セラ
ミック成形体とは異なる材料からなる成形体が積層され
ていることを特徴とする請求項1乃至5のうちいずれか
に記載の円筒状セラミック成形体の焼成方法。
6. The cylindrical ceramic body according to claim 1, wherein a molded body made of a material different from that of the cylindrical ceramic molded body is laminated on the cylindrical ceramic molded body. A method for firing a ceramic molded body.
JP2001090035A 2001-03-27 2001-03-27 Method for firing cylindrical ceramic formed body Pending JP2002284581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090035A JP2002284581A (en) 2001-03-27 2001-03-27 Method for firing cylindrical ceramic formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090035A JP2002284581A (en) 2001-03-27 2001-03-27 Method for firing cylindrical ceramic formed body

Publications (1)

Publication Number Publication Date
JP2002284581A true JP2002284581A (en) 2002-10-03

Family

ID=18944875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090035A Pending JP2002284581A (en) 2001-03-27 2001-03-27 Method for firing cylindrical ceramic formed body

Country Status (1)

Country Link
JP (1) JP2002284581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082881A (en) * 2007-10-03 2009-04-23 Nok Corp Manufacturing method for glass-sealed porous ceramic hollow thread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082881A (en) * 2007-10-03 2009-04-23 Nok Corp Manufacturing method for glass-sealed porous ceramic hollow thread

Similar Documents

Publication Publication Date Title
JP4921968B2 (en) Electrolyte sheet having an uneven structure
US4585499A (en) Method of producing ceramics
JP2617204B2 (en) Method for producing solid electrolyte
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP2001351647A (en) Solid electrolyte fuel cell
JP4462727B2 (en) Solid electrolyte fuel cell
JP2002284581A (en) Method for firing cylindrical ceramic formed body
EP0166445A2 (en) Reinforced zirconia-base sintered body, process for producing the same, and plate-like zirconia-base electrolyte function element
EP2760071B1 (en) Fuel electrode doubling as support of solid oxide fuel cell and method of producing same
JP2006170862A (en) Ceramic heater element and gas sensor
JP3350203B2 (en) Solid oxide fuel cell
JP2002348179A (en) Backing method of cylindrical ceramic molding
EP0781734B1 (en) Porous sintered lanthanum manganite bodies and method of manufacturing the same
JPH09129245A (en) Cell for solid electrolyte fuel cell
JPH11224673A (en) Solid electrolyte fuel cell
JP3677404B2 (en) Cylindrical solid electrolyte fuel cell
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP3346663B2 (en) Fuel cell
EP0781735A1 (en) Extrudable lanthanum manganite paste, extruded lanthanum manganite body and method of manufacturing porous sintered lanthanum manganite body
JPH069268A (en) Production of zirconia sintered product
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JPH05225986A (en) Manufacture of solid electrolyte type fuel cell
AU2022267788A1 (en) Corrugated green sheets for the preparation of large-sized ceramic sheets and related methods and uses
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JPH0349156A (en) Fuel electrode for solid electrolyte fuel cell