JPH0349156A - Fuel electrode for solid electrolyte fuel cell - Google Patents

Fuel electrode for solid electrolyte fuel cell

Info

Publication number
JPH0349156A
JPH0349156A JP1182592A JP18259289A JPH0349156A JP H0349156 A JPH0349156 A JP H0349156A JP 1182592 A JP1182592 A JP 1182592A JP 18259289 A JP18259289 A JP 18259289A JP H0349156 A JPH0349156 A JP H0349156A
Authority
JP
Japan
Prior art keywords
solid electrolyte
particles
nickel
fuel electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1182592A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
佐藤 佳雄
Hiroshi Tsuneizumi
常泉 浩志
Eiji Matsuda
松田 英治
Hirotaka Nakagawa
中川 大隆
Hiroshi Mihara
三原 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1182592A priority Critical patent/JPH0349156A/en
Publication of JPH0349156A publication Critical patent/JPH0349156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain excellent electrochemical reaction and conductivity and prevent the breakage of a solid electrolyte or an electrode by thermal stress by molding ceramic grains coated with nickel grains on the surface into a plate shape, and baking it. CONSTITUTION:Ceramic grains 12 coated with nickel grains 13 on the surface are molded into a plate-shaped fuel electrode 11, and it is baked. Ceramic grains of alumina or silicon carbide having a smaller linear expansion coefficient than that of a normal solid electrolyte material, e.g. yttria stabilized zirconia or ceramic grains of YSZ itself or partially stabilized zirconia are used for ceramic grains 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体電解質燃料電池用燃料電極の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in fuel electrodes for solid electrolyte fuel cells.

[従来の技術] 従来、固体電解質燃料電池の燃料電極としては下記のよ
うなものが知られている。
[Prior Art] Conventionally, the following fuel electrodes for solid electrolyte fuel cells are known.

■ニッケル粒子1により板状に成形した多孔−質ニッケ
ル焼結板2を用いたもの(第4図図示)。
(2) A device using a porous sintered nickel plate 2 formed into a plate shape using nickel particles 1 (as shown in FIG. 4).

■ニッケル粒子1とジルコニアなどのセラミックス粒子
3を混合、焼結した多孔質ニッケルジルフニアサーメッ
ト焼結板を用いたもの(第5図図示)。
(2) A porous nickel-zilfnia cermet sintered plate made by mixing and sintering nickel particles 1 and ceramic particles 3 such as zirconia (as shown in Figure 5).

■上記■と同じ材料で、かつニッケル粒子1とセラミッ
クス粒子3の構成比を変化させて傾斜機能材4としたも
の(第6図図示)。ここで、セパレート側(上側)はニ
ッケル粒子1が多く存在し、電解質側(下側)はセラミ
ックス粒子3が多く存在する。
(2) A functionally gradient material 4 made of the same material as (2) above, but with a different composition ratio of nickel particles 1 and ceramic particles 3 (as shown in Figure 6). Here, many nickel particles 1 exist on the separate side (upper side), and many ceramic particles 3 exist on the electrolyte side (lower side).

[発明が解決しようとする課題] しかしながら、従来の燃料電極によれば、以下に述べる
問題点を有する。
[Problems to be Solved by the Invention] However, the conventional fuel electrode has the following problems.

イ)上記■の場合二ニッケル粒子1のみで燃料局を構成
すると、電気化学反応及び導電性に優れている。しかし
、線膨張係数が固体電解質材料(通常、イツトリア安定
化ジルコニア)よりかなり大きいため、熱応力により固
体電解質または電極が破壊される。
b) In the case of (2) above, if the fuel station is made up of only two nickel particles 1, the electrochemical reaction and conductivity will be excellent. However, because the coefficient of linear expansion is much larger than the solid electrolyte material (usually yttria-stabilized zirconia), thermal stress can destroy the solid electrolyte or electrode.

口)上記■の場合;ニッケル粒子1とセラミックス粒子
3を適当な比率で混合した場合には、線膨張係数を固体
電解質材料と近似させる事ができ、熱応力による破壊を
防止できる。しかし、セラミックス粒子3が分散してい
るため、電極としての導電性が低下(ジルコニアなど絶
縁性のため)するとともに、ニッケル粒子の表面積が減
少し、電気化学反応が低下する。
(2) Case above: When nickel particles 1 and ceramic particles 3 are mixed in an appropriate ratio, the coefficient of linear expansion can be approximated to that of the solid electrolyte material, and destruction due to thermal stress can be prevented. However, since the ceramic particles 3 are dispersed, the conductivity as an electrode is reduced (due to insulating properties such as zirconia), the surface area of the nickel particles is reduced, and the electrochemical reaction is reduced.

ハ)上記■の場合;上記口)と同様な問題点を有する。C) Case (2) above; has the same problem as (2) above.

本発明は上記事情に鑑みてなされたもので、電気化学反
応及び導電性に優れているとともに、熱応力により固体
電解質または電極が破壊される事ことを防止しえる固体
電解質燃料電池用燃料電極を提供することを目的とする
The present invention has been made in view of the above circumstances, and provides a fuel electrode for solid electrolyte fuel cells that has excellent electrochemical reaction and conductivity, and can prevent the solid electrolyte or electrode from being destroyed by thermal stress. The purpose is to provide.

[課題を解決するための手段] 本発明は、表面にニッケル粒子をコーティング本発明に
おいて、上記セラミック粒子としては、通常の固体電解
質材料例えばイツトリア安定化ジルコニア(YSZ)よ
りも線膨張係数が小さいアルミナ、炭化ケイ素等のセラ
ミック粒子、あるいはYSZそのもの、あるいは部分安
定化ジルコニア等のセラミック粒子が挙げられる。
[Means for Solving the Problems] In the present invention, the ceramic particles are coated with nickel particles on the surface, and the ceramic particles are made of alumina, which has a linear expansion coefficient smaller than that of ordinary solid electrolyte materials, such as yttria-stabilized zirconia (YSZ). , ceramic particles such as silicon carbide, YSZ itself, or ceramic particles such as partially stabilized zirconia.

[作用] 本発明によれば、 ■セラミックス粒子の表面にニッケル粒子をコーティン
グし、係る粒子を用いて板状に加工しt、:構成となっ
Cいるため、板材の線膨張係数が上記セラミックス粒子
とニッケル粒子の中間の値となる。従って、板状の燃料
電極と固体電解質材との線膨張係数がマツチし、熱応力
に対して安定した燃料電極が得られる。
[Function] According to the present invention, the surface of the ceramic particles is coated with nickel particles, and the particles are processed into a plate shape so that the coefficient of linear expansion of the plate material is equal to that of the ceramic particles. The value is between that of nickel particles and nickel particles. Therefore, the linear expansion coefficients of the plate-shaped fuel electrode and the solid electrolyte material match, and a fuel electrode that is stable against thermal stress can be obtained.

■上記セラミックス粒子の表面は、電気化学反応及び発
生した電流の導電材としての機能を有するニッケル粒子
でコーティングされている。従って、板状に加工された
状態においてもあたかもニッケル粒子がのみで制作した
場合と同様の電気化学反応が期待でき、又導電材として
の機能も十分である。
(2) The surfaces of the ceramic particles are coated with nickel particles that function as a conductive material for electrochemical reactions and generated current. Therefore, even when processed into a plate shape, electrochemical reactions similar to those produced using nickel particles alone can be expected, and the material also functions satisfactorily as a conductive material.

■セラミックス粒子の表面のニッケル粒子の同志が焼結
されているため、たとえ上記セラミ・ソクス粒子とニッ
ケル粒子の線膨張係数の差により内部で剥離を生じても
、電極全体の破壊となりにくい。
■Since the nickel particles on the surface of the ceramic particles are sintered, even if peeling occurs internally due to the difference in linear expansion coefficient between the ceramic particles and the nickel particles, the entire electrode is unlikely to be destroyed.

■製造の中間工程で顆粒状にすることにより、気孔径の
大きな多孔質板の製作ができ、ガス透過性が向上する。
■ By making it into granules during the intermediate manufacturing process, it is possible to produce porous plates with large pore diameters, improving gas permeability.

■製造の中間工程で酸化処理することにより、気孔径の
大きな多孔質板の製作力1でき、ガス透過性が向上する
(2) By performing oxidation treatment in the intermediate process of manufacturing, it is possible to produce porous plates with large pore diameters, and gas permeability is improved.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

[実施例1] 第1図を参照する。[Example 1] Please refer to FIG.

図中の11は、燃料電極である。この燃料電極11は、
セラミックス粒子12の表面にニッケル粒子13を例え
ばメツキ法等によりコーティングしたものを、板状に成
形し、焼成することにより構成される。ここに、前記セ
ラミックス粒子12としては、例えばアルミナ粒子を用
いる。このアルミナ粒子の線膨張係数は、固体電解質の
通常の材料であるイツトリア安定化ジルコニアの線膨張
係数より小さい。
11 in the figure is a fuel electrode. This fuel electrode 11 is
It is constructed by coating the surfaces of ceramic particles 12 with nickel particles 13 by, for example, a plating method, forming them into a plate shape, and firing them. Here, as the ceramic particles 12, for example, alumina particles are used. The linear expansion coefficient of the alumina particles is smaller than that of yttria-stabilized zirconia, which is a common material for solid electrolytes.

こうした構成の燃料電極によれば、固体電解質の材料よ
り線膨張係数の小さいセラミックス粒子12の表面にニ
ッケル粒子13をコーティングし、係る粒子を用いて板
状に加工した構成となっているため、板材の線膨張係数
が上記セラミックス粒子12とニッケル粒子13の中間
の値となる。従って、板状の燃料電極11と固体電解質
材との線膨張係数がマツチし、熱応力に対して安定した
燃料電極11が得られる。
According to the fuel electrode having such a structure, the surface of the ceramic particles 12 having a smaller coefficient of linear expansion than the material of the solid electrolyte is coated with nickel particles 13, and the particles are processed into a plate shape. The coefficient of linear expansion is an intermediate value between the ceramic particles 12 and the nickel particles 13. Therefore, the linear expansion coefficients of the plate-shaped fuel electrode 11 and the solid electrolyte material match, and a fuel electrode 11 that is stable against thermal stress can be obtained.

また、上記セラミックス粒子12の表面は、電気化学反
応及び発生した電流の導電材としての機能を有するニッ
ケル粒子13でコーティングされている。従って、板状
に加工された状態においてもあたかもニッケル粒子13
がのみで制作した場合と同様の電気化学反応が期待でき
、又導電材としての機能も十分である。
Furthermore, the surfaces of the ceramic particles 12 are coated with nickel particles 13 that function as a conductive material for electrochemical reactions and generated current. Therefore, even when processed into a plate shape, the nickel particles 13
It can be expected that the same electrochemical reaction as when made with chisel, and it also functions well as a conductive material.

更に、セラミックス粒子12の表面のニッケル粒子13
の同志が焼結されているため、たとえ上記セラミックス
粒子12とニッケル粒子13の線膨張係数の差により内
部で剥離を生じても、電極全体の破壊となりにくい。
Furthermore, nickel particles 13 on the surface of the ceramic particles 12
Since the comrades are sintered, even if peeling occurs internally due to the difference in linear expansion coefficient between the ceramic particles 12 and the nickel particles 13, the entire electrode is unlikely to be destroyed.

[実施例2] 第2図(A)〜(D)を参照する。[Example 2] Please refer to FIGS. 2(A) to 2(D).

本実施例2に係る燃料電極11は、表面にニッケル粒子
13をコーティングしたセラミックス粒子12(第2図
(A)図示)を、スラリー状にして仮焼。
The fuel electrode 11 according to the second embodiment is made by calcining ceramic particles 12 (shown in FIG. 2(A)) whose surfaces are coated with nickel particles 13 into a slurry.

粉砕(第2図(B)図示)して顆粒状にした(第2図(
C)図示)後、成形、焼成(第2図(D)図示)して製
造される。
It was crushed (shown in Figure 2 (B)) and made into granules (Figure 2 (
C) As shown in the figure), the product is then molded and fired (as shown in FIG. 2(D)).

本実施例2に係る燃料電極は、製造の中間工程で顆粒状
にすることにより、気孔径の大きな多孔質板の製作がで
き、ガス透過性が向上する。
By forming the fuel electrode according to Example 2 into granules in an intermediate step of manufacturing, a porous plate with a large pore diameter can be manufactured, and gas permeability is improved.

[実施例3] 第3図(A)〜(D)を参照する。[Example 3] Please refer to FIGS. 3(A) to 3(D).

本実施例3に係る燃料電極11は、表面にニッケル粒子
13をコーティングしたセラミックス粒子」2(第3図
(A)図示)を、酸化処理してニッケル粒子13の表面
にNi01113aを形成しく第3図(B)図示)、更
に板状にした(第3図(C)図示)後、還元する(第3
図(D)図示)ことにより製造される。ここに、ニッケ
ル粒子13は酸化されるとNi0II!13aにヒビ割
れ14が生じるが、−皮酸化された部分を還元する事に
よりNip@13a表面が多少微細になる。
In the fuel electrode 11 according to the third embodiment, ceramic particles 2 (shown in FIG. 3A) whose surfaces are coated with nickel particles 13 are oxidized to form Ni01113a on the surfaces of the nickel particles 13. Figure (B) shown), further made into a plate shape (Figure 3 (C) shown), and then reduced (3
(D) shown). Here, when the nickel particles 13 are oxidized, they become Ni0II! Cracks 14 occur on the Nip@13a, but the surface of the Nip@13a becomes somewhat finer by reducing the oxidized portion.

本実施例3に係る燃料電極は、製造の中間工程で酸化処
理することにより、気孔径の大きな多孔質板の製作がで
き、ガス透過性が向上する。
The fuel electrode according to Example 3 is subjected to oxidation treatment in an intermediate step of manufacturing, so that a porous plate with a large pore diameter can be manufactured, and gas permeability is improved.

なお、上記実施例では、セラミックス粒子としてYSZ
より線膨張係数が小さいアルミナ粒子を用いた場合につ
いて述べたが、これに限らず、YSZそのものを用いて
もよい。
In addition, in the above example, YSZ was used as the ceramic particles.
Although the case has been described in which alumina particles having a smaller coefficient of linear expansion are used, the present invention is not limited to this, and YSZ itself may be used.

[発明の効果] 以上詳述した如く本発明によれば、電気化学反応及び導
電性に優れているとともに、熱応力により固体電解質ま
たは電極が破壊される事ごとを防止しえる固体電解質燃
料電池用燃料電極を提供できる。
[Effects of the Invention] As detailed above, the present invention provides a solid electrolyte fuel cell that has excellent electrochemical reactions and conductivity, and can prevent the solid electrolyte or electrode from being destroyed by thermal stress. Can provide fuel electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係る燃料電極の説明図、第
2図(A)〜(D)は本発明の実施例2の燃料電極の製
造方法を工程順に示す説明図、第3図(A)〜(D)は
本発明の実施例2の燃料電極の製造方法を工程順に示す
説明図、第4図〜第6図は夫々従来の燃料電極の説明図
である。 11・・・燃料電極、12・・・セラミックス粒子、1
3・・・ニッケル粒子、13a・・・NiO膜。
FIG. 1 is an explanatory diagram of a fuel electrode according to Example 1 of the present invention, FIGS. Figures (A) to (D) are explanatory diagrams showing the manufacturing method of a fuel electrode according to Example 2 of the present invention in the order of steps, and Figs. 4 to 6 are explanatory diagrams of conventional fuel electrodes, respectively. 11... Fuel electrode, 12... Ceramic particles, 1
3...Nickel particles, 13a...NiO film.

Claims (1)

【特許請求の範囲】[Claims] 表面にニッケル粒子をコーティングしたセラミックス粒
子を用いて板状に成形し、焼成してなることを特徴とす
る固体電解質燃料電池用燃料電極。
A fuel electrode for a solid electrolyte fuel cell characterized by being formed into a plate shape using ceramic particles coated with nickel particles on the surface and fired.
JP1182592A 1989-07-17 1989-07-17 Fuel electrode for solid electrolyte fuel cell Pending JPH0349156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182592A JPH0349156A (en) 1989-07-17 1989-07-17 Fuel electrode for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182592A JPH0349156A (en) 1989-07-17 1989-07-17 Fuel electrode for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0349156A true JPH0349156A (en) 1991-03-01

Family

ID=16120982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182592A Pending JPH0349156A (en) 1989-07-17 1989-07-17 Fuel electrode for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0349156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052991A (en) * 2006-08-23 2008-03-06 Sanyo Special Steel Co Ltd Manufacturing method of metallic porous body electrode
JP2008524068A (en) * 2004-12-22 2008-07-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Pressure system with at least two pressure circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524068A (en) * 2004-12-22 2008-07-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Pressure system with at least two pressure circuits
JP2008052991A (en) * 2006-08-23 2008-03-06 Sanyo Special Steel Co Ltd Manufacturing method of metallic porous body electrode

Similar Documents

Publication Publication Date Title
US5629103A (en) High-temperature fuel cell with improved solid-electrolyte/electrode interface and method of producing the interface
KR100733801B1 (en) Method of fabricating an assembly comprising an anode-supported electrolyte, and ceramic cell comprising such an assembly
JPH07245120A (en) Solid electrolyte fuel cell
US5676806A (en) Method for applying a cermet electrode layer to a sintered electrolyte and electrochemical reactor
JP2004503054A (en) Method for producing electrode having temperature stable conductivity
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JPH0349156A (en) Fuel electrode for solid electrolyte fuel cell
JP2004507876A (en) Electrode pattern for solid ion device
GB2087569A (en) Oxygen sensor element having thin layer of stabilized zirconia sintered on substrate
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JP3643006B2 (en) Solid oxide fuel cell cell
JPH0745293A (en) Fuel reforming catalyst for fuel cell
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JP2008034179A (en) Jointing material, jointing member, jointing method, and solid electrolyte fuel cell
JPH08213028A (en) Fuel electrode of solid electrolyte fuel cell and its film forming method
JPH10247501A (en) Method for forming fuel electrode of solid electrolyte type fuel cell
JP2005158613A (en) Cell for fuel cell, manufacturing method of cell for fuel cell, and fuel cell
JPH1012252A (en) Solid electrolyte fuel cell and manufacture therefor
JPH04355059A (en) Solid electrolyte fuel cell
JPH05170444A (en) Stabilized zirconia-alumina powder for solid electrolyte fuel cell
JPH10321239A (en) Electrode of fuel cell
JPH1154131A (en) Fuel cell electrode for solid electrolyte type fuel cell, film forming method thereof, and fuel electrode material used in film formation
JPH06290792A (en) Manufacture of electrode for molten carbonate fuel cell
JPH05270955A (en) Formation of coating layer on oxide ceramic
JPH07262819A (en) Porous conductive material powder and its manufacture, and porous electrode using this material powder