JP2002280267A - Electrolyte for drive for electrolytic capacitor - Google Patents
Electrolyte for drive for electrolytic capacitorInfo
- Publication number
- JP2002280267A JP2002280267A JP2001075517A JP2001075517A JP2002280267A JP 2002280267 A JP2002280267 A JP 2002280267A JP 2001075517 A JP2001075517 A JP 2001075517A JP 2001075517 A JP2001075517 A JP 2001075517A JP 2002280267 A JP2002280267 A JP 2002280267A
- Authority
- JP
- Japan
- Prior art keywords
- polyvinyl alcohol
- polypropylene glycol
- glycol diacrylate
- polymerization
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電解コンデンサの
駆動用電解液(以下、電解液と称す)の改良に関するもの
であり、特に耐電圧を改善した電解液に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and more particularly to an electrolytic solution having improved withstand voltage.
【0002】[0002]
【従来の技術】従来、エチレングリコールを主成分とす
る溶媒に、高級二塩基酸またはそのアンモニウム塩と、
ホウ酸またはホウ酸アンモニウムを溶解した電解液にポ
リプロピレングリコールや、ポリビニルアルコール等の
合成高分子を添加すると電解液の耐電圧を向上できるこ
とが知られている。2. Description of the Related Art Conventionally, a higher dibasic acid or its ammonium salt has been added to a solvent mainly composed of ethylene glycol.
It is known that the withstand voltage of an electrolytic solution can be improved by adding a synthetic polymer such as polypropylene glycol or polyvinyl alcohol to an electrolytic solution in which boric acid or ammonium borate is dissolved.
【0003】[0003]
【発明が解決しようとする課題】しかし、平均分子量が
1000程度のポリプロピレングリコールは、エチレン
グリコールを主溶媒とする電解液に対する溶解性が高い
が、耐電圧を向上させるためには多量の添加が必要であ
り、電解液の比抵抗が高くなるという問題があった。ま
た、平均分子量が2000以上のポリプロピレングリコ
ールは、平均分子量1000程度のものより電解液の耐
電圧を向上させる効果は高いが、比抵抗の上昇が大き
く、かつ溶解性が低いという問題があった。また、ポリ
ビニルアルコールは、3次元網目構造を有し、イオンの
移動が容易であるため、比抵抗を大幅に上昇させずに耐
電圧を向上できるが、エチレングリコールを主溶媒とす
る電解液に対する溶解性が非常に低い上、飽和濃度近く
溶解するとポリビニルアルコール中の水酸基同士が静電
引力によって集合し、糸屑状のミセル構造となるため高
分子による耐電圧向上効果が得にくいという問題があっ
た。本発明は上記の問題を解決するもので、電解液の比
抵抗の上昇を抑制しつつ、耐電圧の向上および耐電圧の
維持を図ることができ、かつ、溶解性の向上も可能な電
解液を提供するものである。However, polypropylene glycol having an average molecular weight of about 1000 has high solubility in an electrolyte containing ethylene glycol as a main solvent, but a large amount of addition is required to improve the withstand voltage. However, there is a problem that the specific resistance of the electrolytic solution is increased. Further, polypropylene glycol having an average molecular weight of 2,000 or more has a higher effect of improving the withstand voltage of the electrolytic solution than that having an average molecular weight of about 1,000, but has a problem in that the specific resistance increases greatly and the solubility is low. In addition, polyvinyl alcohol has a three-dimensional network structure and is capable of easily moving ions, so that the withstand voltage can be improved without greatly increasing the specific resistance. In addition to the extremely low solubility, when dissolved near the saturation concentration, the hydroxyl groups in polyvinyl alcohol gather due to electrostatic attraction, resulting in a thread-like micellar structure, which makes it difficult to obtain the withstand voltage improving effect of the polymer. . The present invention solves the above-described problems, and can improve the withstand voltage and maintain the withstand voltage while suppressing an increase in the specific resistance of the electrolytic solution, and can also improve the solubility. Is provided.
【0004】[0004]
【課題を解決するための手段】本発明は上記の課題を解
決するために各種検討した結果見い出されたものであ
り、ポリビニルアルコールに対するへのプロピレングリ
コールジアクリレートの架橋によって形成される架橋型
ポリビニルアルコール−ポリプロピレングリコールジア
クリレート共重合体が、エチレングリコールに対する溶
解性が高いポリプロピレングリコールジアクリレート部
分と、耐電圧向上に効果の高いポリビニルアルコール部
分を有することに着目し、ポリビニルアルコールを単独
で用いるより、エチレングリコールに対する溶解性が向
上し、架橋構造によって耐熱性向上を図るとともに、ポ
リビニルアルコールが糸屑状のミセル構造を形成するこ
とを防止することができるので、電解液の比抵抗の上昇
を抑制しつつ、耐電圧の向上を図ろうとするものであ
る。すなわち、エチレングリコールを主成分とする溶媒
に、高級二塩基酸またはその塩と、ホウ酸またはそのア
ンモニウム塩と、架橋型ポリビニルアルコール−ポリプ
ロピレングリコールジアクリレート共重合体とを溶解す
ることを特徴とする電解コンデンサの駆動用電解液であ
る。DISCLOSURE OF THE INVENTION The present invention has been found as a result of various studies to solve the above-mentioned problems, and has been found to be a crosslinked polyvinyl alcohol formed by crosslinking propylene glycol diacrylate to polyvinyl alcohol. -The polypropylene glycol diacrylate copolymer has a polypropylene glycol diacrylate part having high solubility in ethylene glycol and a polyvinyl alcohol part having a high effect on withstand voltage improvement. The solubility in glycol is improved, the heat resistance is improved by the crosslinked structure, and the polyvinyl alcohol can be prevented from forming a lint-like micelle structure, so that the increase in the specific resistance of the electrolytic solution can be suppressed. , Withstand It is an attempt is made to improve. That is, in a solvent containing ethylene glycol as a main component, a higher dibasic acid or a salt thereof, boric acid or an ammonium salt thereof, and a crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer are dissolved. It is an electrolytic solution for driving an electrolytic capacitor.
【0005】そして、上記架橋型ポリビニルアルコール
−ポリプロピレングリコールジアクリレート共重合体の
量が、0.10〜10.0wt%であることを特徴とす
る電解コンデンサの駆動用電解液である。[0005] Further, there is provided an electrolytic solution for driving an electrolytic capacitor, wherein the amount of the crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer is 0.10 to 10.0 wt%.
【0006】また、上記架橋型ポリビニルアルコール−
ポリプロピレングリコールジアクリレート共重合体のポ
リビニルアルコール部の平均重合度が200〜1500
であり、ポリプロピレングリコールジアクリレート部の
平均重合度が4〜800であり、ポリビニルアルコール
部の平均架橋度(平均架橋数/平均重合度)が2〜60
%であることを特徴とする電解コンデンサの駆動用電解
液である。Further, the above-mentioned crosslinked polyvinyl alcohol-
The average degree of polymerization of the polyvinyl alcohol part of the polypropylene glycol diacrylate copolymer is 200 to 1500
And the average degree of polymerization of the polypropylene glycol diacrylate part is 4 to 800, and the average degree of crosslinking (average number of crosslinks / average degree of polymerization) of the polyvinyl alcohol part is 2 to 60.
% For driving an electrolytic capacitor.
【0007】また、上記高級二塩基酸としては、アジピ
ン酸、アゼライン酸、セバシン酸、1,6−デカンジカ
ルボン酸、5,6−デカンジカルボン酸、7−ビニルヘ
キサデセン−1,16−ジカルボン酸等を例示すること
ができる。The higher dibasic acids include adipic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid and the like. Can be exemplified.
【0008】そして、上記高級二塩基酸の塩としては、
アンモニウム塩の他、メチルアミン、エチルアミン、t
−ブチルアミン等の1級アミン塩、ジメチルアミン、エ
チルメチルアミン、ジエチルアミン等の2級アミン塩、
トリメチルアミン、ジエチルメチルアミン、エチルジメ
チルアミン、トリエチルアミン等の3級アミン塩、テト
ラメチルアンモニウム、トリエチルメチルアンモニウ
ム、テトラエチルアンモニウム等の4級アンモニウム塩
等を例示することができる。[0008] As the salt of the higher dibasic acid,
In addition to ammonium salts, methylamine, ethylamine, t
Primary amine salts such as -butylamine, secondary amine salts such as dimethylamine, ethylmethylamine and diethylamine;
Examples thereof include tertiary amine salts such as trimethylamine, diethylmethylamine, ethyldimethylamine, and triethylamine, and quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium, and tetraethylammonium.
【0009】[0009]
【発明の実施の形態】ポリビニルアルコールがポリプロ
ピレングリコールジアクリレートによって架橋された架
橋型ポリビニルアルコール−ポリプロピレングリコール
ジアクリレート共重合体を溶解した電解液は、ポリビニ
ルアルコール部分とポリプロピレングリコールジアクリ
レート部分の両方の特性が生かせるようになる。すなわ
ち、両部分、特にポリビニルアルコール部は電解液の耐
電圧向上に効果があり、さらに、比較的低重合度(低平
均分子量)のポリプロピレングリコールジアクリレート
部分がエチレングリコールに対する溶解性を向上させる
ことができ、さらにポリビニルアルコール部分の3次元
網目構造によりイオンの移動を容易にすることで比抵抗
の上昇を抑制する。また、アクリル酸による架橋構造の
ため、熱分解が生じ難くなり、耐熱性が向上することに
加え、ポリビニルアルコールが糸屑状に絡み合うことを
防止できるため、高分子の耐電圧向上効果が損なわれな
い。DESCRIPTION OF THE PREFERRED EMBODIMENTS An electrolyte in which a cross-linked polyvinyl alcohol-polypropylene glycol diacrylate copolymer in which polyvinyl alcohol is cross-linked with polypropylene glycol diacrylate has properties of both the polyvinyl alcohol portion and the polypropylene glycol diacrylate portion. Will be able to take advantage of it. That is, both portions, particularly the polyvinyl alcohol portion, are effective in improving the withstand voltage of the electrolytic solution, and the polypropylene glycol diacrylate portion having a relatively low polymerization degree (low average molecular weight) improves the solubility in ethylene glycol. In addition, the increase in specific resistance is suppressed by facilitating the movement of ions by the three-dimensional network structure of the polyvinyl alcohol portion. In addition, the crosslinked structure of acrylic acid makes it difficult for thermal decomposition to occur, and in addition to improving heat resistance, it is possible to prevent polyvinyl alcohol from becoming entangled in lint, thereby impairing the withstand voltage improving effect of the polymer. Absent.
【0010】[0010]
【実施例】以下、本発明の実施例について具体的に説明
する。表1の組成で電解液を調合し、30℃における電
解液の比抵抗と、85℃における火花発生電圧(耐電
圧)を測定した。Embodiments of the present invention will be specifically described below. An electrolytic solution was prepared according to the composition shown in Table 1, and the specific resistance of the electrolytic solution at 30 ° C. and the spark generation voltage (withstand voltage) at 85 ° C. were measured.
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【表2】 [Table 2]
【0013】まず、従来例、比較例1〜2に示すよう
に、平均重合度17のポリプロピレングリコールを添加
すると火花電圧は上昇するが、同時に比抵抗も上昇す
る。添加量10.0wt%では火花電圧は435Vまで
達するが、比抵抗は780Ω・cmまで上昇した。比較
例3〜4に示すように、平均重合度500のポリビニル
アルコールを添加するとポリプロピレングリコールと比
べ、火花電圧の上昇は大きいが、10.0wt%添加し
た場合溶解しなかった。そこで、本発明の架橋型ポリビ
ニルアルコール−ポリプロピレングリコールジアクリレ
ート共重合体を添加した実施例は完全に溶解可能で、火
花電圧を上昇させながら比抵抗の上昇を抑えることがで
きる。First, as shown in Conventional Examples and Comparative Examples 1 and 2, when a polypropylene glycol having an average degree of polymerization of 17 is added, the spark voltage increases, but the specific resistance also increases. When the addition amount was 10.0 wt%, the spark voltage reached 435 V, but the specific resistance increased to 780 Ω · cm. As shown in Comparative Examples 3 and 4, when polyvinyl alcohol having an average degree of polymerization of 500 was added, the spark voltage increased significantly as compared with polypropylene glycol, but did not dissolve when 10.0 wt% was added. Therefore, the embodiment of the present invention in which the crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer is added can be completely dissolved, and it is possible to suppress an increase in specific resistance while increasing a spark voltage.
【0014】なお、架橋型ポリビニルアルコール−ポリ
プロピレングリコールジアクリレート共重合体の溶解量
は、0.05wt%では耐電圧向上の効果が十分でな
く、15.0wt%では比抵抗が高くなりすぎ低比抵抗
用途に不向きである。よって、架橋型ポリビニルアルコ
ール−ポリプロピレングリコールジアクリレート共重合
体の溶解量は、0.10〜10.0wt%の範囲が好ま
しい。When the amount of the crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer dissolved is 0.05% by weight, the effect of improving the withstand voltage is not sufficient, and when the amount is 15.0% by weight, the specific resistance is too high and the specific resistance is too low. Not suitable for resistance applications. Therefore, the amount of the crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer dissolved is preferably in the range of 0.10 to 10.0 wt%.
【0015】実施例2〜4と比較例3の電解液をコンデ
ンサ素子に含浸した後、アルミニウム製外装ケース内に
封口ゴムと共に封止し、φ35.0×35.0mmL、
定格電圧400V、静電容量390μFのアルミニウム
電解コンデンサを各10個作製しエージング処理を行っ
た。これらの製品の初期値を測定後、105℃の高温槽
中で定格電圧を印加し、一定時間毎に取り出し製品のt
anδ変化を調査し、表3の結果を得た。After the capacitor elements were impregnated with the electrolyte solutions of Examples 2 to 4 and Comparative Example 3, they were sealed together with a sealing rubber in an aluminum outer case, and a diameter of φ35.0 × 35.0 mmL was obtained.
Ten aluminum electrolytic capacitors each having a rated voltage of 400 V and a capacitance of 390 μF were prepared and subjected to aging treatment. After measuring the initial values of these products, a rated voltage was applied in a high-temperature bath at 105 ° C.
The change in an δ was investigated and the results in Table 3 were obtained.
【0016】[0016]
【表3】 [Table 3]
【0017】表3より本実施例を使用した電解コンデン
サは、高温負荷試験においても安定した特性が得られ、
長期信頼性に優れていることが分かる。According to Table 3, the electrolytic capacitor using this embodiment has stable characteristics even in a high temperature load test.
It turns out that it has excellent long-term reliability.
【0018】実施例3の電解液組成で、架橋型ポリビニ
ルアルコール−ポリプロピレンジアクリレート共重合体
のポリビニルアルコール部の平均重合度と電解液の火花
発生電圧との関係を調査し図1の結果を得た。図1より
ポリビニルアルコール部の平均重合度は、200〜15
00の範囲が好ましいことが分かる。平均重合度が20
0未満では、火花発生電圧の向上が十分ではなく、15
00を超えると本条件では完全に溶解しなかった。The relationship between the average degree of polymerization of the polyvinyl alcohol part of the crosslinked polyvinyl alcohol-polypropylene diacrylate copolymer and the spark generation voltage of the electrolyte was investigated using the electrolyte composition of Example 3 and the results shown in FIG. 1 were obtained. Was. From FIG. 1, the average degree of polymerization of the polyvinyl alcohol part is 200 to 15
It can be seen that a range of 00 is preferable. Average degree of polymerization is 20
If it is less than 0, the spark generation voltage is not sufficiently improved, and
If it exceeds 00, it did not completely dissolve under these conditions.
【0019】同じく実施例3の電解液組成で、架橋型ポ
リビニルアルコール−ポリプロピレンジアクリレート共
重合体のポリプロピレンジアクリレート部の平均重合度
と電解液の比抵抗、火花発生電圧との関係を調査し図2
の結果を得た。図2よりポリプロピレンジアクリレート
部の平均重合度は、4〜800の範囲が好ましいことが
分かる。平均重合度が4未満では、火花発生電圧の向上
が十分ではなく、800を超えると火花発生電圧の向上
は十分であるが、比抵抗が高くなり、低比抵抗用途に不
向きとなる。The relationship between the average degree of polymerization of the polypropylene diacrylate portion of the crosslinked polyvinyl alcohol-polypropylene diacrylate copolymer, the specific resistance of the electrolyte, and the spark generation voltage was also investigated with the electrolyte composition of Example 3. 2
Was obtained. FIG. 2 shows that the average degree of polymerization of the polypropylene diacrylate is preferably in the range of 4 to 800. When the average degree of polymerization is less than 4, the spark generation voltage is not sufficiently improved, and when the average polymerization degree is more than 800, the spark generation voltage is sufficiently improved, but the specific resistance is increased, which is not suitable for low specific resistance applications.
【0020】次に、実施例5の電解液組成で、架橋型ポ
リビニルアルコール−ポリプロピレンジアクリレート共
重合体のポリプロピレンジアクリレートのポリビニルア
ルコール部への平均架橋度と電解液への溶解性との関係
を調査し表4の結果を得た。ここで、架橋型ポリビニル
アルコール−ポリプロピレンジアクリレート共重合体の
ポリビニルアルコール部の平均重合度は1500、ポリ
プロピレンジアクリレートの平均重合度は4となるもの
を使用した。Next, the relationship between the average degree of crosslinking of the polypropylene diacrylate of the crosslinked polyvinyl alcohol-polypropylene diacrylate copolymer and the solubility in the electrolyte with the composition of the electrolyte of Example 5 was described. A survey was performed and the results in Table 4 were obtained. Here, the average polymerization degree of the polyvinyl alcohol part of the crosslinked polyvinyl alcohol-polypropylene diacrylate copolymer was 1500, and the average polymerization degree of the polypropylene diacrylate was 4 used.
【0021】[0021]
【表4】 [Table 4]
【0022】表4より平均架橋度は2〜60%の範囲が
好ましいことが分かる。平均架橋度が2%未満または6
0%を超えると架橋型ポリビニルアルコール−ポリプロ
ピレンジアクリレート共重合体が完全に溶解しないとい
う問題がある。Table 4 shows that the average degree of crosslinking is preferably in the range of 2 to 60%. Average degree of crosslinking is less than 2% or 6
If it exceeds 0%, there is a problem that the crosslinked polyvinyl alcohol-polypropylene diacrylate copolymer is not completely dissolved.
【0023】[0023]
【発明の効果】上記したとおり、本発明による架橋型ポ
リビニルアルコール−ポリプロピレングリコールジアク
リレート共重合体をエチレングリコールを主体とした電
解液に溶解した場合、比抵抗の上昇を抑制しつつ耐電圧
の改善を図ることができ、さらに高温でも安定した特性
が得られ、工業的、実用的価値大なるものである。As described above, when the crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer according to the present invention is dissolved in an electrolytic solution mainly composed of ethylene glycol, the increase in the specific resistance is suppressed and the withstand voltage is improved. And stable characteristics can be obtained even at a high temperature, which is of great industrial and practical value.
【図1】架橋型ポリビニルアルコール−ポリプロピレン
ジアクリレート共重合体のポリビニルアルコール部の平
均重合度と電解液の火花発生電圧との特性図である。FIG. 1 is a characteristic diagram of the average polymerization degree of a polyvinyl alcohol part of a crosslinked polyvinyl alcohol-polypropylene diacrylate copolymer and the spark generation voltage of an electrolytic solution.
【図2】架橋型ポリビニルアルコール−ポリプロピレン
ジアクリレート共重合体のポリプロピレンジアクリレー
ト部の平均重合度と電解液の比抵抗および火花発生電圧
との特性図である。FIG. 2 is a characteristic diagram of an average degree of polymerization of a polypropylene diacrylate portion of a crosslinked polyvinyl alcohol-polypropylene diacrylate copolymer, a specific resistance of an electrolytic solution, and a spark generation voltage.
Claims (3)
に、高級二塩基酸またはその塩と、ホウ酸またはそのア
ンモニウム塩と、架橋型ポリビニルアルコール−ポリプ
ロピレングリコールジアクリレート共重合体とを溶解す
ることを特徴とする電解コンデンサの駆動用電解液。1. Dissolving a higher dibasic acid or a salt thereof, boric acid or an ammonium salt thereof, and a crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer in a solvent containing ethylene glycol as a main component. Characteristic electrolyte for driving electrolytic capacitors.
ール−ポリプロピレングリコールジアクリレート共重合
体の量が、0.10〜10.0wt%であることを特徴
とする電解コンデンサの駆動用電解液。2. An electrolytic solution for driving an electrolytic capacitor, wherein the amount of the crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer according to claim 1 is 0.10 to 10.0 wt%.
プロピレングリコールジアクリレート共重合体のポリビ
ニルアルコール部の平均重合度が200〜1500であ
り、ポリプロピレングリコールジアクリレート部の平均
重合度が4〜800であり、ポリビニルアルコール部の
平均架橋度が2〜60%であることを特徴とする請求項
1、2記載の電解コンデンサの駆動用電解液。3. The crosslinked polyvinyl alcohol-polypropylene glycol diacrylate copolymer has an average degree of polymerization of a polyvinyl alcohol part of 200 to 1500, an average degree of polymerization of a polypropylene glycol diacrylate part of 4 to 800, and a polyvinyl alcohol. 3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the average crosslinking degree of the alcohol part is 2 to 60%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001075517A JP4481516B2 (en) | 2001-03-16 | 2001-03-16 | Electrolytic solution for driving electrolytic capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001075517A JP4481516B2 (en) | 2001-03-16 | 2001-03-16 | Electrolytic solution for driving electrolytic capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002280267A true JP2002280267A (en) | 2002-09-27 |
JP4481516B2 JP4481516B2 (en) | 2010-06-16 |
Family
ID=18932585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001075517A Expired - Fee Related JP4481516B2 (en) | 2001-03-16 | 2001-03-16 | Electrolytic solution for driving electrolytic capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4481516B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003059771A (en) * | 2001-08-10 | 2003-02-28 | Nichicon Corp | Driving electrolyte for electrolytic capacitor |
JP2006351579A (en) * | 2005-06-13 | 2006-12-28 | Nichicon Corp | Electrolyte for driving electrolytic capacitor |
WO2018003876A1 (en) * | 2016-06-29 | 2018-01-04 | 三洋化成工業株式会社 | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor |
EP3703088A4 (en) * | 2017-10-24 | 2021-09-01 | Sanyo Chemical Industries, Ltd. | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04350922A (en) * | 1991-05-28 | 1992-12-04 | Nippon Chemicon Corp | Electrolyte for electrolytic capacitor |
JPH0963901A (en) * | 1995-08-22 | 1997-03-07 | Hitachi Aic Inc | Electrolyte of electrolytic capacitor |
JPH09298132A (en) * | 1996-05-09 | 1997-11-18 | Nichicon Corp | Electrolytic solution for electrolytic capacitor drive |
JP2000058396A (en) * | 1998-08-10 | 2000-02-25 | Nichicon Corp | Electrolytic solution for driving electrolytic capacitor |
-
2001
- 2001-03-16 JP JP2001075517A patent/JP4481516B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04350922A (en) * | 1991-05-28 | 1992-12-04 | Nippon Chemicon Corp | Electrolyte for electrolytic capacitor |
JPH0963901A (en) * | 1995-08-22 | 1997-03-07 | Hitachi Aic Inc | Electrolyte of electrolytic capacitor |
JPH09298132A (en) * | 1996-05-09 | 1997-11-18 | Nichicon Corp | Electrolytic solution for electrolytic capacitor drive |
JP2000058396A (en) * | 1998-08-10 | 2000-02-25 | Nichicon Corp | Electrolytic solution for driving electrolytic capacitor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003059771A (en) * | 2001-08-10 | 2003-02-28 | Nichicon Corp | Driving electrolyte for electrolytic capacitor |
JP4653354B2 (en) * | 2001-08-10 | 2011-03-16 | ニチコン株式会社 | Electrolytic solution for electrolytic capacitor drive |
JP2006351579A (en) * | 2005-06-13 | 2006-12-28 | Nichicon Corp | Electrolyte for driving electrolytic capacitor |
WO2018003876A1 (en) * | 2016-06-29 | 2018-01-04 | 三洋化成工業株式会社 | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor |
JPWO2018003876A1 (en) * | 2016-06-29 | 2019-05-30 | 三洋化成工業株式会社 | Electrolytic solution for electrolytic capacitor and electrolytic capacitor |
US11527365B2 (en) | 2016-06-29 | 2022-12-13 | Sanyo Chemical Industries, Ltd. | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor |
EP3703088A4 (en) * | 2017-10-24 | 2021-09-01 | Sanyo Chemical Industries, Ltd. | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor |
US11424078B2 (en) | 2017-10-24 | 2022-08-23 | Sanyo Chemical Industries, Ltd. | Electrolytic solution for electrolytic capacitor, and electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP4481516B2 (en) | 2010-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017069390A (en) | Electrolytic capacitor and manufacturing method thereof | |
JP4481516B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4063650B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4366170B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4214008B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JPH08241831A (en) | Electrolyte for driving electrolytic capacitor | |
JP2007184303A (en) | Electrolytic capacitor, and electrolyte for driving same | |
JP4354244B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4020776B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JPH0451510A (en) | Electrolyte for driving electrolytic capacitor | |
JP3749913B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4540244B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP3391196B2 (en) | Electrolyte for electrolytic capacitors | |
JP4589148B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP2731250B2 (en) | Electrolyte for driving electrolytic capacitors | |
JP3979104B2 (en) | Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor using the same | |
JP4699649B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4150248B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JPH0513276A (en) | Electrolyte for driving electrolytic capacitor | |
JP4122178B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4441400B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP2023095765A (en) | Electrolytic solution for hybrid electrolytic capacitor and hybrid electrolytic capacitor using the same | |
JP2003068584A (en) | Electrolyte for driving electrolytic capacitor | |
JP2002164260A (en) | Electrolytic solution for driving electrolytic capacitor | |
JPH0522374B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100315 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100318 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4481516 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |