JP3391196B2 - Electrolyte for electrolytic capacitors - Google Patents

Electrolyte for electrolytic capacitors

Info

Publication number
JP3391196B2
JP3391196B2 JP27738696A JP27738696A JP3391196B2 JP 3391196 B2 JP3391196 B2 JP 3391196B2 JP 27738696 A JP27738696 A JP 27738696A JP 27738696 A JP27738696 A JP 27738696A JP 3391196 B2 JP3391196 B2 JP 3391196B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrolytic
electrolytic solution
acid
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27738696A
Other languages
Japanese (ja)
Other versions
JPH10106894A (en
Inventor
利幸 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi AIC Inc
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP27738696A priority Critical patent/JP3391196B2/en
Publication of JPH10106894A publication Critical patent/JPH10106894A/en
Application granted granted Critical
Publication of JP3391196B2 publication Critical patent/JP3391196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電解コンデンサ用
電解液に関する。 【0002】 【従来の技術】中高圧用のアルミ電解コンデンサ等の電
解コンデンサに用いる電解液は、例えば、エチレングリ
コール等の多価アルコールを主成分とする溶媒に、ホウ
酸や、高級二塩基酸であるセバシン酸、1,6−デカン
ジカルボン酸等を溶解した成分になっている。しかし、
この電解液を用いた電解コンデンサは、実用的な定格電
圧が最高450WV程度であり、この電圧より高い場合
には、耐圧不良を生じ、信頼性が低下する。このため、
火花発生電圧を高くして電解コンデンサの耐圧性を向上
できるように、ポリエチレンオキシドやそのエステル
類、エチレン・プロピレンブロック重合体等の高分子化
合物を添加剤として用いた電解液がある。 【0003】 【発明が解決しようとする課題】しかし、これらの添加
剤を用いた電解液は、比抵抗が高くなる欠点がある。こ
のため、この電解液を含浸した電解コンデンサはインピ
ーダンスが増大する。 【0004】本発明は、以上の欠点を改良し、比抵抗が
低く、電解コンデンサの耐圧を向上できる電解コンデン
サ用電解液を提供することを課題とするものである。 【0005】 【課題を解決するための手段】本発明は、上記の課題を
解決するために、多価アルコール類を主な溶媒とする電
解コンデンサ用電解液において、式 【化1】 (式中、nは重合度、Rは水素、アルキル基、オキシア
ルキレン基のうちの一種) で表されるポリ(1−ヒドロキシメチル−5−フェニル
−3,4−ヘキサンジカルボン酸)誘導体を含有するこ
とを特徴とする電解コンデンサ用電解液を提供するもの
である。 【0006】化1で表すポリ(1−ヒドロキシメチル−
5−フェニル−3,4−ヘキサンジカルボン酸)誘導体
を電解液中に溶解しても、比抵抗が増大しない。そして
この誘導体を溶解した電解液は、電解コンデンサのコン
デンサ素子を構成する陽極箔の表面に皮膜状の錯体を形
成する。このために、電解コンデンサの耐圧が向上し、
長時間その状態を維持できる。また、陽極箔の表面に形
成した酸化皮膜の劣化を前記皮膜状の錯体により抑制で
きる。従って、電解コンデンサの漏れ電流の増大を抑制
できる。 【0007】 【発明の実施の形態】以下、本発明の実施の形態を説明
する。溶媒は、エチレングリコールやジエチレングリコ
ール、プロピレングリコール、グリセリン、1,4−ブ
タンジオール、1,3−ブタンジオール等のの多価アル
コール類を一種類又は二種類以上を主成分として用い
る。溶質は、ホウ酸やその塩、有機酸、有機酸塩等の少
なくとも一種類を用いる。有機酸は、アジピン酸や安息
香酸、アゼライン酸、セバシン酸、カプリル酸、1,6
−デカンジカルボン酸、5,6−デカンジカルボン酸等
を用いる。また、有機酸塩はこれらの有機酸の塩を用い
る。そして上記の溶媒及び溶質からなる溶液中に、化1
で表すポリ(1−ヒドロキシメチル−5−フェニル−
3,4−ヘキサンジカルボン酸)誘導体を溶解する。な
お、この誘導体の重合度nは、5〜5000の範囲が好
ましく、特に500程度が好ましい。すなわち、重合度
nが5未満の場合には、電解液の火花発生電圧を上げる
効果が低い。そして重合度nが5000より大きいと、
多価アルコール類に溶解し難くなり、かつ高粘度である
ため電解液の粘度が高くなりコンデンサ素子に含浸し難
くなる。また、誘導体の添加量は0.1〜40wt%の範
囲が好ましい。すなわち、添加量が0.1wt%未満では
火花発生電圧を上げる効果が低い。そして添加量が40
wt%より多くなると、飽和状態に近づくため、電解コン
デンサの低温特性が低下する。なお、他に添加剤として
マンニットやソルビット等を用いる。 【0008】 【実施例】次に、本発明の実施例について説明する。実
施例の電解液は表1に示す通りの組成とする。そして同
様に表2に示すポリ(1−ヒドロキシメチル−5−フェ
ニル−3,4−ヘキサンジカルボン酸)を含まない組成
の比較例の電解液とともに、比抵抗と火花発生電圧とを
測定し表1に示す。なお、比抵抗は温度30℃で、そし
て火花発生電圧は温度85℃で各々測定した値とする。 【0009】 【表1】 【0010】 【表2】【0011】この表1から明らかな通り、実施例1〜実
施例7は、比抵抗が1,020〜1,800Ω・cmそし
て火花発生電圧が530〜540Vになる。また、表2
から明らかな通り比較例1〜比較例3は、比抵抗が1,
000〜1,780Ω・cmそして火花発生電圧が480
〜490Vになる。従って、実施例1〜実施例7は、比
較例1〜比較例3に比べて、比抵抗がほぼ同一である
が、火花発生電圧が約1.08〜1.13倍に上昇して
いる。 【0012】また、表1に示した電解液をコンデンサ素
子に含浸して定格500V,270μFのアルミ電解コ
ンデンサを製造する。各試料の製造時のエージング処理
は次の通りに行なう。すなわち、実施例1及び比較例1
の電解液を含浸したものは、温度85℃の雰囲気中にお
いて電圧510VDCを8時間連続して印加する。そし
てその他の電解液を含浸したものは、温度105℃の雰
囲気中において電圧510VDCを8時間連続して印加
する。試料数は各々20個とする。このエージング処理
の結果、実施例1〜実施例7の電解液を含浸したものは
全数とも正常にエージングでき、所定の定格のアルミ電
解コンデンサを製造できた。しかし、比較例1〜比較例
3の電解液を含浸したものは全数がパンクし、そのため
アルミ電解コンデンサを製造できなかった。このことか
ら、実施例1〜実施例7の電解液を含浸することによ
り、比較例1〜比較例3の電解液に比較してアルミ電解
コンデンサの耐圧が上昇していることが明らかである。 【0013】そして製造できたアルミ電解コンデンサに
つき、初期特性及び高温負荷試験後の特性を測定すると
ともに外観状態を観察し、表3にその結果を示す。高温
負荷試験は、高温雰囲気中に各試料を放置し、定格電圧
500Vを4000時間連続して印加して行なう。雰囲
気中の温度は、実施例1の電解液を含浸したNO1が8
5℃そしてその他の電解液を含浸したNO2〜NO7が
105℃とする。各特性は温度20℃のときの値とす
る。 【0014】 【表3】 【0015】この表3から明らかな通り、4000時間
放置後においても、静電容量変化率が−0.8〜0.5
%そしてtanδが0.060〜0.098と小さい。し
かも、漏れ電流は、初期値に比較して27.3〜75%
に低下する。また、外観についてもケースが膨張したり
防爆弁が作動したりする等の異常がなかった。 【0016】 【発明の効果】以上の通り、本発明によれば、化1で表
すポリ(1−ヒドロキシメチル−5−フェニル−3,4
−ヘキサンジカルボン酸)誘導体を含有しているため、
比抵抗が増大することなく、火花発生電圧が高く、電解
コンデンサの耐圧を高くできるとともにその寿命を長く
できる電解コンデンサ用電解液が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for an electrolytic capacitor. 2. Description of the Related Art An electrolytic solution used for an electrolytic capacitor such as an aluminum electrolytic capacitor for medium and high pressures is, for example, a solvent containing polyhydric alcohol such as ethylene glycol as a main component, a boric acid or a higher dibasic acid. Is a component in which sebacic acid, 1,6-decanedicarboxylic acid and the like are dissolved. But,
The practical rated voltage of an electrolytic capacitor using this electrolytic solution is a maximum of about 450 WV. If the rated voltage is higher than this voltage, a withstand voltage failure occurs and reliability is reduced. For this reason,
In order to increase the spark generation voltage and improve the pressure resistance of the electrolytic capacitor, there is an electrolytic solution using a polymer compound such as polyethylene oxide, an ester thereof, or an ethylene / propylene block polymer as an additive. [0003] However, the electrolytic solution using these additives has a drawback that the specific resistance is increased. Therefore, the impedance of the electrolytic capacitor impregnated with the electrolytic solution increases. An object of the present invention is to provide an electrolytic solution for an electrolytic capacitor which can improve the above disadvantages, has a low specific resistance, and can improve the withstand voltage of the electrolytic capacitor. [0005] In order to solve the above-mentioned problems, the present invention provides an electrolytic solution for an electrolytic capacitor containing a polyhydric alcohol as a main solvent. Wherein, in the formula, n is the degree of polymerization, R is one of hydrogen, an alkyl group, and an oxyalkylene group. Poly (1-hydroxymethyl-5-phenyl-3,4-hexanedicarboxylic acid) derivative represented by the following formula: The present invention provides an electrolytic solution for an electrolytic capacitor, characterized in that: The poly (1-hydroxymethyl-
Even if the (5-phenyl-3,4-hexanedicarboxylic acid) derivative is dissolved in the electrolytic solution, the specific resistance does not increase. Then, the electrolytic solution in which this derivative is dissolved forms a film-like complex on the surface of the anode foil constituting the capacitor element of the electrolytic capacitor. For this reason, the withstand voltage of the electrolytic capacitor is improved,
The condition can be maintained for a long time. Further, the deterioration of the oxide film formed on the surface of the anode foil can be suppressed by the film-like complex. Therefore, an increase in the leakage current of the electrolytic capacitor can be suppressed. An embodiment of the present invention will be described below. As the solvent, one or more polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerin, 1,4-butanediol, and 1,3-butanediol are used as a main component. As the solute, at least one kind of boric acid or a salt thereof, an organic acid, an organic acid salt, or the like is used. Organic acids include adipic acid, benzoic acid, azelaic acid, sebacic acid, caprylic acid, 1,6
-Decane dicarboxylic acid, 5,6-decane dicarboxylic acid or the like is used. As the organic acid salt, salts of these organic acids are used. Then, in a solution comprising the above solvent and solute,
Poly (1-hydroxymethyl-5-phenyl-)
Dissolve 3,4-hexanedicarboxylic acid) derivative. The degree of polymerization n of this derivative is preferably in the range of 5 to 5000, particularly preferably about 500. That is, when the polymerization degree n is less than 5, the effect of increasing the spark generation voltage of the electrolytic solution is low. And when the polymerization degree n is larger than 5000,
It is difficult to dissolve in polyhydric alcohols, and because of its high viscosity, the viscosity of the electrolytic solution becomes high, and it becomes difficult to impregnate the capacitor element. The amount of the derivative added is preferably in the range of 0.1 to 40% by weight. That is, if the amount is less than 0.1 wt%, the effect of increasing the spark generation voltage is low. And the addition amount is 40
If the content is more than wt%, the temperature approaches the saturation state, and the low-temperature characteristics of the electrolytic capacitor deteriorate. In addition, mannite, sorbite, or the like is used as an additive. Next, an embodiment of the present invention will be described. The electrolytes of the examples have compositions as shown in Table 1. Similarly, the specific resistance and the spark generation voltage were measured together with the electrolyte solution of the comparative example having no composition containing poly (1-hydroxymethyl-5-phenyl-3,4-hexanedicarboxylic acid) shown in Table 2. Shown in The specific resistance is a temperature measured at 30 ° C., and the spark generation voltage is a value measured at a temperature of 85 ° C. [Table 1] [Table 2] As apparent from Table 1, in Examples 1 to 7, the specific resistance is 1,020 to 1,800 Ω · cm, and the spark generation voltage is 530 to 540 V. Table 2
As is clear from Comparative Examples 1 to 3, Comparative Examples 1 to 3 have a specific resistance of 1
000 ~ 1,780Ωcm and spark generation voltage is 480
It becomes 490V. Therefore, in Examples 1 to 7, the specific resistance is almost the same as in Comparative Examples 1 to 3, but the spark generation voltage is increased about 1.08 to 1.13 times. Further, an electrolytic solution shown in Table 1 is impregnated into a capacitor element to produce an aluminum electrolytic capacitor having a rated voltage of 500 V and 270 μF. The aging process at the time of manufacturing each sample is performed as follows. That is, Example 1 and Comparative Example 1
Is impregnated with a voltage of 510 VDC in an atmosphere at a temperature of 85 ° C. for 8 hours continuously. Then, a voltage of 510 VDC is continuously applied for 8 hours in an atmosphere at a temperature of 105 ° C. to the one impregnated with another electrolytic solution. The number of samples is 20 each. As a result of this aging treatment, all the samples impregnated with the electrolytic solutions of Examples 1 to 7 could be normally aged, and an aluminum electrolytic capacitor having a predetermined rating could be manufactured. However, all of the samples impregnated with the electrolytic solutions of Comparative Examples 1 to 3 were flat, so that an aluminum electrolytic capacitor could not be manufactured. From this, it is clear that the impregnation with the electrolytic solutions of Examples 1 to 7 increases the breakdown voltage of the aluminum electrolytic capacitor as compared with the electrolytic solutions of Comparative Examples 1 to 3. With respect to the manufactured aluminum electrolytic capacitor, initial characteristics and characteristics after a high-temperature load test were measured and the appearance was observed. Table 3 shows the results. The high-temperature load test is performed by leaving each sample in a high-temperature atmosphere and continuously applying a rated voltage of 500 V for 4000 hours. The temperature in the atmosphere was 8 for NO1 impregnated with the electrolytic solution of Example 1.
The temperature of NO2 to NO7 impregnated with 5 ° C and other electrolyte is 105 ° C. Each characteristic is a value at a temperature of 20 ° C. [Table 3] As is clear from Table 3, even after standing for 4000 hours, the capacitance change rate is -0.8 to 0.5.
% And tan δ are as small as 0.060 to 0.098. Moreover, the leakage current is 27.3 to 75% of the initial value.
To decline. Also, there were no abnormalities such as the case expanding or the explosion-proof valve being operated. As described above, according to the present invention, poly (1-hydroxymethyl-5-phenyl-3,4)
-Hexanedicarboxylic acid) derivative,
Thus, an electrolytic solution for an electrolytic capacitor that has a high spark generation voltage, a high withstand voltage of the electrolytic capacitor and a long life can be obtained without an increase in specific resistance.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 多価アルコール類を主な溶媒とする電解
コンデンサ用電解液において、式 【化1】 (式中、nは重合度、Rは水素、アルキル基、オキシア
ルキレン基のうちの一種) で表されるポリ(1−ヒドロキシメチル−5−フェニル
−3,4−ヘキサンジカルボン酸)誘導体を含有するこ
とを特徴とする電解コンデンサ用電解液。
(57) [Claim 1] In an electrolytic solution for an electrolytic capacitor using a polyhydric alcohol as a main solvent, a compound represented by the formula: Wherein, in the formula, n is the degree of polymerization, R is one of hydrogen, an alkyl group, and an oxyalkylene group. Poly (1-hydroxymethyl-5-phenyl-3,4-hexanedicarboxylic acid) derivative represented by the following formula: An electrolytic solution for an electrolytic capacitor, characterized in that:
JP27738696A 1996-09-27 1996-09-27 Electrolyte for electrolytic capacitors Expired - Lifetime JP3391196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27738696A JP3391196B2 (en) 1996-09-27 1996-09-27 Electrolyte for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27738696A JP3391196B2 (en) 1996-09-27 1996-09-27 Electrolyte for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH10106894A JPH10106894A (en) 1998-04-24
JP3391196B2 true JP3391196B2 (en) 2003-03-31

Family

ID=17582814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27738696A Expired - Lifetime JP3391196B2 (en) 1996-09-27 1996-09-27 Electrolyte for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3391196B2 (en)

Also Published As

Publication number Publication date
JPH10106894A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US5507966A (en) Electrolyte for an electrolytic capacitor
JP3391196B2 (en) Electrolyte for electrolytic capacitors
JP3254981B2 (en) Electrolyte for electrolytic capacitors
JP2921363B2 (en) Electrolyte for electrolytic capacitors
JP3172204B2 (en) Electrolyte for driving electrolytic capacitors
JPH0997751A (en) Electrolyte for electrolytic capacitor use
JP3630206B2 (en) Electrolytic solution for electrolytic capacitors
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP3078171B2 (en) Electrolyte for driving electrolytic capacitors
JP3216493B2 (en) Electrolyte for electrolytic capacitors
JP2000508831A (en) Electrolyte for electrolytic capacitors
JP2002280267A (en) Electrolyte for drive for electrolytic capacitor
JPH02303111A (en) Electrolytic capacitor used in wide temperature range and high voltage
JP3749913B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH0748459B2 (en) Electrolytic solution for electrolytic capacitors
JPS6091618A (en) Electrolyte for electrolytic condenser
JP3169625B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPS602767B2 (en) Electrolyte for electrolytic capacitors
JPH0381291B2 (en)
JPH0775214B2 (en) Aluminum electrolytic capacitor electrolyte
JPH0982576A (en) Electrolyte for electrolytic capacitor
JPH10106895A (en) Electrolyte for electrolytic capacitor
JPH09106931A (en) Electrolyte for electrolytic capacitor
JPH0969470A (en) Electrolytic solution for electrolytic capacitor
JPH0963896A (en) Electrolyte for driving electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

EXPY Cancellation because of completion of term