JP4540244B2 - Electrolytic solution for driving electrolytic capacitors - Google Patents

Electrolytic solution for driving electrolytic capacitors Download PDF

Info

Publication number
JP4540244B2
JP4540244B2 JP2001092063A JP2001092063A JP4540244B2 JP 4540244 B2 JP4540244 B2 JP 4540244B2 JP 2001092063 A JP2001092063 A JP 2001092063A JP 2001092063 A JP2001092063 A JP 2001092063A JP 4540244 B2 JP4540244 B2 JP 4540244B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
acid
withstand voltage
methacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001092063A
Other languages
Japanese (ja)
Other versions
JP2002289475A (en
Inventor
陽文 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2001092063A priority Critical patent/JP4540244B2/en
Publication of JP2002289475A publication Critical patent/JP2002289475A/en
Application granted granted Critical
Publication of JP4540244B2 publication Critical patent/JP4540244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)に関するものであり、特に電解液の耐電圧を改善するものである。
【0002】
【従来の技術】
従来、中高圧用電解コンデンサの電解液としては、エチレングリコールを主成分とする溶媒に、安息香酸、二塩基酸、ホウ酸またはそのアンモニウム塩を溶解し、さらに、マンニトール、ソルビトール等の炭素数6程度の多価アルコール類を添加することで、ホウ酸と多価アルコールとがエステル化合物を形成し、電解液の耐電圧が向上することが知られている。また、合成高分子であるポリエチレングリコールやポリビニルアルコールを添加することでも、電解液の耐電圧が向上することが知られている。
【0003】
【発明が解決しようとする課題】
しかし、マンニトール、ソルビトール等は添加量を増加させても電解液の耐電圧の向上効果が緩慢であり、耐電圧を大幅に向上させるためにマンニトール、ソルビトールを多量に溶解すると、電解液の比抵抗が大幅に上昇するという問題があった。また、平均分子量が1000以下の比較的重合度の小さいポリエチレングリコールは、電解液に対する溶解性は高いが耐電圧向上の効果が少なく、平均分子量が1000を超えるポリエチレングリコールは、耐電圧向上の効果は高いが、電解液に対する溶解性が低く、多量に添加できないという問題がある。そして、ポリビニルアルコールも、少量の添加で電解液の耐電圧向上を図れるが、電解液に対する溶解性が著しく低い上、その他の溶質量にも問題が出てくるため、長時間の加熱、撹拌を必要とし、作業性にも問題があった。
したがって、耐電圧の向上とともに、溶解性の向上も可能な電解液が望まれていた。
【0004】
【課題を解決するための手段】
本発明は、上記の課題を解決するために各種検討した結果、見出したものであり、電解液の比抵抗の上昇を抑えながら耐電圧向上を図ったものである。すなわち、有機極性溶媒に、有機カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、メタクリル酸−ビニルフェノール共重合体とを溶解し、前記メタクリル酸−ビニルフェノール共重合体の溶解量が、1.0〜20.0wt%であることを特徴とする電解コンデンサの駆動用電解液である。
【0005】
そして、上記メタクリル酸−ビニルフェノール共重合体の平均分子量が、200〜5000であることを特徴とする電解コンデンサの駆動用電解液である。
【0007】
そして、有機カルボン酸としては、安息香酸、アジピン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を例示することができる。
【0008】
さらに、有機カルボン酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の1級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の2級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の3級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の4級アンモニウム塩等を例示することができる。
【0009】
また、有機極性溶媒としては、エチレングリコール、プロピレングリコール等のグリコール類、γ−ブチロラクトン、N−メチル−2−ピロリドン等のラクトン類、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート、イソブチレンカーボネート等の炭酸類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のオキシド類、エーテル類、ケトン類、エステル類等を例示することができる。
【0010】
【発明の実施の形態】
メタクリル酸−ビニルフェノール共重合体は、メタクリル酸とビニルフェノールの共重合で得られるポリマーである。メタクリル酸とビニルフェノールの共重合体構造を持つことにより、単独では得られなかった電解液の比抵抗上昇を抑えながら耐電圧の向上を図ることができる。また、ビニルフェノールの水酸基が電極箔を保護し、製品の特性安定化が図れる。
【0011】
【実施例】
以下、本発明を実施例に基づき具体的に説明する。
表1,2の組成で電解液を調合し、30℃における電解液の比抵抗および85℃における電解液の火花発生電圧(耐電圧)を測定し、表1,2の結果を得た。
【0012】
【表1】

Figure 0004540244
【0013】
【表2】
Figure 0004540244
【0014】
表1より、メタクリル酸−ビニルフェノール共重合体を溶解した実施例は、マンニトールを多量に溶解した従来例2や、ポリエチレングリコール、ポリビニルアルコールを溶解した従来例3,5より比抵抗の上昇を抑えながら、耐電圧を向上させていることが分かる。また、ポリエチレングリコールやポリビニルアルコールの量を増やした従来例4,6は、完全に溶解しなかった。メタクリル酸−ビニルフェノール共重合体の溶解量が1.0wt%未満では耐電圧向上の効果が少なく、20.0wt%を超えると耐電圧は向上するが、比抵抗が高くなり低比抵抗用途に不適となる。よって、メタクリル酸−ビニルフェノール共重合体の溶解量は、1.0〜20.0wt%の範囲が好ましい。
【0015】
実施例3の電解液組成で、メタクリル酸−ビニルフェノール共重合体の平均分子量と電解液の耐電圧との関係を検討し、図1の結果を得た。図1より平均分子量が200未満では耐電圧向上の効果が少ないが、200以上で耐電圧向上の効果が得られることが分かる。
但し、平均分子量が5000を超えるとメタクリル酸−ビニルフェノール共重合体の粘度が高くなるため、電解液の調合に時間がかかるようになる。
よって、メタクリル酸−ビニルフェノール共重合体の平均分子量は、200〜5000の範囲が好ましい。
【0016】
なお、本発明による電解液に、火花発生電圧安定化のために、マンニトール、ソルビトール等の多価アルコールや、リン酸またはその塩等の無機酸類を溶解してもよい。
【0017】
また、本発明による電解液が含有する水分量は、低いほど好ましいが、8.0wt%以下が好ましい。さらに電解液のpHは、必要に応じアンモニア水等のpH調整剤でpH4〜8、好ましくはpH5〜7に調整する。
【0018】
【発明の効果】
以上のように、本発明によるメタクリル酸−ビニルフェノール共重合体を溶解した電解液は、溶質を容易に溶解させることが可能であり、電解液の比抵抗の上昇を抑えながら耐電圧を向上させることが可能である。
【図面の簡単な説明】
【図1】メタクリル酸−ビニルフェノール共重合体の平均分子量と電解液の耐電圧との特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and particularly to improve the withstand voltage of the electrolytic solution.
[0002]
[Prior art]
Conventionally, as an electrolytic solution for an electrolytic capacitor for medium to high voltage, benzoic acid, dibasic acid, boric acid or ammonium salt thereof is dissolved in a solvent mainly composed of ethylene glycol, and further, carbon number of 6 such as mannitol, sorbitol and the like. It is known that by adding about a certain amount of polyhydric alcohols, boric acid and polyhydric alcohol form an ester compound, and the withstand voltage of the electrolytic solution is improved. It is also known that the withstand voltage of the electrolytic solution can be improved by adding polyethylene glycol or polyvinyl alcohol, which are synthetic polymers.
[0003]
[Problems to be solved by the invention]
However, even if mannitol, sorbitol, etc. are added, the effect of improving the withstand voltage of the electrolyte is slow, and if mannitol and sorbitol are dissolved in a large amount in order to greatly improve the withstand voltage, the specific resistance of the electrolyte There was a problem that would rise significantly. In addition, polyethylene glycol having a relatively low degree of polymerization having an average molecular weight of 1000 or less has high solubility in an electrolyte solution, but has little effect of improving withstand voltage. Polyethylene glycol having an average molecular weight exceeding 1000 has an effect of improving withstand voltage. Although it is high, there is a problem that the solubility in the electrolytic solution is low and a large amount cannot be added. Polyvinyl alcohol can also improve the withstand voltage of an electrolytic solution by adding a small amount, but the solubility in the electrolytic solution is remarkably low, and there are problems with other dissolved masses. There was a problem in workability.
Therefore, an electrolytic solution capable of improving the withstand voltage and the solubility has been desired.
[0004]
[Means for Solving the Problems]
The present invention has been found as a result of various studies to solve the above-described problems, and is intended to improve the withstand voltage while suppressing an increase in the specific resistance of the electrolytic solution. That is, an organic carboxylic acid or a salt thereof, boric acid or an ammonium salt thereof, and a methacrylic acid-vinylphenol copolymer are dissolved in an organic polar solvent, and the dissolved amount of the methacrylic acid-vinylphenol copolymer is An electrolytic solution for driving an electrolytic capacitor characterized by being 1.0 to 20.0 wt% .
[0005]
And the average molecular weight of the said methacrylic acid-vinylphenol copolymer is 200-5000, It is electrolyte solution for a drive of the electrolytic capacitor characterized by the above-mentioned.
[0007]
Examples of organic carboxylic acids include benzoic acid, adipic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid, and the like. can do.
[0008]
Furthermore, as salts of organic carboxylic acids, in addition to ammonium salts, primary amine salts such as methylamine, ethylamine and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine and diethylamine, trimethylamine and diethylmethylamine And tertiary amine salts such as ethyldimethylamine and triethylamine, and quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium.
[0009]
Examples of the organic polar solvent include glycols such as ethylene glycol and propylene glycol, lactones such as γ-butyrolactone and N-methyl-2-pyrrolidone, N-methylformamide, N, N-dimethylformamide, and N-ethylformamide. Amides such as N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, hexamethylphosphoricamide, ethylene carbonate, propylene carbonate, isobutylene carbonate Examples thereof include carbonic acids such as acetonitrile, nitriles such as acetonitrile, oxides such as dimethyl sulfoxide, ethers, ketones, esters and the like.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The methacrylic acid-vinylphenol copolymer is a polymer obtained by copolymerization of methacrylic acid and vinylphenol. By having a copolymer structure of methacrylic acid and vinylphenol, it is possible to improve the withstand voltage while suppressing an increase in specific resistance of the electrolytic solution that could not be obtained alone. Moreover, the hydroxyl group of vinylphenol protects the electrode foil, and the product characteristics can be stabilized.
[0011]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
Electrolytic solutions were prepared according to the compositions shown in Tables 1 and 2, and the specific resistance of the electrolytic solution at 30 ° C. and the spark generation voltage (withstand voltage) of the electrolytic solution at 85 ° C. were measured.
[0012]
[Table 1]
Figure 0004540244
[0013]
[Table 2]
Figure 0004540244
[0014]
From Table 1, the example in which the methacrylic acid-vinylphenol copolymer was dissolved suppressed the increase in specific resistance compared to Conventional Example 2 in which mannitol was dissolved in a large amount and Conventional Examples 3 and 5 in which polyethylene glycol and polyvinyl alcohol were dissolved. However, it can be seen that the withstand voltage is improved. Further, Conventional Examples 4 and 6 in which the amount of polyethylene glycol or polyvinyl alcohol was increased did not completely dissolve. When the amount of methacrylic acid-vinylphenol copolymer dissolved is less than 1.0 wt%, the effect of improving the withstand voltage is small. It becomes inappropriate. Therefore, the amount of methacrylic acid-vinylphenol copolymer dissolved is preferably in the range of 1.0 to 20.0 wt%.
[0015]
With the electrolytic solution composition of Example 3, the relationship between the average molecular weight of the methacrylic acid-vinylphenol copolymer and the withstand voltage of the electrolytic solution was examined, and the result of FIG. 1 was obtained. As can be seen from FIG. 1, when the average molecular weight is less than 200, the effect of improving the withstand voltage is small, but when the average molecular weight is 200 or more, the effect of improving the withstand voltage is obtained.
However, when the average molecular weight exceeds 5000, the viscosity of the methacrylic acid-vinylphenol copolymer becomes high, so that it takes time to prepare the electrolytic solution.
Therefore, the average molecular weight of the methacrylic acid-vinylphenol copolymer is preferably in the range of 200 to 5000.
[0016]
In the electrolytic solution according to the present invention, a polyhydric alcohol such as mannitol or sorbitol, or an inorganic acid such as phosphoric acid or a salt thereof may be dissolved in order to stabilize the spark generation voltage.
[0017]
Moreover, although the water content which the electrolyte solution by this invention contains is so preferable that it is low, 8.0 wt% or less is preferable. Further, the pH of the electrolytic solution is adjusted to pH 4 to 8, preferably pH 5 to 7, with a pH adjusting agent such as ammonia water as required.
[0018]
【The invention's effect】
As described above, the electrolytic solution in which the methacrylic acid-vinylphenol copolymer according to the present invention is dissolved can easily dissolve the solute, and improves the withstand voltage while suppressing an increase in the specific resistance of the electrolytic solution. It is possible.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram of an average molecular weight of a methacrylic acid-vinylphenol copolymer and a withstand voltage of an electrolytic solution.

Claims (2)

有機極性溶媒に、有機カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、メタクリル酸−ビニルフェノール共重合体とを溶解し、前記メタクリル酸−ビニルフェノール共重合体の溶解量が、1.0〜20.0wt%であることを特徴とする電解コンデンサの駆動用電解液。An organic carboxylic acid or a salt thereof, boric acid or an ammonium salt thereof, and a methacrylic acid-vinylphenol copolymer are dissolved in an organic polar solvent . An electrolytic solution for driving an electrolytic capacitor, characterized by being 0 to 20.0 wt% . 請求項1記載のメタクリル酸−ビニルフェノール共重合体の平均分子量が、200〜5000であることを特徴とする電解コンデンサの駆動用電解液。  2. An electrolytic solution for driving an electrolytic capacitor, wherein the methacrylic acid-vinylphenol copolymer according to claim 1 has an average molecular weight of 200 to 5,000.
JP2001092063A 2001-03-28 2001-03-28 Electrolytic solution for driving electrolytic capacitors Expired - Fee Related JP4540244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001092063A JP4540244B2 (en) 2001-03-28 2001-03-28 Electrolytic solution for driving electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001092063A JP4540244B2 (en) 2001-03-28 2001-03-28 Electrolytic solution for driving electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2002289475A JP2002289475A (en) 2002-10-04
JP4540244B2 true JP4540244B2 (en) 2010-09-08

Family

ID=18946587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001092063A Expired - Fee Related JP4540244B2 (en) 2001-03-28 2001-03-28 Electrolytic solution for driving electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP4540244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366170B2 (en) * 2003-10-10 2009-11-18 ニチコン株式会社 Electrolytic solution for electrolytic capacitor drive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291606A (en) * 1985-06-20 1986-12-22 Cosmo Co Ltd Production of copolymer from p-vinylphenol and acrylic monomer
JPH0745482A (en) * 1993-07-29 1995-02-14 Sanyo Chem Ind Ltd Electrolyte for driving electrolytic capacitor
JPH10106892A (en) * 1996-09-30 1998-04-24 Matsushita Electric Ind Co Ltd Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH1174159A (en) * 1997-08-28 1999-03-16 Nichicon Corp Drive electrolyte of electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291606A (en) * 1985-06-20 1986-12-22 Cosmo Co Ltd Production of copolymer from p-vinylphenol and acrylic monomer
JPH0745482A (en) * 1993-07-29 1995-02-14 Sanyo Chem Ind Ltd Electrolyte for driving electrolytic capacitor
JPH10106892A (en) * 1996-09-30 1998-04-24 Matsushita Electric Ind Co Ltd Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH1174159A (en) * 1997-08-28 1999-03-16 Nichicon Corp Drive electrolyte of electrolytic capacitor

Also Published As

Publication number Publication date
JP2002289475A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
JP4540244B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4122178B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4271526B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4366170B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4063650B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4637685B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4020776B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4354244B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4441400B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4589148B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3976587B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2003022939A (en) Electrolyte for driving electrolytic capacitor
JP4307093B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3963775B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4699652B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2004055875A (en) Electrolyte for driving of electrolytic capacitor
JP2002222737A (en) Electrolyte for driving electrolytic capacitor
JPH0451510A (en) Electrolyte for driving electrolytic capacitor
JP4612241B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4555158B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP4641455B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4523834B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4641458B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4653354B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4404761B2 (en) Electrolytic solution for driving electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4540244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees