JP4441400B2 - Electrolytic solution for driving electrolytic capacitors - Google Patents
Electrolytic solution for driving electrolytic capacitors Download PDFInfo
- Publication number
- JP4441400B2 JP4441400B2 JP2004379898A JP2004379898A JP4441400B2 JP 4441400 B2 JP4441400 B2 JP 4441400B2 JP 2004379898 A JP2004379898 A JP 2004379898A JP 2004379898 A JP2004379898 A JP 2004379898A JP 4441400 B2 JP4441400 B2 JP 4441400B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic solution
- methyl ketone
- electrolytic
- polyvinyl methyl
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)に関するものであり、特にエチレングリコールを主成分とする電解液における耐電圧向上技術に関するものである。 The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and particularly to a technology for improving a withstand voltage in an electrolytic solution containing ethylene glycol as a main component.
アルミニウム電解コンデンサの電解液としては、エチレングリコールを主成分とする溶媒に、カルボン酸やホウ酸、またはそれらのアンモニウム塩を配合し、さらにポリエチレングリコールや、ポリビニルアルコール等の合成高分子を添加し、耐電圧を向上させた電解液が提案されている(例えば、特許文献1〜3参照)。
しかしながら、平均分子量が1000未満の比較的重合度の低いポリエチレングリコールは、エチレングリコールを主成分とする溶媒への溶解度は高いが、耐電圧向上効果が低い。このため、多量に配合する必要があるので、電解液の比抵抗が高くなるという問題点がある。
これに対して、平均分子量が1000以上のポリエチレングリコールは、耐電圧向上効果は高いが、エチレングリコールを主成分とする溶媒に対する溶解性が低いため、電解液の調製に長時間を要するという問題点がある。
However, polyethylene glycol having a relatively low degree of polymerization having an average molecular weight of less than 1000 has high solubility in a solvent containing ethylene glycol as a main component, but has a low withstand voltage improvement effect. For this reason, since it is necessary to mix | blend in large quantities, there exists a problem that the specific resistance of electrolyte solution becomes high.
In contrast, polyethylene glycol having an average molecular weight of 1000 or more has a high withstand voltage improvement effect, but has a low solubility in a solvent containing ethylene glycol as a main component, so that it takes a long time to prepare an electrolytic solution. There is.
また、ポリビニルアルコールも耐電圧向上効果を有するが、エチレングリコールを主成分とする溶媒に対して溶解性が非常に低いため、ごく少量しか添加できず、電解液の耐電圧を十分に高めることが困難である。 Polyvinyl alcohol also has an effect of improving the withstand voltage, but it has a very low solubility in a solvent mainly composed of ethylene glycol, so that only a very small amount can be added, and the withstand voltage of the electrolyte can be sufficiently increased. Have difficulty.
以上の問題点に鑑みて、本発明の課題は、エチレングリコールを主成分とする溶媒に対する溶解性に優れ、かつ、耐電圧の向上を図ることのできる組成を備えた電解液を提供することにある。 In view of the above problems, an object of the present invention is to provide an electrolytic solution having a composition excellent in solubility in a solvent containing ethylene glycol as a main component and capable of improving withstand voltage. is there.
本発明は、上記の課題を解決するため各種検討した結果、見出されたものであり、耐電圧向上に効果が高いポリビニル骨格にメチルケトン基が結合したポリビニルメチルケトンを電解液に用いることで、エチレングリコールを主成分とする溶媒に対する溶解性を高め、かつ、耐電圧の向上を図ろうとするものである。 The present invention has been found as a result of various studies to solve the above-mentioned problems, and was found by using polyvinyl methyl ketone in which a methyl ketone group is bonded to a polyvinyl skeleton, which is highly effective in improving withstand voltage, as an electrolyte solution. It is intended to increase the solubility in a solvent containing ethylene glycol as a main component and to improve the withstand voltage.
すなわち、本発明の電解コンデンサの駆動用電解液では、エチレングリコールを主成分とする溶媒に、少なくとも、カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、以下の化学式で示されるポリビニルメチルケトンとを配合したことを特徴とする。 That is, in the electrolytic solution for driving an electrolytic capacitor of the present invention, at least a carboxylic acid or a salt thereof, boric acid or an ammonium salt thereof, and a polyvinyl methyl ketone represented by the following chemical formula as a solvent mainly composed of ethylene glycol. It is characterized by blending.
本発明において、ポリビニルメチルケトンの平均分子量は、800〜1700であることが好ましい。ポリビニルメチルケトンの平均分子量は、800未満のときには、耐電圧向上効果が十分でなく、平均分子量が1700を超えると、比抵抗が高くなって低比抵抗用途に不適となる傾向にある。 In this invention, it is preferable that the average molecular weights of polyvinyl methyl ketone are 800-1700. When the average molecular weight of polyvinyl methyl ketone is less than 800, the effect of improving the withstand voltage is not sufficient, and when the average molecular weight exceeds 1700, the specific resistance tends to increase and become unsuitable for low specific resistance applications.
本発明において、ポリビニルメチルケトンの配合量は、電解液全体に対して0.1〜5.0重量%であることが好ましい。ポリビニルメチルケトンの配合量は、0.1重量%未満では耐電圧向上効果が十分でなく、5.0重量%を超えると、比抵抗が高くなって低比抵抗用途に不適となる傾向にある。 In this invention, it is preferable that the compounding quantity of polyvinyl methyl ketone is 0.1 to 5.0 weight% with respect to the whole electrolyte solution. If the blending amount of polyvinyl methyl ketone is less than 0.1% by weight, the effect of improving the withstand voltage is not sufficient, and if it exceeds 5.0% by weight, the specific resistance tends to increase and become unsuitable for low specific resistance applications. .
本発明において、カルボン酸としては、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を例示することができる。 In the present invention, examples of the carboxylic acid include azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid and the like.
カルボン酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等のニ級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の四級アンモニウム塩等を例示することができる。 Carboxylic acid salts include ammonium salts, primary amine salts such as methylamine, ethylamine and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine and diethylamine, trimethylamine, diethylmethylamine and ethyldimethylamine. And tertiary amine salts such as triethylamine, and quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium, and tetraethylammonium.
エチレングリコールに混合する副溶媒としては、水の他、プロピレングリコール等のグリコール類、γ−ブチロラクトン、N−メチル−2−ピロリドン等のラクトン類、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート、イソブチレンカーボネート等の炭酸類、アセトニトリル等のニトリル類、ジメチルホキシド等のオキシド類、エーテル類、ケトン類、エステル類等を例示することができる。 As a co-solvent mixed with ethylene glycol, water, glycols such as propylene glycol, lactones such as γ-butyrolactone and N-methyl-2-pyrrolidone, N-methylformamide, N, N-dimethylformamide, N -Amides such as ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, hexamethylphosphoricamide, ethylene carbonate, propylene carbonate Carbonates such as isobutylene carbonate, nitriles such as acetonitrile, oxides such as dimethyloxide, ethers, ketones, esters and the like can be exemplified.
本発明に係る電解液では、ポリビニルメチルケトンがエチレングリコールを主成分とする溶媒に対する溶解性に優れているので、電解液の調製を効率よく行うことができ、かつ、電解液の耐電圧を向上することができる。 In the electrolytic solution according to the present invention, polyvinyl methyl ketone has excellent solubility in a solvent containing ethylene glycol as a main component, so that the electrolytic solution can be efficiently prepared and the withstand voltage of the electrolytic solution is improved. can do.
本発明に係る電解液は、エチレングリコールを主成分とする溶媒に、少なくとも、アゼライン酸やアジピン酸等のカルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、以下の化学式で示されるポリビニルメチルケトンとを配合したものであり、後述するように、電解液の調製を効率よく行うことができ、かつ、電解液の耐電圧を向上することができる。
ここで、ポリビニルメチルケトンの平均分子量は、800〜1700であることが好ましく、ポリビニルメチルケトンの配合量は、電解液全体に対して0.1〜5.0重量%であることが好ましい。
なお、本発明による電解液には、火花発生電圧安定化のために、マンニトール、ソルビトール等の多価アルコールや、リン酸またはその塩等の無機酸類を溶解してもよい。
The electrolytic solution according to the present invention contains at least a carboxylic acid such as azelaic acid or adipic acid or a salt thereof, boric acid or an ammonium salt thereof, and polyvinylmethyl represented by the following chemical formula in a solvent mainly composed of ethylene glycol. As will be described later, the electrolyte solution can be efficiently prepared and the withstand voltage of the electrolyte solution can be improved.
Here, it is preferable that the average molecular weight of polyvinyl methyl ketone is 800-1700, and it is preferable that the compounding quantity of polyvinyl methyl ketone is 0.1-5.0 weight% with respect to the whole electrolyte solution.
In the electrolyte according to the present invention, a polyhydric alcohol such as mannitol or sorbitol, or an inorganic acid such as phosphoric acid or a salt thereof may be dissolved in order to stabilize the spark generation voltage.
以下、実施例に基づき、本発明をより具体的に説明する。まず、表1に示す組成で電解液を調合した後、85℃における火花発生電圧(耐電圧)を測定した。その結果を表1に示す。
なお、表1中、「耐圧向上剤:PEG」はポリエチレングリコールを表し、「耐圧向上剤:PVA」はポリビニルアルコールを表し、「耐圧向上剤:PVMK」はポリビニルメチルケトンを表す。
また、表1中、「#」に続く数字は、耐圧向上剤として用いた成分の平均分子量を表す。
Hereinafter, based on an Example, this invention is demonstrated more concretely. First, after preparing electrolyte solution with the composition shown in Table 1, the spark generation voltage (withstand voltage) at 85 degreeC was measured. The results are shown in Table 1.
In Table 1, “pressure improver: PEG” represents polyethylene glycol, “pressure improver: PVA” represents polyvinyl alcohol, and “pressure improver: PVMK” represents polyvinyl methyl ketone.
In Table 1, the number following “#” represents the average molecular weight of the component used as the pressure improver.
表1から分かるように、ポリビニルメチルケトンを配合した実施例1〜14に係る電解液は、ポリエチレングリコールまたはポリビニルアルコールを配合した従来例1〜5に係る電解液と比較して、比抵抗が同等のもの、耐電圧が高いものが見出せる。
また、ポリビニルメチルケトンは、ポリエチレングリコールやポリビニルアルコールと比較して電解液に対する溶解性が高いので、より多量に配合することができ、十分なレベルにまで耐電圧を高めることができ、また、電解液に対する溶解性が高いことから、実施例1〜14に係る電解液の調製を比較的短時間で行えるという利点がある。
As can be seen from Table 1, the electrolytic solutions according to Examples 1 to 14 blended with polyvinyl methyl ketone have the same specific resistance as compared with the electrolytic solutions according to Conventional Examples 1 to 5 blended with polyethylene glycol or polyvinyl alcohol. Products with high withstand voltage can be found.
In addition, polyvinyl methyl ketone has a higher solubility in an electrolytic solution than polyethylene glycol and polyvinyl alcohol, so it can be blended in a larger amount, and the withstand voltage can be increased to a sufficient level. Since the solubility with respect to a liquid is high, there exists an advantage that the preparation of the electrolyte solution which concerns on Examples 1-14 can be performed in a comparatively short time.
なお、ポリビニルメチルケトンの配合量は、0.1重量%未満、例えば0.05重量%のときには、実施例1に示すように、耐電圧向上効果が十分でなく、5.0重量%を超えると、例えば、7.0重量%のときには、実施例6に示すように、比抵抗が高くなって低比抵抗用途に不適となる傾向にある。それ故、ポリビニルメチルケトンの配合量は、0.1〜5.0重量%の範囲が好ましい。 In addition, when the blending amount of polyvinyl methyl ketone is less than 0.1% by weight, for example, 0.05% by weight, as shown in Example 1, the withstand voltage improvement effect is not sufficient and exceeds 5.0% by weight. For example, when the content is 7.0% by weight, as shown in Example 6, the specific resistance tends to increase and become unsuitable for low specific resistance applications. Therefore, the blending amount of polyvinyl methyl ketone is preferably in the range of 0.1 to 5.0% by weight.
また、ポリビニルメチルケトンの平均分子量は、800未満、例えば400のときには、実施例7に示すように、耐電圧向上効果が十分でなく、平均分子量が1700を超えると、例えば、3000のときには、実施例12に示すように、比抵抗が高くなって低比抵抗用途に不適となる傾向にある。それ故、ポリビニルメチルケトンの平均分子量は、800〜1700の範囲が好ましい。 Further, when the average molecular weight of polyvinyl methyl ketone is less than 800, for example 400, as shown in Example 7, the effect of improving the withstand voltage is not sufficient, and when the average molecular weight exceeds 1700, for example, 3000, As shown in Example 12, the specific resistance tends to be high and becomes unsuitable for low specific resistance applications. Therefore, the average molecular weight of polyvinyl methyl ketone is preferably in the range of 800 to 1700.
なお、ポリビニルメチルケトンを配合した効果は、実施例に限定されるものではなく、先に記載した各種化合物を単独または複数配合した電解液に用いても実施例と同等の効果があった。
In addition, the effect which mix | blended polyvinyl methyl ketone was not limited to an Example, Even if it used for the electrolyte solution which mix | blended the various compounds described previously individually or in multiple numbers, there existed an effect equivalent to an Example.
Claims (3)
3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the blending amount of polyvinyl methyl ketone is 0.1 to 5.0% by weight with respect to the entire electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004379898A JP4441400B2 (en) | 2004-12-28 | 2004-12-28 | Electrolytic solution for driving electrolytic capacitors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004379898A JP4441400B2 (en) | 2004-12-28 | 2004-12-28 | Electrolytic solution for driving electrolytic capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006186198A JP2006186198A (en) | 2006-07-13 |
JP4441400B2 true JP4441400B2 (en) | 2010-03-31 |
Family
ID=36739080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004379898A Expired - Fee Related JP4441400B2 (en) | 2004-12-28 | 2004-12-28 | Electrolytic solution for driving electrolytic capacitors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4441400B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8216723B2 (en) * | 2006-09-11 | 2012-07-10 | Asahi Kasei Kabushiki Kaisha | Polymer electrolyte and electrochemical device |
-
2004
- 2004-12-28 JP JP2004379898A patent/JP4441400B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006186198A (en) | 2006-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4441400B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4637685B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4589148B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4307093B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4271526B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4063650B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4122178B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4366170B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP3963775B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4641455B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4540244B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4541230B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP2003022939A (en) | Electrolyte for driving electrolytic capacitor | |
JP4020776B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP3976587B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4404761B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4555158B2 (en) | Electrolytic solution for electrolytic capacitor and electrolytic capacitor | |
JP4354244B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4612241B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP2007134649A (en) | Electrolyte for driving electrolytic capacitor | |
JP4641458B2 (en) | Electrolytic solution for electrolytic capacitor drive | |
JP4555164B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP2006156708A (en) | Electrolytic solution for driving aluminum electrolytic capacitor | |
JP4523834B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JP4452174B2 (en) | Electrolytic solution for driving aluminum electrolytic capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4441400 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140115 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |