JP4214008B2 - Electrolytic solution for electrolytic capacitor drive - Google Patents

Electrolytic solution for electrolytic capacitor drive Download PDF

Info

Publication number
JP4214008B2
JP4214008B2 JP2003183875A JP2003183875A JP4214008B2 JP 4214008 B2 JP4214008 B2 JP 4214008B2 JP 2003183875 A JP2003183875 A JP 2003183875A JP 2003183875 A JP2003183875 A JP 2003183875A JP 4214008 B2 JP4214008 B2 JP 4214008B2
Authority
JP
Japan
Prior art keywords
phenanthrenequinone
electrolytic
electrolytic solution
dissolved
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003183875A
Other languages
Japanese (ja)
Other versions
JP2005019775A (en
Inventor
昌大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2003183875A priority Critical patent/JP4214008B2/en
Publication of JP2005019775A publication Critical patent/JP2005019775A/en
Application granted granted Critical
Publication of JP4214008B2 publication Critical patent/JP4214008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)の改良に関するものである。
【0002】
【従来の技術】
従来、中高圧用電解コンデンサの電解液は、エチレングリコールを主溶媒とし、有機カルボン酸またはそのアンモニウム塩と、ホウ酸またはそのアンモニウム塩とを溶解し、さらにマンニトール、ソルビトール等の多価アルコールを溶解して電解液の耐電圧を向上させたものが用いられていた(例えば特許文献1、2参照)。
【0003】
【特許文献1】
特公平7−48460号公報(第2頁、表)
【特許文献2】
特公平7−63047号公報(第3頁、表1)
【0004】
【発明が解決しようとする課題】
しかしながら、平均分子量が1000以上のポリエチレングリコールやポリビニルアルコール等の合成高分子は耐電圧を向上させる効果は高いが、比抵抗の上昇が大きく、かつエチレングリコールを主溶媒とする電解液に対する溶解性が非常に低いという問題があった。
また、ポリビニルアルコール等の合成高分子の添加により、製品内部の発熱と酸素によって高分子の主鎖が切断され、長期間初期の耐電圧を維持できないという問題があった。
したがって、比抵抗の上昇を抑制しながら、耐電圧の向上を図ることができ、かつ、電解質の溶解性も高く、高温で安定な電解液が要求されていた。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するため各種検討した結果、見出されたものであり、エチレングリコールに対して溶解性の高いフェナントレンキノンを溶解した電解液が、低比抵抗かつ高耐電圧性を有し、高温で安定であることを利用するものである。
すなわち、本発明は、エチレングリコールを主溶媒とし、有機カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、以下の化学式で示されるフェナントレンキノンとを溶解し、電解液全体に対する前記フェナントレンキノンの溶解量が0.1〜10.0wt%であることを特徴とする電解コンデンサの駆動用電解液である。
【0006】
【化2】

Figure 0004214008
【0008】
有機カルボン酸としては、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を例示することができる。
【0009】
また、有機カルボン酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等の四級アンモニウム塩等を例示することができる。
【0010】
【発明の実施の形態】
フェナントレンキノンは電極箔表面に効率良く皮膜を形成するため、電解液の比抵抗上昇を抑制しながら、少量の添加で耐電圧を向上させることができる。平均分子量が1000を超えるポリエチレングリコールの場合、溶解性が低下し、10.0wt%の溶解が限界であったが、フェナントレンキノンはエチレングリコールに対する溶解性が高く、容易に電解液に溶解する。また、熱に対しても分解しにくく、高温での製品の特性安定化を図ることができる。
【0011】
【実施例】
以下、本発明の実施例を具体的に説明する。表1〜3の組成で電解液を調合し、30℃における比抵抗および85℃における火花発生電圧(電解液の耐電圧)を測定した。
【0012】
【表1】
Figure 0004214008
【0013】
【表2】
Figure 0004214008
【0014】
【表3】
Figure 0004214008
【0015】
まず、有機カルボン酸を1,6−デカンジカルボン酸とした場合の実施例1〜6と従来例1〜5を比較した場合について説明する。
ポリエチレングリコールを1.0wt%溶解した従来例2と、ポリビニルアルコールを1.0wt%溶解した従来例5と、9,10−フェナントレンキノンを1.0wt%溶解した実施例3とを比較すると、比抵抗は同等ながら火花発生電圧を向上することができた。さらに、これらを増量し、ポリエチレングリコールを10.0wt%溶解した従来例3と、9,10−フェナントレンキノンを10.0wt%溶解した実施例5とを比較すると、実施例5では従来例3より比抵抗が140Ω・cm低く、火花発生電圧は10V高くなり、特性改善されていることが分かる。また、ポリビニルアルコールを10.0wt%加えた従来例5では溶解しなかった。
【0016】
ただし、9,10−フェナントレンキノンの電解液に対する溶解量は0.1〜10.0wt%の範囲が好ましく、0.1wt%未満では十分な効果が得られず、10.0wt%を超えると電解液の比抵抗が高くなるので、低比抵抗用途に不向きとなる。
【0017】
なお、有機カルボン酸をセバシン酸アンモニウムとした場合も、上記と同様、火花発生電圧が向上していることが分かる(実施例7〜12と従来例7とを比較)。
また、実施例2と実施例8を比較すると、上記の1,6−デカンジカルボン酸の場合より比抵抗レベルは30Ω・cm下がるが、火花発生電圧も10V低下する。よって、より低比抵抗を要求され、耐圧は若干低くてもよい場合に適している(実施例7〜12)。
【0018】
タブ端子を陽極箔および陰極箔に固着し、セパレータを介して巻回したコンデンサ素子に、従来例1〜3、5、実施例1〜6の電解液を各々含浸し、直径35.0mm、長さ40.0mm、定格電圧450V、静電容量390μFの電解コンデンサを各10個作製しエージングを行った。
これらの製品を 105℃の恒温槽中で定格電圧を2000時間印加し、tanδを測定し、表4の結果を得た。
【0019】
【表4】
Figure 0004214008
【0020】
表4より本発明の9,10−フェナントレンキノンを溶解した実施例1〜6は、製品のtanδ上昇が抑えられ、かつショートパンクが発生していないことから、高温で長時間電解液の比抵抗上昇と耐電圧の低下が抑制されていることが分かる。しかし、フェナントレンキノンを溶解しなかった従来例1は、製品のtanδ上昇が大きく、2000時間までにショートパンクが発生し、また、ポリエチレングリコールを溶解した従来例2、3、ポリビニルアルコールを溶解した従来例5では、実施例と比べてtanδ上昇が大きかった。
【0021】
また、上記の9,10−フェナントレンキノン以外に、1,2−フェナントレンキノン、1,4−フェナントレンキノン、3,4−フェナントレンキノンを溶解した電解液にあっても、上記と同様の効果が得られた。
【0022】
本発明は実施例に限定されるものではなく、先に例示した有機カルボン酸やその塩を単独または複数混合しても本実施例と同等の効果があり、さらに、先に例示した溶媒を、目的により混合しても本実施例と同等の効果が得られる。
【0023】
【発明の効果】
上記のとおり、本発明で使用するフェナントレンキノンは、エチレングリコールに易溶であり、フェナントレンキノンを溶解した電解液は、電解液の耐電圧の向上を図ることができ、かつ高温で長時間電解液の比抵抗上昇と耐電圧低下を抑制できるので、製品のtanδ増加およびショートパンク発生を抑えることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution).
[0002]
[Prior art]
Conventionally, electrolytes for medium- and high-voltage electrolytic capacitors use ethylene glycol as the main solvent, dissolve organic carboxylic acid or its ammonium salt, boric acid or its ammonium salt, and dissolve polyhydric alcohols such as mannitol and sorbitol. Thus, the one having improved the withstand voltage of the electrolytic solution has been used (see, for example, Patent Documents 1 and 2).
[0003]
[Patent Document 1]
Japanese Patent Publication No. 7-48460 (2nd page, table)
[Patent Document 2]
Japanese Patent Publication No. 7-63047 (Page 3, Table 1)
[0004]
[Problems to be solved by the invention]
However, synthetic polymers such as polyethylene glycol and polyvinyl alcohol having an average molecular weight of 1000 or more have a high effect of improving the withstand voltage, but have a large increase in specific resistance and solubility in an electrolytic solution containing ethylene glycol as a main solvent. There was a problem that it was very low.
In addition, the addition of a synthetic polymer such as polyvinyl alcohol has a problem that the main chain of the polymer is cut by heat and oxygen inside the product, and the initial withstand voltage cannot be maintained for a long time.
Therefore, there has been a demand for an electrolytic solution that can improve the withstand voltage while suppressing an increase in specific resistance, has high electrolyte solubility, and is stable at high temperatures.
[0005]
[Means for Solving the Problems]
The present invention has been found as a result of various studies to solve the above problems, and an electrolyte solution in which phenanthrenequinone having a high solubility in ethylene glycol is dissolved has a low specific resistance and a high withstand voltage. It has the advantage of being stable at high temperatures.
That is, the present invention is ethylene glycol as a main solvent, and an organic carboxylic acid or a salt thereof, and boric acid or its ammonium salt, were dissolved and phenanthrenequinone represented by the following chemical formula, of the phenanthrenequinone for the entire electrolyte An electrolytic solution for driving an electrolytic capacitor characterized in that the dissolution amount is 0.1 to 10.0 wt% .
[0006]
[Chemical formula 2]
Figure 0004214008
[0008]
Examples of the organic carboxylic acid include azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid and the like.
[0009]
In addition to ammonium salts, organic carboxylic acid salts include primary amine salts such as methylamine, ethylamine, and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine, and diethylamine, trimethylamine, diethylmethylamine, Examples thereof include tertiary amine salts such as ethyldimethylamine and triethylamine, and quaternary ammonium salts such as tetramethylammonium, triethylmethylammonium and tetraethylammonium.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Since phenanthrenequinone efficiently forms a film on the surface of the electrode foil, the withstand voltage can be improved with a small amount of addition while suppressing an increase in the specific resistance of the electrolytic solution. In the case of polyethylene glycol having an average molecular weight of more than 1000, the solubility is lowered and 10.0 wt% is the limit, but phenanthrenequinone is highly soluble in ethylene glycol and easily dissolves in the electrolyte. In addition, it is difficult to decompose against heat, and the product characteristics can be stabilized at high temperatures.
[0011]
【Example】
Examples of the present invention will be specifically described below. Electrolytic solutions were prepared with the compositions shown in Tables 1 to 3, and the specific resistance at 30 ° C. and the spark generation voltage at 85 ° C. (withstand voltage of the electrolytic solution) were measured.
[0012]
[Table 1]
Figure 0004214008
[0013]
[Table 2]
Figure 0004214008
[0014]
[Table 3]
Figure 0004214008
[0015]
First, the case where Examples 1-6 when the organic carboxylic acid is 1,6-decanedicarboxylic acid and the prior art examples 1-5 are compared is demonstrated.
Comparing Conventional Example 2 in which polyethylene glycol was dissolved at 1.0 wt%, Conventional Example 5 in which polyvinyl alcohol was dissolved at 1.0 wt%, and Example 3 in which 9,10-phenanthrenequinone was dissolved at 1.0 wt%, The spark generation voltage could be improved with the same resistance. Furthermore, when these amounts were increased and Conventional Example 3 in which polyethylene glycol was dissolved by 10.0 wt% and Example 5 in which 9,10-phenanthrenequinone was dissolved by 10.0 wt% were compared, Example 5 was more than Conventional Example 3 The specific resistance is 140 Ω · cm low and the spark generation voltage is 10 V higher, indicating that the characteristics have been improved. Moreover, it did not melt | dissolve in the prior art example 5 which added 10.0 wt% of polyvinyl alcohol.
[0016]
However, the amount of 9,10-phenanthrenequinone dissolved in the electrolytic solution is preferably in the range of 0.1 to 10.0 wt%, and if it is less than 0.1 wt%, a sufficient effect cannot be obtained. Since the specific resistance of a liquid becomes high, it becomes unsuitable for a low specific resistance use.
[0017]
In addition, when organic carboxylic acid is ammonium sebacate, it turns out that the spark generation voltage is improving similarly to the above (Examples 7-12 and the prior art example 7 are compared).
Further, when Example 2 and Example 8 are compared, the specific resistance level is 30 Ω · cm lower than that in the case of 1,6-decanedicarboxylic acid, but the spark generation voltage is also reduced by 10V. Therefore, it is suitable when a lower specific resistance is required and the withstand voltage may be slightly lower (Examples 7 to 12).
[0018]
Capacitor elements each having a tab terminal fixed to an anode foil and a cathode foil and wound through a separator were impregnated with the electrolytic solutions of Conventional Examples 1 to 3, 5 and Examples 1 to 6, respectively, and had a diameter of 35.0 mm and a length. Ten electrolytic capacitors each having a thickness of 40.0 mm, a rated voltage of 450 V, and a capacitance of 390 μF were produced and aged.
The rated voltage was applied to these products in a constant temperature bath at 105 ° C. for 2000 hours, tan δ was measured, and the results shown in Table 4 were obtained.
[0019]
[Table 4]
Figure 0004214008
[0020]
From Table 4, in Examples 1 to 6, in which 9,10-phenanthrenequinone of the present invention was dissolved, the increase in tan δ of the product was suppressed and no short puncture occurred, so the specific resistance of the electrolyte solution at high temperature for a long time. It can be seen that the increase and the decrease in withstand voltage are suppressed. However, in Conventional Example 1 in which phenanthrenequinone was not dissolved, the increase in tan δ of the product was large, and short puncture occurred by 2000 hours, and in Conventional Examples 2 and 3 in which polyethylene glycol was dissolved, and in the conventional example in which polyvinyl alcohol was dissolved. In Example 5, the increase in tan δ was larger than that in Example.
[0021]
In addition to the 9,10-phenanthrenequinone described above, the same effect as described above can be obtained even in an electrolyte solution in which 1,2-phenanthrenequinone, 1,4-phenanthrenequinone, and 3,4-phenanthrenequinone are dissolved. It was.
[0022]
The present invention is not limited to the examples, and even if the organic carboxylic acids and salts thereof exemplified above are used alone or in combination, the same effects as those of the examples can be obtained. Even if they are mixed depending on the purpose, the same effect as in this embodiment can be obtained.
[0023]
【The invention's effect】
As described above, the phenanthrenequinone used in the present invention is easily soluble in ethylene glycol, and the electrolytic solution in which phenanthrenequinone is dissolved can improve the withstand voltage of the electrolytic solution, and can be used at a high temperature for a long time. Therefore, the increase in tan δ of the product and the occurrence of short puncture can be suppressed.

Claims (1)

エチレングリコールを主溶媒とし、有機カルボン酸またはその塩と、ホウ酸またはそのアンモニウム塩と、以下の化学式で示されるフェナントレンキノンとを溶解し
電解液全体に対する前記フェナントレンキノンの溶解量が0.1〜10.0wt%であることを特徴とする電解コンデンサの駆動用電解液。
Figure 0004214008
Using ethylene glycol as the main solvent, dissolving an organic carboxylic acid or salt thereof, boric acid or ammonium salt thereof, and phenanthrenequinone represented by the following chemical formula ,
An electrolytic solution for driving an electrolytic capacitor, wherein the amount of the phenanthrenequinone dissolved in the entire electrolytic solution is 0.1 to 10.0 wt% .
Figure 0004214008
JP2003183875A 2003-06-27 2003-06-27 Electrolytic solution for electrolytic capacitor drive Expired - Fee Related JP4214008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183875A JP4214008B2 (en) 2003-06-27 2003-06-27 Electrolytic solution for electrolytic capacitor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183875A JP4214008B2 (en) 2003-06-27 2003-06-27 Electrolytic solution for electrolytic capacitor drive

Publications (2)

Publication Number Publication Date
JP2005019775A JP2005019775A (en) 2005-01-20
JP4214008B2 true JP4214008B2 (en) 2009-01-28

Family

ID=34183801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183875A Expired - Fee Related JP4214008B2 (en) 2003-06-27 2003-06-27 Electrolytic solution for electrolytic capacitor drive

Country Status (1)

Country Link
JP (1) JP4214008B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393527B2 (en) 2007-03-08 2010-01-06 パナソニック株式会社 Electrode active material and power storage device
JP2017220679A (en) * 2017-08-22 2017-12-14 日本ケミコン株式会社 Electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2005019775A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4214008B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4063650B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4699652B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4366170B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4384722B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4441393B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP4122243B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4271528B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4699649B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4282385B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4354244B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4570804B2 (en) Electrolytic capacitor drive electrolyte
JP4020776B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4570789B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2002280267A (en) Electrolyte for drive for electrolytic capacitor
JP4020780B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4030416B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4637648B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4653355B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4085009B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4150254B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4612241B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2006100637A (en) Electric double-layer capacitor and electrolyte therefor
JP4668749B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2002164260A (en) Electrolytic solution for driving electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees