JP4637648B2 - Electrolytic solution for electrolytic capacitor drive - Google Patents

Electrolytic solution for electrolytic capacitor drive Download PDF

Info

Publication number
JP4637648B2
JP4637648B2 JP2005156903A JP2005156903A JP4637648B2 JP 4637648 B2 JP4637648 B2 JP 4637648B2 JP 2005156903 A JP2005156903 A JP 2005156903A JP 2005156903 A JP2005156903 A JP 2005156903A JP 4637648 B2 JP4637648 B2 JP 4637648B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
water
riboflavin
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005156903A
Other languages
Japanese (ja)
Other versions
JP2006332494A (en
Inventor
邦夫 辻
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005156903A priority Critical patent/JP4637648B2/en
Publication of JP2006332494A publication Critical patent/JP2006332494A/en
Application granted granted Critical
Publication of JP4637648B2 publication Critical patent/JP4637648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)の改良に関するものである。   The present invention relates to an improvement in an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution).

近年のアルミニウム電解コンデンサの小型化に伴い、アルミニウム電解コンデンサの陽極箔にはエッチング倍率の高いものが使用されるようになり、比抵抗の低い電解液が要求されている。従来、中高圧用アルミニウム電解コンデンサの電解液には、エチレングリコールを主溶媒とし、高級二塩基酸またはそのアンモニウム塩と、ホウ酸またはそのアンモニウム塩とを配合し、さらに、電解液の耐電圧を上昇させるためにマンニトール、ソルビトール等の多価アルコールを配合した電解液が用いられている(例えば、特許文献1〜3参照)。
特公平7−48459号公報(第1−4頁) 特公平7−48460号公報(第1−3頁) 特公平7−63047号公報(第1−4頁)
Along with the recent miniaturization of aluminum electrolytic capacitors, the anode foil of aluminum electrolytic capacitors has come to be used with a high etching magnification, and an electrolytic solution having a low specific resistance is required. Conventionally, the electrolytic solution of an aluminum electrolytic capacitor for medium- and high-voltages contains ethylene glycol as a main solvent, a higher dibasic acid or an ammonium salt thereof, and boric acid or an ammonium salt thereof. In order to raise, the electrolyte solution which mix | blended polyhydric alcohols, such as mannitol and sorbitol, is used (for example, refer patent documents 1-3).
Japanese Examined Patent Publication No. 7-48459 (page 1-4) Japanese Examined Patent Publication No. 7-48460 (page 1-3) Japanese Examined Patent Publication No. 7-63047 (page 1-4)

一般に電解液を低比抵抗化するには、電解質の濃度を高くするか、水を多量に配合することになる。しかしながら、上記特許文献に開示の電解液において電解質濃度を高めると、電解質の析出や耐電圧低下が起こるという問題点がある。また、上記特許文献に開示の電解液において水を多量に配合すると、アルミニウム電解コンデンサを高温無負荷においたとき漏れ電流が著しく増大するなど、高温での信頼性が低下するという問題点がある。   In general, in order to reduce the specific resistance of the electrolytic solution, the concentration of the electrolyte is increased or a large amount of water is added. However, when the electrolyte concentration is increased in the electrolytic solution disclosed in the above-mentioned patent document, there is a problem that the electrolyte is deposited and the withstand voltage is lowered. In addition, when a large amount of water is blended in the electrolytic solution disclosed in the above-mentioned patent document, there is a problem that reliability at high temperature is lowered, for example, leakage current is remarkably increased when the aluminum electrolytic capacitor is placed under a high temperature and no load.

以上の問題点に鑑みて、本発明の課題は、低抵抗化を図った場合でも、高温での信頼性が高いアルミニウム電解コンデンサの駆動用電解液を提供することにある。   In view of the above problems, an object of the present invention is to provide an electrolytic solution for driving an aluminum electrolytic capacitor having high reliability at high temperatures even when resistance is reduced.

上記課題を解決するため、本発明では、電解液にリボフラビンを配合することにより、高温下での電極箔と電解液中の水との水和反応を抑制し、高温無負荷での信頼性に優れた電解液を提供するものである。すなわち、本発明のアルミニウム電解コンデンサの駆動用電解液では、エチレングリコールと水とを配合した溶媒に、少なくとも、高級二塩基酸およびその塩のうち少なくとも1種を配合するとともに、以下の化学式で示されるリボフラビンを配合し、リボフラビンの配合量が、電解液全体に対して0.1〜1.0wt%であり、水の配合量が、電解液全体に対して2.0〜10.0wt%であることを特徴とする。 In order to solve the above problems, in the present invention, by adding riboflavin to the electrolytic solution, the hydration reaction between the electrode foil at high temperature and the water in the electrolytic solution is suppressed, and reliability at high temperature and no load is achieved. An excellent electrolytic solution is provided. That is, in the electrolytic solution for driving an aluminum electrolytic capacitor of the present invention, at least one of a higher dibasic acid and a salt thereof is blended in a solvent blended with ethylene glycol and water, and is represented by the following chemical formula. Riboflavin is added , the amount of riboflavin is 0.1 to 1.0 wt% with respect to the entire electrolyte, and the amount of water is 2.0 to 10.0 wt% with respect to the entire electrolyte characterized in that there.

Figure 0004637648
Figure 0004637648

本発明において、前記高級二塩基酸としては、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を例示することができる。   In the present invention, examples of the higher dibasic acid include azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, 7-vinylhexadecene-1,16-dicarboxylic acid and the like. Can do.

高級二塩基酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム等の四級アンモニウム塩等を例示することができる。   As salts of higher dibasic acids, in addition to ammonium salts, primary amine salts such as methylamine, ethylamine, t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine, diethylamine, trimethylamine, diethylmethylamine, ethyl Examples thereof include tertiary amine salts such as dimethylamine and triethylamine, and quaternary ammonium salts such as tetramethylammonium and triethylmethylammonium.

本発明に係る電解液では、リボフラビンを配合したため、高温下での電極箔と電解液中の水との水和反応を抑制することができる。このため、電解液に水を配合して電解液の低比抵抗化を図ったときでも、アルミニウム電解コンデンサの高温信頼性を向上することができる。また、リボフラビンは、エチレングリコールと水との混合溶媒に容易に溶解するという利点もある。   In the electrolytic solution according to the present invention, since riboflavin is blended, the hydration reaction between the electrode foil at high temperature and the water in the electrolytic solution can be suppressed. For this reason, even when water is mixed in the electrolytic solution to reduce the specific resistance of the electrolytic solution, the high temperature reliability of the aluminum electrolytic capacitor can be improved. Riboflavin also has an advantage of being easily dissolved in a mixed solvent of ethylene glycol and water.

本発明に係るアルミニウム電解コンデンサの駆動用電解液では、エチレングリコールと水とを配合した溶媒に、高級二塩基酸およびその塩のうち少なくとも1種を溶解するとともに、リボフラビンを配合する。
ここで、リボフラビンは、アルミニウム電極箔表面に吸着し、例えば105℃という高温下においてもアルミニウム電極箔と電解液中の水との水和反応を抑制する。このため、電解液に水を配合して電解液の低比抵抗化を図ったときでも、高温無負荷時の漏れ電流増大を抑制することができる。また、溶質濃度を高める必要がないので、耐電圧が低下することもない。
In the electrolytic solution for driving an aluminum electrolytic capacitor according to the present invention, at least one of a higher dibasic acid and a salt thereof is dissolved in a solvent in which ethylene glycol and water are blended, and riboflavin is blended.
Here, riboflavin is adsorbed on the surface of the aluminum electrode foil, and suppresses the hydration reaction between the aluminum electrode foil and water in the electrolyte even at a high temperature of 105 ° C., for example. For this reason, even when water is added to the electrolytic solution to reduce the specific resistance of the electrolytic solution, an increase in leakage current at high temperature and no load can be suppressed. Further, since it is not necessary to increase the solute concentration, the withstand voltage is not lowered.

以下、本発明の実施例をより具体的に説明する。まず、表1、2に示す組成で電解液を調合し、30℃における比抵抗を測定した。その結果を表1、2に示す。   Hereinafter, examples of the present invention will be described more specifically. First, an electrolytic solution was prepared with the composition shown in Tables 1 and 2, and the specific resistance at 30 ° C. was measured. The results are shown in Tables 1 and 2.

Figure 0004637648
Figure 0004637648

Figure 0004637648
Figure 0004637648

次に、表1、2に示す電解液を用いて、定格400V−22μF(φ16×25mmL)のアルミニウム電解コンデンサを各10個作製し、tanδ、漏れ電流について初期特性測定後、高温無負荷試験(105℃、3000時間放置)を行い、表3に示す結果を得た。   Next, using the electrolytic solutions shown in Tables 1 and 2, ten aluminum electrolytic capacitors each having a rating of 400V-22 μF (φ16 × 25 mmL) were produced, and after initial characteristics measurement for tan δ and leakage current, a high-temperature no-load test ( The result shown in Table 3 was obtained.

Figure 0004637648
Figure 0004637648

表1、表2、表3より分かるように、リボフラビンを添加しなかった従来例1〜3に係る電解液を用いたアルミニウム電解コンデンサと比較して、本発明の実施例に係る電解液を用いたアルミニウム電解コンデンサでは、高温負荷試験において安定した特性を示し、特に、高温無負荷試験において漏れ電流の増大が著しく抑制されている。 As can be seen from Tables 1, 2 and 3, the electrolytic solution according to the example of the present invention was used in comparison with the aluminum electrolytic capacitors using the electrolytic solutions according to Conventional Examples 1 to 3 in which riboflavin was not added. In the conventional aluminum electrolytic capacitor, stable characteristics are exhibited in the high temperature load test, and in particular, increase in leakage current is remarkably suppressed in the high temperature no load test.

ここで、リボフラビンの配合量は、電解液全体に対して0.1〜1.0wt%の範囲が好ましく、0.1wt%未満では、漏れ電流特性の改善が十分でなく(比較例2)、1.0wt%を超えると比抵抗が高くなり、低比抵抗用途に不向きとなる(比較例7)。 Here, the blending amount of riboflavin is preferably in the range of 0.1 to 1.0 wt% with respect to the entire electrolyte solution, and if it is less than 0.1 wt%, the leakage current characteristics are not sufficiently improved ( Comparative Example 2), If it exceeds 1.0 wt%, the specific resistance will be high and unsuitable for low specific resistance applications ( Comparative Example 7).

また、水の配合量は、電解液全体に対して2.0〜10.0wt%の範囲が好ましく、2.0wt%未満(比較例8)では比抵抗が高い傾向にあり、低比抵抗用途に不向きである。これに対して、水の配合量が10.0wt%を超える(比較例9)と、高温無負荷試験において漏れ電流が増大する傾向にある。 The amount of water is preferably in the range of 2.0 to 10.0 wt% with respect to the entire electrolyte solution, and the specific resistance tends to be high at less than 2.0 wt% ( Comparative Example 8). Not suitable for. On the other hand, when the amount of water exceeds 10.0 wt% ( Comparative Example 9), the leakage current tends to increase in the high temperature no-load test.

なお、リボフラビンを溶解させた効果は、上記実施例に限定されるものではなく、先に記載した各種化合物を単独または複数溶解した電解液に用いても実施例と同等の効果があった。   The effect of dissolving riboflavin is not limited to the above examples, and the same effects as in the examples were obtained even when used in an electrolytic solution in which the various compounds described above were dissolved alone or in plural.

Claims (1)

エチレングリコールと水とを配合した溶媒に、少なくとも、高級二塩基酸およびその塩のうち少なくとも1種を配合するとともに、以下の化学式で示されるリボフラビンを配合し、
前記リボフラビンの配合量が、電解液全体に対して0.1〜1.0wt%であり、水の配合量が、電解液全体に対して2.0〜10.0wt%であることを特徴とする電解コンデンサの駆動用電解液。
Figure 0004637648
In a solvent containing ethylene glycol and water, at least one of higher dibasic acids and salts thereof is blended, and riboflavin represented by the following chemical formula is blended :
The amount of the riboflavin is 0.1 to 1.0 wt% with respect to the entire electrolyte solution, and the amount of water is 2.0 to 10.0 wt% with respect to the entire electrolyte solution , Electrolytic solution for driving electrolytic capacitors.
Figure 0004637648
JP2005156903A 2005-05-30 2005-05-30 Electrolytic solution for electrolytic capacitor drive Expired - Fee Related JP4637648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156903A JP4637648B2 (en) 2005-05-30 2005-05-30 Electrolytic solution for electrolytic capacitor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005156903A JP4637648B2 (en) 2005-05-30 2005-05-30 Electrolytic solution for electrolytic capacitor drive

Publications (2)

Publication Number Publication Date
JP2006332494A JP2006332494A (en) 2006-12-07
JP4637648B2 true JP4637648B2 (en) 2011-02-23

Family

ID=37553839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156903A Expired - Fee Related JP4637648B2 (en) 2005-05-30 2005-05-30 Electrolytic solution for electrolytic capacitor drive

Country Status (1)

Country Link
JP (1) JP4637648B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220661A (en) * 2021-12-28 2022-03-22 深圳市智胜新电子技术有限公司 High-temperature-resistant 125-DEG C aluminum electrolytic capacitor electrolyte and manufacturing process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102079A (en) * 1987-09-18 1989-04-19 F Hoffmann La Roche Ag Manufacture of spherulite riboflavin
JPH0249414A (en) * 1988-08-11 1990-02-19 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2005033148A (en) * 2003-07-14 2005-02-03 Nichicon Corp Driving electrolyte of electrolytic capacitor
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102079A (en) * 1987-09-18 1989-04-19 F Hoffmann La Roche Ag Manufacture of spherulite riboflavin
JPH0249414A (en) * 1988-08-11 1990-02-19 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2005033148A (en) * 2003-07-14 2005-02-03 Nichicon Corp Driving electrolyte of electrolytic capacitor
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor

Also Published As

Publication number Publication date
JP2006332494A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4637648B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4384722B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4020780B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4391779B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4405906B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP4030416B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4668749B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4576319B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4122243B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4271528B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4612238B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4641454B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4441393B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP4214008B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4570983B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2007142062A (en) Electrolyte for driving electrolytic capacitor
JP2006156709A (en) Electrolytic solution for driving aluminum electrolytic capacitor
JP4452174B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP2004186189A (en) Electrolyte for driving electrolytic capacitor
JP2002164260A (en) Electrolytic solution for driving electrolytic capacitor
JP4020771B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4571017B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4668766B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4150254B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4520363B2 (en) Electrolytic solution for driving electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4637648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees