JP4576319B2 - Electrolytic solution for driving electrolytic capacitors - Google Patents

Electrolytic solution for driving electrolytic capacitors Download PDF

Info

Publication number
JP4576319B2
JP4576319B2 JP2005317211A JP2005317211A JP4576319B2 JP 4576319 B2 JP4576319 B2 JP 4576319B2 JP 2005317211 A JP2005317211 A JP 2005317211A JP 2005317211 A JP2005317211 A JP 2005317211A JP 4576319 B2 JP4576319 B2 JP 4576319B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
water
driving
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005317211A
Other languages
Japanese (ja)
Other versions
JP2007123751A (en
Inventor
良夫 伊藤
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2005317211A priority Critical patent/JP4576319B2/en
Publication of JP2007123751A publication Critical patent/JP2007123751A/en
Application granted granted Critical
Publication of JP4576319B2 publication Critical patent/JP4576319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)に関するものであり、特に高温無負荷時の漏れ電流を改善した電解液に関するものである。   The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution), and more particularly to an electrolytic solution with improved leakage current at high temperature and no load.

近年の電解コンデンサの小形化に伴い、電解コンデンサの陽極箔としてエッチング倍率の高いものが使用される結果、電解液としては、比抵抗の低いものが要求されている。
一方、中高圧用アルミニウム電解コンデンサの電解液としては、従来、エチレングリコールを主溶媒とし、有機カルボン酸またはそのアンモニウム塩と、ホウ酸またはそのアンモニウム塩とを配合し、電解液の耐電圧を上昇させるためにマンニトール、ソルビトール等の多価アルコールを添加した電解液が提案されている(例えば、特許文献1〜3参照)。
特公平7−48459号公報(第1−4頁) 特公平7−48460号公報(第1−3頁) 特公平7−63047号公報(第1−4頁)
With the recent miniaturization of electrolytic capacitors, as the anode foil of the electrolytic capacitor, a material having a high etching magnification is used. As a result, an electrolyte solution having a low specific resistance is required.
On the other hand, as an electrolytic solution for medium- and high-pressure aluminum electrolytic capacitors, conventionally, ethylene glycol is used as a main solvent, and organic carboxylic acid or its ammonium salt and boric acid or its ammonium salt are blended to increase the withstand voltage of the electrolytic solution. In order to achieve this, an electrolytic solution to which a polyhydric alcohol such as mannitol or sorbitol is added has been proposed (for example, see Patent Documents 1 to 3).
Japanese Examined Patent Publication No. 7-48459 (page 1-4) Japanese Examined Patent Publication No. 7-48460 (page 1-3) Japanese Examined Patent Publication No. 7-63047 (page 1-4)

上記電解液でさらに低比抵抗化を図るには、電解質の濃度を高くするか、水を多量に混合しなければならない。しかしながら、電解質濃度を高くすると、電解質の析出や耐電圧低下が起こり、水を多量に配合すると、電解コンデンサの高温無負荷時の漏れ電流を著しく増加させるという問題がある。   In order to further reduce the specific resistance with the electrolytic solution, it is necessary to increase the concentration of the electrolyte or to mix a large amount of water. However, when the electrolyte concentration is increased, the electrolyte is deposited and the withstand voltage is lowered. When a large amount of water is added, there is a problem that the leakage current of the electrolytic capacitor at high temperature and no load is remarkably increased.

以上の問題に鑑みて、本発明の課題は、低比抵抗化を図っても耐電圧が低下せず、かつ、高温無負荷時の漏れ電流の増加を抑制することができる電解コンデンサの駆動用電解液を提供することにある。   In view of the above problems, an object of the present invention is to drive an electrolytic capacitor capable of suppressing an increase in leakage current at a high temperature and no load without reducing the withstand voltage even when the specific resistance is reduced. It is to provide an electrolytic solution.

本発明は、上記課題を解決するために種々検討した結果、達成できたものであり、ギ酸ゲラニルの特性を電解液に適用しようとするものである。すなわち、本発明に係る電解コンデンサの駆動用電解液では、エチレングリコールと水とを含む溶媒に、少なくとも、有機カルボン酸またはその塩と、以下の化学式で示されるギ酸ゲラニルとを配合したことを特徴とする。   The present invention has been accomplished as a result of various studies to solve the above-described problems, and intends to apply the characteristics of geranyl formate to an electrolytic solution. That is, the electrolytic solution for driving an electrolytic capacitor according to the present invention is characterized in that at least an organic carboxylic acid or a salt thereof and geranyl formate represented by the following chemical formula are blended in a solvent containing ethylene glycol and water. And

Figure 0004576319
Figure 0004576319

本発明において、ギ酸ゲラニルの配合量は、電解液全体に対して0.1〜1.0wt%であることが好ましい。   In this invention, it is preferable that the compounding quantity of geranyl formate is 0.1-1.0 wt% with respect to the whole electrolyte solution.

本発明において、水の配合量は、電解液全体に対して2.0〜10.0wt%であることが好ましい。   In this invention, it is preferable that the compounding quantity of water is 2.0-10.0 wt% with respect to the whole electrolyte solution.

本発明に係る電解液に用いたギ酸ゲラニルは、エチレングリコールと水との混合溶媒に容易に溶解し、かつ、低比抵抗化を図るために電解液に水を配合した場合でも高温下の安定性に優れている。このため、電解コンデンサの特性改善並びに信頼性向上を図ることができる。また、水の配合量が多くても、電解コンデンサの高温無負荷時の漏れ電流の増大を抑制することができる。さらに、水の配合により低比抵抗化を図ることができるため、電解質濃度を増大させる必要がないので、耐電圧が低下することもない。   The geranyl formate used in the electrolytic solution according to the present invention is easily dissolved in a mixed solvent of ethylene glycol and water, and is stable at high temperatures even when water is added to the electrolytic solution to reduce the specific resistance. Excellent in properties. For this reason, the characteristic improvement and reliability improvement of an electrolytic capacitor can be aimed at. Moreover, even if the amount of water is large, an increase in leakage current when the electrolytic capacitor is not loaded at high temperature can be suppressed. Furthermore, since the specific resistance can be reduced by blending water, it is not necessary to increase the electrolyte concentration, so that the withstand voltage is not lowered.

本発明に係る電解液では、エチレングリコールと水とを含む溶媒に、少なくとも、有機カルボン酸またはその塩と、上記の化学式で示されるギ酸ゲラニルとを配合したことを特徴とする。
ここで、ギ酸ゲラニルの配合量は、電解液全体に対して0.1〜1.0wt%であることが好ましい。水の配合量は、電解液全体に対して2.0〜10.0wt%であることが好ましい。また、ホウ酸あるいはそのアンモニウム塩を配合してもよい。
The electrolytic solution according to the present invention is characterized in that at least an organic carboxylic acid or a salt thereof and geranyl formate represented by the above chemical formula are blended in a solvent containing ethylene glycol and water.
Here, it is preferable that the compounding quantity of geranyl formate is 0.1-1.0 wt% with respect to the whole electrolyte solution. The blending amount of water is preferably 2.0 to 10.0 wt% with respect to the entire electrolytic solution. Moreover, you may mix | blend boric acid or its ammonium salt.

本発明において、上記の有機カルボン酸としては、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸、7−ビニルヘキサデセン−1,16−ジカルボン酸等を例示することができる。   In the present invention, examples of the organic carboxylic acid include azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid, 5,6-decanedicarboxylic acid, and 7-vinylhexadecene-1,16-dicarboxylic acid. Can do.

また、有機カルボン酸やホウ酸の塩としては、アンモニウム塩の他、メチルアミン、エチルアミン、t−ブチルアミン等の一級アミン塩、ジメチルアミン、エチルメチルアミン、ジエチルアミン等の二級アミン塩、トリメチルアミン、ジエチルメチルアミン、エチルジメチルアミン、トリエチルアミン等の三級アミン塩、テトラメチルアンモニウム、トリエチルメチルアンモニウム等の四級アンモニウム塩等を例示することができる。   In addition to ammonium salts, organic carboxylic acids and boric acid salts include primary amine salts such as methylamine, ethylamine, and t-butylamine, secondary amine salts such as dimethylamine, ethylmethylamine, and diethylamine, trimethylamine, and diethylamine. Examples thereof include tertiary amine salts such as methylamine, ethyldimethylamine and triethylamine, and quaternary ammonium salts such as tetramethylammonium and triethylmethylammonium.

本発明を適用した電解液において、ギ酸ゲラニルは、エチレングリコールと水との混合溶媒に容易に溶解し、かつ、低比抵抗化を図るために電解液に水を配合した場合でも高温下の安定性に優れている。このため、電解コンデンサの特性改善並びに信頼性向上を図ることができる。
また、水の配合量が多くても、電解コンデンサの高温無負荷時の漏れ電流の増大を抑制することができる。その理由としては、電解液中においてギ酸ゲラニルは電極箔表面に吸着するため、水の配合量を高めても、105℃の高温条件下での水と電極箔との水和反応を抑制できるからであると考えられる。
また、本発明では、水の配合により低比抵抗化を図ることができるため、電解質濃度を増大させる必要がないので、耐電圧が低下することもない。
In the electrolytic solution to which the present invention is applied, geranyl formate is easily dissolved in a mixed solvent of ethylene glycol and water, and is stable under high temperature even when water is added to the electrolytic solution in order to reduce the specific resistance. Excellent in properties. For this reason, the characteristic improvement and reliability improvement of an electrolytic capacitor can be aimed at.
Moreover, even if the amount of water is large, it is possible to suppress an increase in leakage current when the electrolytic capacitor is not loaded at a high temperature. The reason is that geranyl formate is adsorbed on the surface of the electrode foil in the electrolyte solution, so even if the amount of water is increased, the hydration reaction between water and the electrode foil under a high temperature condition of 105 ° C. can be suppressed. It is thought that.
Further, in the present invention, since the specific resistance can be reduced by blending water, it is not necessary to increase the electrolyte concentration, so that the withstand voltage is not lowered.

以下、実施例に基づいて本発明をより具体的に説明する。表1に示す組成で電解液を調合し、30℃における比抵抗を測定した。   Hereinafter, based on an Example, this invention is demonstrated more concretely. An electrolyte solution was prepared with the composition shown in Table 1, and the specific resistance at 30 ° C. was measured.

Figure 0004576319
Figure 0004576319

次に、表1に示す電解液を使用して、定格400V−22μF(φ16×25mmL)のアルミニウム電解コンデンサを各10個作製し、tanδ、漏れ電流について初期特性測定後、高温無負荷試験(105℃、1000時間放置)を行い、表2に示す結果を得た。   Next, using the electrolytic solution shown in Table 1, 10 aluminum electrolytic capacitors each having a rating of 400V-22 μF (φ16 × 25 mmL) were prepared, and after initial characteristics measurement for tan δ and leakage current, a high temperature no load test (105 The result shown in Table 2 was obtained.

Figure 0004576319
Figure 0004576319

表1、表2を参照して、まず、有機カルボン酸塩として1,6−デカンジカルボン酸アンモニウムを用いた実施例1〜15について説明する。   With reference to Tables 1 and 2, Examples 1 to 15 using ammonium 1,6-decanedicarboxylate as the organic carboxylate will be described first.

表2において、水の配合量が等しいもの、例えば、水の配合量が5wt%の従来例2と実施例2、3、5、7とを比較すると分かるように、ギ酸ゲラニルを配合した実施例2、3、5、7は、高温無負荷試験において、漏れ電流の増大が抑制され、優れた特性を示している。   In Table 2, examples in which geranyl formate was blended, as can be seen by comparing the same amount of water, for example, Conventional Example 2 in which the amount of water is 5 wt%, and Examples 2, 3, 5, and 7, 2, 3, 5, and 7 show an excellent characteristic in which an increase in leakage current is suppressed in a high-temperature no-load test.

但し、ギ酸ゲラニルの配合量が電解液全体に対して0.05wt%の場合には漏れ電流の抑制効果は十分でなく(実施例1)、また、ギ酸ゲラニルの配合量が電解液全体に対して1.0wt%を超えると比抵抗上昇が増大し(実施例9)、低比抵抗用途に不向きであることが分かる。よって、ギ酸ゲラニルの配合量は電解液全体に対して0.1〜1.0wt%の範囲が好ましい。   However, when the blending amount of geranyl formate is 0.05 wt% with respect to the entire electrolyte solution, the effect of suppressing leakage current is not sufficient (Example 1), and the blending amount of geranyl formate is based on the entire electrolyte solution. When the content exceeds 1.0 wt%, the specific resistance increase increases (Example 9), which indicates that it is not suitable for low specific resistance applications. Therefore, the blending amount of geranyl formate is preferably in the range of 0.1 to 1.0 wt% with respect to the entire electrolyte solution.

また、水分の配合量が電解液全体に対して2.0wt%未満では比抵抗が高く(実施例10〜11)、水の配合量が電解液全体に対して10.0wt%を超えるとギ酸ゲラニルの効果が低下する傾向がある(実施例15)。よって、水分の配合量は電解液全体に対して2.0〜10.0wt%が好ましい。   Further, when the amount of water blended is less than 2.0 wt% with respect to the entire electrolyte, the specific resistance is high (Examples 10 to 11), and when the amount of water exceeds 10.0 wt% with respect to the entire electrolyte, formic acid There is a tendency for the effects of geranyl to decrease (Example 15). Therefore, the blending amount of water is preferably 2.0 to 10.0 wt% with respect to the entire electrolytic solution.

また、有機カルボン酸としてセバシン酸アンモニウムを用いた場合(実施例16)、およびアゼライン酸アンモニウムを用いた場合(実施例17)も、上記と同様、ギ酸ゲラニルによる漏れ電流増大の抑制効果が見られた。   In addition, when ammonium sebacate was used as the organic carboxylic acid (Example 16) and when ammonium azelate was used (Example 17), the effect of suppressing increase in leakage current due to geranyl formate was also observed as described above. It was.

なお、ギ酸ゲラニルを配合させた効果は、上記実施例に限定されるものではなく、先に記載した有機カルボン酸やその塩を単独または複数配合した電解液に用いても同等の効果があった。
In addition, the effect of incorporating geranyl formate was not limited to the above-mentioned examples, and the same effect was obtained even when used in an electrolyte containing one or more of the organic carboxylic acids and salts thereof described above. .

Claims (3)

エチレングリコールと水とを含む溶媒に、少なくとも、有機カルボン酸またはその塩と、以下の化学式で示されるギ酸ゲラニルとを配合したことを特徴とする電解コンデンサの駆動用電解液。
Figure 0004576319
An electrolytic solution for driving an electrolytic capacitor, wherein at least an organic carboxylic acid or a salt thereof and geranyl formate represented by the following chemical formula are blended in a solvent containing ethylene glycol and water.
Figure 0004576319
請求項1において、ギ酸ゲラニルの配合量が、電解液全体に対して0.1〜1.0wt%であることを特徴とする電解コンデンサの駆動用電解液。   The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the amount of geranyl formate is 0.1 to 1.0 wt% with respect to the entire electrolytic solution. 請求項1または請求項2において、水の配合量が、電解液全体に対して2.0〜10.0wt%であることを特徴とする電解コンデンサの駆動用電解液。
3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the amount of water is 2.0 to 10.0 wt% with respect to the entire electrolytic solution.
JP2005317211A 2005-10-31 2005-10-31 Electrolytic solution for driving electrolytic capacitors Active JP4576319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317211A JP4576319B2 (en) 2005-10-31 2005-10-31 Electrolytic solution for driving electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317211A JP4576319B2 (en) 2005-10-31 2005-10-31 Electrolytic solution for driving electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2007123751A JP2007123751A (en) 2007-05-17
JP4576319B2 true JP4576319B2 (en) 2010-11-04

Family

ID=38147232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317211A Active JP4576319B2 (en) 2005-10-31 2005-10-31 Electrolytic solution for driving electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP4576319B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156810A (en) * 1985-12-28 1987-07-11 日本ケミコン株式会社 Electrolyte for electrolytic capacitor
JPH1092222A (en) * 1996-09-17 1998-04-10 Tokuyama Sekiyu Kagaku Kk Solvent for electrolytic solution
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor
JP2005116601A (en) * 2003-10-03 2005-04-28 Tomiyama Pure Chemical Industries Ltd Electrolytic capacitor, electrolyte therefor and electrochemistry element
JP2005294505A (en) * 2004-03-31 2005-10-20 Nippon Chemicon Corp Process for manufacturing solid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156810A (en) * 1985-12-28 1987-07-11 日本ケミコン株式会社 Electrolyte for electrolytic capacitor
JPH1092222A (en) * 1996-09-17 1998-04-10 Tokuyama Sekiyu Kagaku Kk Solvent for electrolytic solution
JP2005064170A (en) * 2003-08-11 2005-03-10 Nichicon Corp Driving electrolyte of electrolytic capacitor
JP2005116601A (en) * 2003-10-03 2005-04-28 Tomiyama Pure Chemical Industries Ltd Electrolytic capacitor, electrolyte therefor and electrochemistry element
JP2005294505A (en) * 2004-03-31 2005-10-20 Nippon Chemicon Corp Process for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2007123751A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4576319B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4384722B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4405906B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP4637648B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4668749B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4020780B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4391779B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2007142062A (en) Electrolyte for driving electrolytic capacitor
JP4030416B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4122243B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4612238B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4571017B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4441393B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP2004186189A (en) Electrolyte for driving electrolytic capacitor
JP2006156706A (en) Driving electrolyte of electrolytic capacitor
JP4668766B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4641454B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2006156709A (en) Electrolytic solution for driving aluminum electrolytic capacitor
JP4214008B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2002164260A (en) Electrolytic solution for driving electrolytic capacitor
JP2006339225A (en) Electrolyte for driving electrolytic capacitor
JP4570983B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4441392B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4520363B2 (en) Electrolytic solution for driving electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4576319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250