JP2002280207A - Electromagnetic wave absorption heat conducting composition, thermal softness electromagnetic wave absorption heat-dissipating sheet and heat-dissipating method - Google Patents

Electromagnetic wave absorption heat conducting composition, thermal softness electromagnetic wave absorption heat-dissipating sheet and heat-dissipating method

Info

Publication number
JP2002280207A
JP2002280207A JP2001080870A JP2001080870A JP2002280207A JP 2002280207 A JP2002280207 A JP 2002280207A JP 2001080870 A JP2001080870 A JP 2001080870A JP 2001080870 A JP2001080870 A JP 2001080870A JP 2002280207 A JP2002280207 A JP 2002280207A
Authority
JP
Japan
Prior art keywords
heat
electromagnetic wave
wave absorbing
conductive composition
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001080870A
Other languages
Japanese (ja)
Other versions
JP3608612B2 (en
Inventor
Hironao Fujiki
弘直 藤木
Kazuhiko Tomaru
一彦 都丸
Ikuo Sakurai
郁男 櫻井
Akihisa Suzuki
章央 鈴木
Kunihiko Yoshida
邦彦 美田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001080870A priority Critical patent/JP3608612B2/en
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to US10/250,685 priority patent/US7417078B2/en
Priority to EP02705388.3A priority patent/EP1372162B1/en
Priority to CNB028050029A priority patent/CN1248244C/en
Priority to KR1020037009515A priority patent/KR100690254B1/en
Priority to TW091105333A priority patent/TWI302923B/zh
Priority to PCT/JP2002/002667 priority patent/WO2002075755A1/en
Publication of JP2002280207A publication Critical patent/JP2002280207A/en
Application granted granted Critical
Publication of JP3608612B2 publication Critical patent/JP3608612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers

Abstract

PROBLEM TO BE SOLVED: To obtain an electromagnetic wave absorption heat conducting composition which is superior in heat-dissipating performance and electromagnetic wave absorbability, and a thermal softness electromagnetic wave absorbent heat-dissipating sheet obtained by forming it into a sheet-like form. SOLUTION: An electromagnetic wave absorption heat conducting composition is a heat conducting composition for forming an electromagnetic wave absorption heat-dissipating member, in which heat generates by operation to be higher than room temperatures, and which is disposed between heat generating electronic components as an electromagnetic wave generation source and heat- dissipating parts. It is non-fluid in a state of room temperatures prior to operation of electronic parts and is converted into low viscosity, softened or melted due to heat generation, when electronic components are operated, so that at least the surface is fluidized. Thus, a gap is filled between the electronic components and the heat-dissipating parts, without substantially an opening gap.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動作することによ
って発熱し、室温より高温となり、電磁波発生源となり
得る発熱性電子部品と、熱シンク、回路基板などの熱放
散部材(放熱部品)との間に、熱伝導による電子部品の
冷却及び電磁波吸収のために配置される電磁波吸収性放
熱部材を形成するための電磁波吸収性熱伝導組成物及び
熱軟化性電磁波吸収性放熱シート、並びに放熱施工方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-generating electronic component which generates heat when operated and has a temperature higher than room temperature and can be a source of electromagnetic waves, and a heat dissipating member (heat dissipating component) such as a heat sink or a circuit board. An electromagnetic wave absorbing heat conductive composition and a heat softening electromagnetic wave absorbing heat radiating sheet for forming an electromagnetic wave absorbing heat radiating member arranged for cooling an electronic component and absorbing electromagnetic waves by heat conduction, and a heat radiation construction method About.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】テレ
ビ、ラジオ、コンピュータ、医療器具、事務機械、通信
装置等、最近の電子機器の回路設計は複雑性を増してい
る。例えば、これら及びその他の機器のためにトランジ
スタ数十万個相当分を内包する集積回路が製造されるよ
うになった。このように設計の複雑性が増している一方
で、一層小型の電子部品が製造され、ますます縮小する
デバイス面積にこれらの部品の個数を更に増大させて組
み込む能力が向上していると共に、デバイスの寸法は引
き続き小型化している。
2. Description of the Related Art The circuit design of modern electronic devices, such as televisions, radios, computers, medical instruments, office machines, and communication devices, has become increasingly complex. For example, integrated circuits containing hundreds of thousands of transistors have been manufactured for these and other devices. With this increasing design complexity, smaller electronic components are being manufactured, and the ability to incorporate more and more of these components in increasingly smaller device areas is increasing, as well as device Dimensions continue to shrink.

【0003】このため、各部品から発生する熱により故
障又は機能不全が生じることから、電子部品から発生す
る熱を効果的に放散させる方法が必要となっている。
[0003] For this reason, since a failure or malfunction occurs due to heat generated from each component, a method for effectively dissipating heat generated from electronic components is required.

【0004】一方、電子部品、特にはパーソナルコンピ
ュータ、デジタルビデオディスク、携帯電話などの電子
機器に使用されるCPU、ドライバ、ICやメモリーな
どのLSIにおいては、集積度の向上に伴い、上記発熱
においての問題が発生すると同時に、高性能化のための
高周波数への移行に伴い、電子部品同士の干渉による故
障、誤動作、機能不全、又は人体への影響が懸念される
などの有害な電磁波の発生が問題となっている。
On the other hand, in the case of electronic components, particularly LSIs such as CPUs, drivers, ICs, and memories used in electronic devices such as personal computers, digital video disks, and cellular phones, the above-described heat generation is accompanied by the improvement in the degree of integration. At the same time, the occurrence of harmful electromagnetic waves, such as failures, malfunctions, malfunctions, or effects on the human body due to interference between electronic components due to the shift to higher frequencies for higher performance Is a problem.

【0005】電子部品から発生する熱については、これ
を低減するため、多くの熱放散方法及びそれに使用する
熱放散部材、組成物が提案されている。従来、電子機器
等においては、その使用中に電子部品の温度上昇を抑え
るために、黄銅等、熱伝導率の高い金属板を用いたヒー
トシンクが使用されている。このヒートシンクは、その
電子部品が発生する熱を伝導し、その熱を外気との温度
差によって表面から放出する。
[0005] In order to reduce the heat generated from electronic components, many heat dissipating methods, heat dissipating members and compositions for use therein have been proposed. 2. Description of the Related Art Conventionally, in electronic devices and the like, a heat sink using a metal plate having high thermal conductivity such as brass has been used in order to suppress a rise in temperature of electronic components during use. The heat sink conducts heat generated by the electronic component and releases the heat from the surface due to a temperature difference from the outside air.

【0006】電子部品から発生する熱をヒートシンクに
効率よく伝えるためには、ヒートシンクを電子部品に密
着させる必要があるが、各電子部品の高さの違いや組み
付け加工による公差があるため、柔軟性を有する熱伝導
シートや、熱伝導性グリースを電子部品とヒートシンク
との間に介装させ、この熱伝導性シート又は熱伝導性グ
リースを介して電子部品からヒートシンクへの熱伝導を
実現している。上記熱伝導性シートとしては、熱伝導性
シリコーンゴム等で形成された熱伝導用シート(熱伝導
性シリコーンゴムシート)が用いられているが、これら
のシートでは界面熱抵抗に問題がある。
In order to efficiently transfer the heat generated from the electronic components to the heat sink, the heat sink must be in close contact with the electronic components. However, since there is a difference in height between the electronic components and tolerance due to the assembling process, flexibility is required. A heat conductive sheet having thermal conductivity and a heat conductive grease are interposed between the electronic component and the heat sink, and heat conduction from the electronic component to the heat sink is realized through the heat conductive sheet or the heat conductive grease. . As the heat conductive sheet, a heat conductive sheet (heat conductive silicone rubber sheet) formed of heat conductive silicone rubber or the like is used, but these sheets have a problem in interfacial heat resistance.

【0007】そこで、界面熱抵抗の低下方法として、熱
伝導性グリースや特表2000−509209号公報に
記載されているような熱軟化性シートが提案されてい
る。しかしながら、これらはいずれも放熱部材に限定さ
れ、電磁波吸収性能は持ち併せていない。
Therefore, as a method of reducing the interfacial thermal resistance, a heat conductive grease or a heat softening sheet as described in JP-T-2000-509209 has been proposed. However, these are all limited to heat dissipation members and do not have electromagnetic wave absorption performance.

【0008】一方、電子部品から発生する電磁波を遮蔽
する試みは、従来より数多くなされている。一般的には
金属、メッキ又は導電性組成物を用いたものが多いが、
これらはいずれも電磁波を反射する機能を利用したもの
である。既に有機ゴム、特には塩素化ポリエチレンを媒
体とする軟磁性粉或いはフェライトを電磁波吸収成分と
して充填したシート部材が市販されている。しかしなが
ら、これらのシートは剛直で電磁波遮蔽能力は認められ
るものの熱放散については無力であった。
On the other hand, many attempts have been made to shield electromagnetic waves generated from electronic components. Generally, metal, plating or many using a conductive composition,
These all use the function of reflecting electromagnetic waves. A sheet member filled with an organic rubber, in particular, a soft magnetic powder or a ferrite having a medium of chlorinated polyethylene as an electromagnetic wave absorbing component is already on the market. However, these sheets were rigid and had electromagnetic wave shielding ability, but were ineffective at dissipating heat.

【0009】更には、最近熱伝導と電磁波吸収能を併せ
持つ材料が提案されている。例えば特開平11−335
472号公報においては、シリコーンゲル等にMn−Z
nフェライト、Ni−Znフェライト等のフェライトを
含有させ、シート状に作製した構造物により、ノイズ抑
制効果が得られることが提案されている。しかしなが
ら、該シートは電磁波吸収性充填材を充填するため硬く
なり、また熱伝導率も低いため熱放散部材としては十分
なものではない。
Further, recently, materials having both heat conduction and electromagnetic wave absorption have been proposed. For example, JP-A-11-335
No. 472 discloses that Mn-Z
It has been proposed that a sheet-like structure containing ferrite such as n-ferrite and Ni-Zn ferrite can provide a noise suppressing effect. However, the sheet is hardened due to the filling of the electromagnetic wave absorbing filler, and has a low thermal conductivity, which is not sufficient as a heat dissipating member.

【0010】本発明は、上記問題に鑑みなされたもの
で、放熱性能に優れると共に、電磁波ノイズの発生を抑
制する電磁波吸収性に優れた電磁波吸収性熱伝導組成物
及びこれをシート状に形成した熱軟化性電磁波吸収性放
熱シート並びに放熱施工方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has an electromagnetic wave absorbing heat conductive composition having excellent heat radiation performance and excellent electromagnetic wave absorbing property for suppressing generation of electromagnetic noise, and formed into a sheet shape. It is an object of the present invention to provide a heat-softening electromagnetic wave absorbing heat radiation sheet and a heat radiation construction method.

【0011】[0011]

【課題を解決するための手段及び発明の実施の形態】本
発明は、上記目的を達成するため鋭意検討した結果、電
磁波吸収性充填材を含有し、常温では固体状で、一定の
温度範囲において熱軟化、低粘度化又は融解し、シート
を始め必要とする形状に容易に形成することが可能な未
硬化の組成物を発熱性電子部品と放熱部品との間(境
界)に用いることにより、電子部品やヒートシンクへの
装着、脱着が容易で、電子部品の動作時に発生する熱に
より軟化して界面接触熱抵抗が低減され、これにより放
熱性能が向上すると共に、電磁波ノイズの発生を抑制す
る電磁波吸収性に優れることを見出した。
Means for Solving the Problems and Embodiments of the Invention As a result of diligent studies to achieve the above object, the present invention contains an electromagnetic wave absorbing filler, is solid at ordinary temperature, and has a certain temperature range. By using an uncured composition that can be heat-softened, reduced in viscosity or melted, and easily formed into a required shape including a sheet, between a heat-generating electronic component and a heat-radiating component (boundary), Electromagnetic waves that can be easily attached to and detached from electronic components and heat sinks, are softened by the heat generated during the operation of electronic components and reduce the interfacial contact thermal resistance, thereby improving heat dissipation performance and suppressing electromagnetic noise. It was found to be excellent in absorbency.

【0012】即ち、常温では固体であって、一定の温度
範囲において熱軟化、低粘度化又は融解する成分を選択
し、この成分に電磁波吸収性能を有する充填材を充填
し、必要により更に熱伝導性充填材を充填した組成物を
発熱性電子部品と放熱部品との間(境界)に配置するこ
とにより、所望の電磁波吸収性能及び熱放散を達成し得
ることを知見し、本発明をなすに至ったものである。
That is, a component which is solid at room temperature and which is softened, reduced in viscosity or melted in a certain temperature range is selected, and a filler having electromagnetic wave absorbing performance is filled into this component, and if necessary, further heat conduction is performed. It has been found that by arranging the composition filled with the conductive filler between the heat-generating electronic component and the heat-dissipating component (boundary), it is possible to achieve desired electromagnetic wave absorption performance and heat dissipation. It has been reached.

【0013】従って、本発明は、動作することによって
発熱して室温より高い温度となり、電磁波発生源となる
発熱性電子部品と放熱部品との間に配置される電磁波吸
収性放熱部材形成用の熱伝導組成物であって、電子部品
動作以前の室温状態で非流動性であり、かつ電子部品動
作時の発熱により低粘度化、軟化又は融解して少なくと
も表面が流動化することによって上記電子部品と放熱部
品との間に実質的に空隙なく充填されることを特徴とす
る電磁波吸収性熱伝導組成物を提供する。また、本発明
は、この組成物をシート状に形成した熱軟化性電磁波吸
収性放熱シートを提供する。更に、本発明は、動作する
ことによって発熱して室温より高い温度となり、電磁波
発生源となる発熱性電子部品と放熱部品との間に上記電
磁波吸収性熱伝導組成物を配置し、上記発熱性電子部品
を動作させて発熱させることにより、上記組成物を低粘
度化、軟化又は融解して少なくともその表面を流動化さ
せると共に、上記発熱性電子部品と放熱部品との少なく
とも一方から上記組成物を押圧して上記電子部品と放熱
部品との間に実質的に空隙なく充填することを特徴とす
る電磁波吸収性熱伝導組成物の施工方法を提供する。
Therefore, according to the present invention, the heat generated by the operation is raised to a temperature higher than the room temperature, and the heat for forming the electromagnetic wave absorbing heat radiating member disposed between the heat generating electronic component serving as the electromagnetic wave generating source and the heat radiating component. A conductive composition, which is non-flowable at room temperature prior to the operation of the electronic component, and has a low viscosity, softens or melts due to heat generated during the operation of the electronic component, and at least the surface is fluidized, whereby the electronic component and Provided is an electromagnetic-wave-absorbing heat-conducting composition characterized by being filled with substantially no gap between the heat-radiating component and the heat-radiating component. The present invention also provides a heat-softening electromagnetic wave-absorbing heat radiation sheet in which the composition is formed into a sheet. Further, the present invention is characterized in that the device generates heat by operating to a temperature higher than room temperature, and arranges the electromagnetic wave absorbing heat conductive composition between a heat generating electronic component serving as an electromagnetic wave generating source and a heat radiating component; By operating the electronic component to generate heat, the composition is reduced in viscosity, softened or melted to fluidize at least the surface thereof, and the composition is formed from at least one of the exothermic electronic component and the heat radiating component. There is provided a method for applying an electromagnetic wave absorbing heat conductive composition, characterized in that it is pressed and filled substantially without gaps between the electronic component and the heat radiating component.

【0014】以下、本発明について詳細に説明する。本
発明の電磁波吸収性熱伝導組成物は、動作すること、特
に電圧を印加することによって室温より高い温度に到達
し、電磁波発生源となり得る発熱性電子部品と放熱部品
との間(境界)に配置される電磁波吸収性放熱部材とし
て使用される組成物であって、電子部品動作以前の通常
の室温状態では流動性がなく、シート状等の成型品の状
態もしくは基材等に保持することによって搬送可能な状
態に維持され、電子部品動作時の発熱により低粘度化、
軟化又は融解することによって電子部品と放熱部品との
境界に実質的に充填され、この場合、好ましくは電子部
品の発熱時に電子部品と放熱部品の少なくとも一方から
押圧が掛けられることによって、電子部品と放熱部品と
の境界に充填されるものである。
Hereinafter, the present invention will be described in detail. The electromagnetic wave-absorbing heat conductive composition of the present invention operates, in particular, reaches a temperature higher than room temperature by applying a voltage, and is located (boundary) between a heat-generating electronic component and a heat-radiating component that can be a source of electromagnetic waves. A composition used as an electromagnetic wave-absorbing heat-radiating member to be arranged, which does not have fluidity in a normal room temperature state before the operation of electronic components, and is held in a state of a molded article such as a sheet or a base material or the like. Maintained in a state where it can be transported, lowering viscosity due to heat generated during operation of electronic components,
The boundary between the electronic component and the heat radiating component is substantially filled by softening or melting, and in this case, preferably, when the electronic component generates heat, a pressure is applied from at least one of the electronic component and the heat radiating component, so that the electronic component and the heat radiating component are pressed. It is filled at the boundary with the heat radiating component.

【0015】本発明の電磁波吸収性熱伝導組成物は、有
機バインダー成分と電磁波吸収性充填材、更に熱伝導性
が要求される場合には、これらと熱伝導性充填材を含有
するものであることが好ましい。以下、これらの各成
分、及び組成物の製造方法について詳述する。
[0015] The electromagnetic wave absorbing heat conductive composition of the present invention contains an organic binder component and an electromagnetic wave absorbing filler, and when thermal conductivity is required, these components and the heat conductive filler. Is preferred. Hereinafter, the method for producing each of these components and the composition will be described in detail.

【0016】有機バインダー成分 本発明の電磁波吸収性熱伝導組成物の媒体(マトリック
ス)となり得る有機バインダー成分としては、組成物が
実質的に常温で固体であって、好ましくは40℃以上
で、発熱性電子部品の発熱による最高到達温度以下、具
体的には40〜100℃程度、特に40〜90℃程度の
温度範囲において、熱軟化、低粘度化又は融解して少な
くとも表面が流動化するものであればどのようなもので
もよく、α−オレフィン、シリコーンレジン、ワックス
や蝋等の作動時の温度範囲、好ましくは40〜100℃
に融点を有する物質(以下、これを低融点物質とい
う)、上記作動時の温度範囲に融点を持たないが、作動
時の温度で軟化又は低粘度化して流動性のあるものとな
る物質(以下、これを熱流動化物質という)、上記作動
時の温度範囲で水飴状の物質、或いは上記作動時の温度
範囲より高い温度に融点を有する又は本質的に融点を持
たない熱可塑性樹脂及び/又は熱硬化性樹脂と上記低融
点物質、熱流動化物質又は水飴状物質との混合物(組成
物全体として熱軟化する)等が挙げられ、熱可塑性樹脂
及び/又は熱硬化性樹脂と低融点物質、熱流動化物質又
は水飴状物質との混合物が好ましい。
Organic Binder Component The organic binder component which can serve as a medium (matrix) of the electromagnetic wave absorbing heat conductive composition of the present invention is a solid which is substantially solid at ordinary temperature, and preferably has a heat generation at 40 ° C. or higher. In the temperature range of not more than the highest temperature due to heat generation of the conductive electronic component, specifically, in a temperature range of about 40 to 100 ° C., particularly about 40 to 90 ° C., at least the surface is fluidized due to heat softening, low viscosity or melting. Any material may be used as long as it is used, and the temperature range during operation of α-olefin, silicone resin, wax, wax, etc., preferably 40 to 100 ° C.
A substance having a melting point (hereinafter, referred to as a low-melting point substance), which does not have a melting point in the above-mentioned operating temperature range, but becomes soft or low-viscosity at the operating temperature (hereinafter, referred to as a low-melting substance). , Which is referred to as a heat fluidizing substance), a syrupy substance in the above operating temperature range, or a thermoplastic resin having a melting point at a temperature higher than the operating temperature range or having essentially no melting point and / or A mixture of a thermosetting resin and the above-mentioned low-melting substance, a heat-fluidizing substance or a syrup-like substance (the composition softens as a whole) and the like, and a thermoplastic resin and / or a thermosetting resin and a low-melting substance, Mixtures with heat fluidizing substances or syrupy substances are preferred.

【0017】この場合、有機バインダーとしては、ポリ
オレフィン系重合体、アクリル系重合体、フッ素系重合
体、シロキサン系重合体の1種又は2種以上を含み、ま
た組成物が液体となって流出することはないが、熱軟
化、低粘度化又は融解を起こすように、低融点物質、熱
流動化物質又は水飴状物質を含むことが好ましい。な
お、難燃性が必要とされる場合には、フッ素系重合体、
シロキサン系重合体を含むことが好適である。フッ素系
重合体の場合、液状フッ素樹脂が好ましく、特にヘキサ
フルオロプロペン/フッ化ビニリデン/テトラフルオロ
エチレンの共重合体が好ましい。また、シロキサン系重
合体の場合、シリコーンレジンのような室温で固体であ
り、加熱されると軟化、低粘度化又は融解するものや、
アルキル変性シリコーンのような室温以上で融点を持つ
ものが挙げられ、シリコーンレジンを含んだものが好ま
しい。常温で非流動性を維持するためにRSiO3/2
位及び/又はSiO2単位を含んだ重合体、或いはこれ
らとR2SiO単位との共重合体(シリコーンレジ
ン)、シリコーンレジンと線状ポリシロキサン(シリコ
ーン生ゴム、シリコーンオイル)との混合物等が好適な
材料として挙げられる(Rは一価炭化水素基)。
In this case, the organic binder includes one or more of a polyolefin polymer, an acrylic polymer, a fluorine polymer, and a siloxane polymer, and the composition flows out as a liquid. However, it is preferable to include a low-melting substance, a heat-fluidizing substance, or a syrup-like substance so as to cause thermal softening, low viscosity, or melting. If flame retardancy is required, a fluoropolymer,
It is preferable to include a siloxane-based polymer. In the case of a fluoropolymer, a liquid fluororesin is preferable, and a copolymer of hexafluoropropene / vinylidene fluoride / tetrafluoroethylene is particularly preferable. In the case of a siloxane-based polymer, it is a solid at room temperature, such as silicone resin, and softens, lowers in viscosity or melts when heated,
Examples thereof include those having a melting point at room temperature or higher, such as an alkyl-modified silicone, and those containing a silicone resin are preferable. Polymers containing RSiO 3/2 units and / or SiO 2 units to maintain non-flowability at room temperature, or copolymers of these with R 2 SiO units (silicone resins), silicone resins and linear poly A suitable material is a mixture with siloxane (silicone raw rubber, silicone oil) (R is a monovalent hydrocarbon group).

【0018】上述したように、クリティカルな粘度低下
を発生させるため、組成物は比較的低重合度のオリゴマ
ーやワックス等を含有させるのが望ましい。具体的に
は、α−オレフィン、蝋、ワックス、アクリルオリゴマ
ー、シリコーンレジン、フッ素系オリゴマーなどの低融
点物質、熱流動化物質、水飴状物質が用いられる。この
場合、低融点物質、熱流動化物質は、融点もしくは軟化
点が40〜100℃の間にあるものが好ましい。
As described above, in order to cause a critical decrease in viscosity, it is desirable that the composition contains an oligomer or wax having a relatively low polymerization degree. Specifically, low-melting substances such as α-olefins, waxes, waxes, acrylic oligomers, silicone resins, and fluorine-based oligomers, heat-fluidizing substances, and syrup-like substances are used. In this case, the low melting point substance and the heat fluidizing substance preferably have a melting point or a softening point between 40 and 100 ° C.

【0019】本発明では特に上記作動温度範囲に融点を
持たないポリオレフィン系(好ましくはEP、EPD
M)重合体、アクリル系重合体、フッ素系重合体又はシ
ロキサン系重合体に、上記したようなα−オレフィン、
蝋、ワックス、シリコーンレジン等の上記作動温度範囲
に融点を持つ物質を混合したものが好ましい。
In the present invention, in particular, polyolefins (preferably EP, EPD) having no melting point in the above operating temperature range.
M) a polymer, an acrylic polymer, a fluorine-based polymer or a siloxane-based polymer;
A mixture of a substance having a melting point in the above-mentioned operating temperature range, such as wax, wax, silicone resin, or the like, is preferable.

【0020】その配合割合は、組成物が室温で固体であ
って電子部品動作時の発熱により流動化し、空隙なく充
填されるようになる範囲なら特に制限されないが、有機
バインダー成分の10〜100重量%、特に20〜80
重量%であることが好ましい。
The compounding ratio is not particularly limited as long as the composition is solid at room temperature, fluidized by the heat generated during the operation of the electronic component, and can be filled without voids. %, Especially 20 to 80
% By weight.

【0021】なお、本発明の有機バインダー成分として
は、本発明の組成物に柔軟性とタック性(電子部品又は
ヒートシンクに放熱シートを仮止めする必要性から必要
とされる)を付与するものが好適であり、単一の粘度の
重合体等を使用してもよいが、粘度の異なる2種類以上
の重合体等を混合して使用した場合には、柔軟性とタッ
ク性のバランスに優れたシートが得られるので有利とな
るため、粘度の異なる2種類以上を用いることが好まし
い。
As the organic binder component of the present invention, those which impart flexibility and tackiness to the composition of the present invention (necessary from the necessity of temporarily fixing a heat radiating sheet to an electronic component or a heat sink) are given. It is preferable that a polymer having a single viscosity or the like may be used. However, when two or more polymers having different viscosities are mixed and used, a good balance between flexibility and tackiness is obtained. Since it is advantageous since a sheet can be obtained, it is preferable to use two or more kinds having different viscosities.

【0022】上記の重合体乃至組成物は、一度熱軟化又
は融解した後に架橋することが好ましく、これによって
リワーク性を向上させることができる。即ち、一度熱軟
化することによって発熱性電子部品と放熱部品とに本組
成物が密着した後、架橋することによって低熱抵抗性を
保持したまま熱による膨張収縮に追随し、かつリワーク
が必要な際には、架橋していることによって容易に電子
部品及び放熱部品から剥がすことができるものである。
従って、かかる点から、本組成物を架橋反応による硬化
性とすることが好ましい。
The above-mentioned polymer or composition is preferably heat-softened or melted and then crosslinked, whereby the reworkability can be improved. That is, after the present composition adheres to the heat-generating electronic component and the heat-dissipating component by softening once, it follows the expansion and shrinkage due to heat while maintaining low thermal resistance by crosslinking, and when rework is required. , Which can be easily peeled off from the electronic component and the heat radiating component by being crosslinked.
Therefore, from this point, it is preferable that the present composition be curable by a crosslinking reaction.

【0023】このような目的のためには、上記重合体が
末端もしくは側鎖に硬化反応性官能基を有していること
が好ましい。このような官能基としては、通常、ポリオ
レフィン系樹脂及びアクリル系樹脂ではOH、COO
H、脂肪族不飽和基、グリシジル基、ノルボルネン基等
が挙げられる。フッ素系樹脂では、フッ化ビニリデン基
のCH基等が架橋に利用され、またシロキサン系重合体
では脂肪族不飽和基、シラノール基、アルコキシシリル
基等が架橋に利用され得る。
For such a purpose, it is preferable that the polymer has a curing reactive functional group at a terminal or a side chain. Such functional groups are usually OH, COO in polyolefin resin and acrylic resin.
H, aliphatic unsaturated groups, glycidyl groups, norbornene groups and the like. In a fluorine-based resin, a CH group or the like of a vinylidene fluoride group can be used for crosslinking, and in a siloxane-based polymer, an aliphatic unsaturated group, a silanol group, an alkoxysilyl group, or the like can be used for crosslinking.

【0024】電磁波吸収性充填材 本発明に使用される電磁波吸収性充填材としては、金属
系強磁性粉末及び酸化物系強磁性粉末から選択される少
なくとも1種を用いることが好ましく、金属系強磁性粉
末と酸化物系強磁性粉末は1種を単独で用いてもよい
し、混合して用いてもよい。
Electromagnetic Wave Absorbing Filler The electromagnetic wave absorbing filler used in the present invention is preferably at least one selected from metal-based ferromagnetic powders and oxide-based ferromagnetic powders. The magnetic powder and the oxide-based ferromagnetic powder may be used alone or as a mixture.

【0025】金属系強磁性粉末としては、鉄及び鉄を含
む合金が好ましい。強磁性の鉄合金としては、Fe−N
i系、Fe−Co系、Fe−Cr系、Fe−Si系、F
e−Al系、Fe−Cr−Si系、Fe−Cr−Al
系、Fe−Al−Si系、Fe−B−Si系、Ni−F
e系、Co−Fe−Ni−Si−B系の磁性合金等を用
いることができる。これらの金属系強磁性粉末は1種単
独で用いてもよいし、2種以上の組み合わせを用いても
よい。
As the metal-based ferromagnetic powder, iron and an alloy containing iron are preferable. As a ferromagnetic iron alloy, Fe-N
i-based, Fe-Co-based, Fe-Cr-based, Fe-Si-based, F
e-Al system, Fe-Cr-Si system, Fe-Cr-Al
System, Fe-Al-Si system, Fe-B-Si system, Ni-F
An e-based, Co-Fe-Ni-Si-B-based magnetic alloy or the like can be used. These metal-based ferromagnetic powders may be used alone or in a combination of two or more.

【0026】また、金属系磁性粉末の形状としては、扁
平状、粒子状のどちらを用いてもよいが、電磁波吸収性
能が良好なことから扁平状を用いる方が好ましい。な
お、扁平状の金属系軟磁性粉末を使用する場合には、充
填量が少なくなり易いため、粒子状の金属系軟磁性粉末
を併用してもよい。
The shape of the metallic magnetic powder may be flat or particulate, but it is preferable to use the flat shape because of its good electromagnetic wave absorption performance. When a flat metal-based soft magnetic powder is used, the filling amount tends to be small, so that a particulate metal-based soft magnetic powder may be used in combination.

【0027】この場合、扁平状粉末の大きさとしては、
平均最大長さが0.1〜350μm、特に0.5〜10
0μmであり、アスペクト比が2〜50のものが好まし
い。また、粒子状粉末の場合、平均粒径が0.1〜10
0μm、特に0.5〜50μmのものを用いることが好
ましい。
In this case, the size of the flat powder is as follows:
Average maximum length is 0.1 to 350 μm, especially 0.5 to 10
Those having a thickness of 0 μm and an aspect ratio of 2 to 50 are preferred. In the case of particulate powder, the average particle size is 0.1 to 10
It is preferable to use those having a thickness of 0 μm, particularly 0.5 to 50 μm.

【0028】酸化物系強磁性粉末としては、フェライト
が好ましい。フェライトとして具体的には、ZnFe2
4、MnFe24、MgFe24、CoFe24、N
iFe 24、CuFe24、Fe34、Cu−Zn−フ
ェライト、Ni−Zn−フェライト、Mn−Zn−フェ
ライトを基本組成とするスピネル型フェライト、Ba2
Co2Fe1222、Ba2Ni2Fe1222、Ba2Zn2
Fe1222、Ba2Mn2Fe1222、Ba2Mg2Fe12
22、Ba2Cu2Fe1222、Ba3Co2Fe2441
基本組成とするフェロクスプレーナー(Y型、Z型)型
六方晶フェライト、BaFe1219、SrFe1219
び/又はBaFe1219、SrFe1219のFe元素を
Ti、Co、Mn、Cu、Zn、Ni、Mgで置換した
ものを基本組成とするマグネプランバイト(M型)型六
方晶フェライト等を用いることができる。これらのフェ
ライトは1種単独で用いてもよいし、2種以上を組み合
わせて用いてもよい。
As the oxide-based ferromagnetic powder, ferrite
Is preferred. Specifically, as ferrite, ZnFeTwo
OFour, MnFeTwoOFour, MgFeTwoOFour, CoFeTwoOFour, N
ife TwoOFour, CuFeTwoOFour, FeThreeOFour, Cu-Zn-F
Ferrite, Ni-Zn-ferrite, Mn-Zn-ferrite
Spinel ferrite with basic composition of light, BaTwo
CoTwoFe12Otwenty two, BaTwoNiTwoFe12Otwenty two, BaTwoZnTwo
Fe12Otwenty two, BaTwoMnTwoFe12Otwenty two, BaTwoMgTwoFe12
Otwenty two, BaTwoCuTwoFe12Otwenty two, BaThreeCoTwoFetwenty fourO41To
Ferrox sprayer (Y type, Z type) type with basic composition
Hexagonal ferrite, BaFe12O19, SrFe12O19Passing
And / or BaFe12O19, SrFe12O19The Fe element
Replaced with Ti, Co, Mn, Cu, Zn, Ni, Mg
Magneplumbite (M type) type 6
For example, tetragonal ferrite can be used. These fe
Light may be used alone or in combination of two or more.
They may be used together.

【0029】また、酸化物系磁性粉末の形状としては、
扁平状、粒子状のどちらを用いてもよいが、表面積が大
きい点より扁平状を用いる方が好ましい。なお、扁平状
の酸化物系磁性粉末を使用する場合には、充填量が少な
くなり易いため、粒子状の酸化物系磁性粉末を併用して
もよい。
The shape of the oxide magnetic powder is as follows.
Either a flat shape or a particulate shape may be used, but it is preferable to use a flat shape from the viewpoint of a large surface area. When a flat oxide-based magnetic powder is used, the filling amount tends to be small, so that a particulate oxide-based magnetic powder may be used in combination.

【0030】この場合、扁平状粉末の大きさとしては、
平均最大長さが0.1〜350μm、特に0.5〜10
0μmであり、アスペクト比が2〜50のものが好まし
い。また、粒子状粉末の場合、平均粒径が0.1〜10
0μm、特に0.5〜50μmのものを用いることが好
ましい。
In this case, the size of the flat powder is as follows:
Average maximum length is 0.1 to 350 μm, especially 0.5 to 10
Those having a thickness of 0 μm and an aspect ratio of 2 to 50 are preferred. In the case of particulate powder, the average particle size is 0.1 to 10
It is preferable to use those having a thickness of 0 μm, particularly 0.5 to 50 μm.

【0031】これら電磁波吸収性充填材の配合量は、有
機バインダー成分100重量部に対して100〜300
0重量部、好ましくは150〜1600重量部であるこ
とが望ましい。電磁波吸収性充填材の配合量が少なすぎ
ると電磁波吸収性能が十分でなくなるおそれがあり、多
すぎると発熱時の熱軟化、低粘度化、融解時の流動性が
十分でなくなると共に、室温での組成物が硬くて脆くな
るためシート成形が困難となるおそれがある。
The compounding amount of these electromagnetic wave absorbing fillers is 100 to 300 parts by weight based on 100 parts by weight of the organic binder component.
0 parts by weight, preferably 150 to 1600 parts by weight. If the amount of the electromagnetic wave absorbing filler is too small, the electromagnetic wave absorbing performance may not be sufficient.If the amount is too large, heat softening at the time of heat generation, low viscosity, insufficient fluidity at the time of melting, and room temperature Since the composition is hard and brittle, sheet forming may be difficult.

【0032】熱伝導性充填材 上記媒体及び電磁波吸収性充填材の配合のみでは熱伝導
の効果が乏しく、更なる熱放散効果が求められる場合に
は、熱伝導性充填材を上記成分と併せて使用することが
できる。
Heat conductive filler The heat conduction effect is poor only by the combination of the above medium and the electromagnetic wave absorbing filler. If a further heat dissipation effect is required, the heat conductive filler is combined with the above components. Can be used.

【0033】本発明に使用される熱伝導性充填材として
は、非磁性の銅やアルミニウム等の金属、アルミナ、シ
リカ、マグネシア、ベンガラ、ベリリア、チタニア、ジ
ルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ
素、窒化硼素等の金属窒化物、人工ダイヤモンド或いは
炭化珪素等の一般に熱伝導性充填材とされる物質を用い
ることができる。これらの熱伝導性充填材は1種単独で
用いてもよいし、2種以上を組み合わせて用いてもよ
い。
Examples of the thermally conductive filler used in the present invention include non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengalah, beryllia, titania, zirconia, aluminum nitride, and nitride. Materials generally used as a thermally conductive filler, such as metal nitrides such as silicon and boron nitride, artificial diamond and silicon carbide, can be used. These heat conductive fillers may be used alone or in a combination of two or more.

【0034】これら熱伝導性充填材は、電磁波吸収性充
填材と同様、平均粒径が0.1〜100μm、特に0.
5〜50μmのものを用いることが好ましい。また、形
状としては球状が望ましく、これを1種単独で用いても
よいし、形状の異なった複数種を混合して用いてもよ
い。熱伝導性向上のためには、平均粒径の異なる粒子を
2種以上用いて細密充填に近づくような配合とすること
が推奨される。
These thermal conductive fillers have an average particle size of 0.1 to 100 μm, particularly 0.1 μm, similarly to the electromagnetic wave absorbing filler.
It is preferable to use one having a thickness of 5 to 50 μm. Further, the shape is desirably spherical, and it may be used alone or as a mixture of a plurality of different shapes. In order to improve the thermal conductivity, it is recommended to use two or more kinds of particles having different average particle diameters so as to make the composition close to close packing.

【0035】熱伝導性充填材の配合量は、有機バインダ
ー成分100重量部に対して10〜2500重量部、特
に1000〜2000重量部とすることが好ましい。熱
伝導性充填材の配合量が少なすぎると熱伝導性能が不十
分となるおそれがあり、多すぎるとシート加工性、作業
性が悪くなるおそれがある。
The amount of the thermally conductive filler is preferably 10 to 2500 parts by weight, more preferably 1000 to 2000 parts by weight, based on 100 parts by weight of the organic binder component. If the amount of the heat conductive filler is too small, the heat conductivity may be insufficient. If the amount is too large, the sheet processability and workability may be deteriorated.

【0036】その他の添加剤本発明の電磁波吸収性熱伝
導組成物は、更に任意成分として通常合成ゴムに使用さ
れる添加剤、充填材等を本発明の目的を損なわない範囲
で用いることができる。具体的には、離型剤としてシリ
コーンオイル、フッ素変性シリコーン界面活性剤など、
着色剤としてカーボンブラック、二酸化チタン、ベンガ
ラなど、難燃性付与剤としてハロゲン化合物、燐化合
物、白金触媒など、加工性向上剤として通常ゴム、プラ
スチック配合時に用いられるプロセスオイル、反応性シ
ランもしくはシロキサン、反応性チタネート触媒、反応
性アルミ触媒などを添加することができる。
Other Additives The electromagnetic wave absorbing heat conductive composition of the present invention may further contain, as optional components, additives, fillers and the like usually used in synthetic rubbers as long as the objects of the present invention are not impaired. . Specifically, silicone oil as a release agent, such as fluorine-modified silicone surfactant,
Colorants such as carbon black, titanium dioxide and red iron, flame retardants such as halogen compounds, phosphorus compounds, platinum catalysts, etc., usually rubber as a processability improver, process oils used when compounding plastics, reactive silanes or siloxanes, A reactive titanate catalyst, a reactive aluminum catalyst or the like can be added.

【0037】製造方法本発明の電磁波吸収性熱伝導組成
物の製造方法は、上記各成分を2本ロール、バンバリー
ミキサー、ドウミキサー(ニーダー)、ゲートミキサ
ー、プラネタリーミキサーなどのゴム練機を用い、場合
によっては加熱することによって均一に混合することに
より得ることができる。
Production Method The method for producing the electromagnetic wave absorbing heat conductive composition of the present invention uses a rubber kneader such as a two-roll mill, a Banbury mixer, a dough mixer (kneader), a gate mixer, and a planetary mixer. In some cases, it can be obtained by mixing uniformly by heating.

【0038】また、熱軟化性電磁波吸収性放熱シートの
製造方法としては、上記混練り後の組成物を押し出し成
形、カレンダー成形、ロール成形、プレス成形、溶剤に
溶解させた後塗工すること等により、シート状に成形し
て得ることができる。
The method for producing the heat-softening electromagnetic wave-absorbing heat-dissipating sheet includes extruding, kneading, calendering, roll-forming, press-molding the kneaded composition, dissolving in a solvent, and coating. Thereby, it can be obtained by molding into a sheet.

【0039】得られた電磁波吸収性熱伝導組成物及び熱
軟化性電磁波吸収性放熱シートの熱伝導率は0.5W/
mK以上、好ましくは1〜20W/mKであることが望
ましい。熱伝導率が0.5W/mK未満では電子部品と
ヒートシンク等の放熱部品との間の熱伝導性が低くな
り、十分な放熱性能が発揮されないおそれがある。
The thermal conductivity of the obtained electromagnetic wave absorbing heat conductive composition and heat softening electromagnetic wave absorbing heat radiation sheet was 0.5 W /
mK or more, preferably 1 to 20 W / mK. If the thermal conductivity is less than 0.5 W / mK, the thermal conductivity between the electronic component and a heat radiating component such as a heat sink will be low, and sufficient heat radiating performance may not be exhibited.

【0040】また、上記組成物及びシートの80℃にお
ける粘度は1×102〜1×105Pa・s、好ましくは
5×102〜5×104Pa・sであることが望ましい。
粘度が1×102Pa・s未満では電子部品とヒートシ
ンク等の放熱部品との間より流出するおそれがあり、1
×105Pa・sを超えると接触熱抵抗が大きくなる場
合があり、これにより電子部品とヒートシンク等の放熱
部品との間の熱伝導性が低くなり、十分な放熱性能が発
揮されない場合がある。
The viscosity of the above composition and sheet at 80 ° C. is preferably 1 × 10 2 to 1 × 10 5 Pa · s, and more preferably 5 × 10 2 to 5 × 10 4 Pa · s.
If the viscosity is less than 1 × 10 2 Pa · s, it may flow out from between the electronic component and a heat radiating component such as a heat sink.
If it exceeds × 10 5 Pa · s, the contact thermal resistance may be increased, and the thermal conductivity between the electronic component and a heat radiating component such as a heat sink may be reduced, and sufficient heat radiating performance may not be exhibited. .

【0041】更に、上記組成物及びシートの25℃にお
ける可塑度(JIS K 6200)は100〜70
0、好ましくは200〜600の範囲であることが望ま
しい。25℃における可塑度が100未満では電子部品
への装着取り扱い性が悪くなる場合があり、700を超
えるとシート加工性及び電子部品への装着取り扱い性が
悪くなる場合がある。
Further, the plasticity (JIS K 6200) at 25 ° C. of the above composition and sheet is 100 to 70.
0, and preferably in the range of 200 to 600. If the degree of plasticity at 25 ° C. is less than 100, the mountability to electronic components may be poor, and if it exceeds 700, the sheet workability and the mountability to electronic components may be poor.

【0042】このようにして得られた電磁波吸収性熱伝
導組成物及び熱軟化性シートは、電子部品やヒートシン
ク等の放熱部品への装着、脱着が容易であり、電子部品
動作時の発熱により低粘度化、軟化又は融解することで
電子部品と放熱部品との界面接触熱抵抗が低減されるこ
とから放熱性能に優れると共に、電磁波ノイズの発生を
抑制する電磁波吸収性に優れたものである。
The thus obtained electromagnetic wave absorbing heat conductive composition and heat softening sheet can be easily attached to and detached from heat radiating components such as electronic components and heat sinks. By viscous, softening or melting, the thermal resistance at the interface between the electronic component and the heat radiating component is reduced, so that the heat radiation performance is excellent and the electromagnetic wave absorbing property for suppressing the generation of electromagnetic wave noise is excellent.

【0043】この場合、上記組成物又はシートは、動作
することによって発熱して室温より高い温度となり、電
磁波発生源となる発熱性電子部品と放熱部品との間に配
置される。この際、上記組成物又はシートと電子部品と
の間は完全密着せず、微小空隙部を有するが、この電子
部品の動作による発熱により上記組成物又はシートが軟
化、低粘度化又は融解して少なくとも表面が流動化し、
上記微小空隙部を埋めて電子部品と完全密着し、上述し
たように界面接触熱抵抗が低減されるものである。な
お、この際、上記電子部品と放熱部品との少なくとも一
方から上記組成物又はシートに押圧力を加えて、より良
好な密着を確保することが好ましい。
In this case, the composition or sheet generates heat by operation to reach a temperature higher than room temperature, and is arranged between the heat-generating electronic component serving as an electromagnetic wave generation source and the heat radiation component. At this time, the composition or sheet and the electronic component do not completely adhere to each other, and have a minute gap, but the composition or sheet is softened, reduced in viscosity or melted by the heat generated by the operation of the electronic component. At least the surface is fluidized,
The micro voids are filled so as to be in close contact with the electronic component, and the interface contact thermal resistance is reduced as described above. In this case, it is preferable to apply a pressing force to the composition or sheet from at least one of the electronic component and the heat radiating component to secure better adhesion.

【0044】上記発熱性電子部品の種類は特に制限はな
いが、電圧を印加することによって電磁波を発生し、か
つ発熱するもの、例えばパーソナルコンピュータ等の発
熱性電子部品に対し、本発明の組成物又はシートが有効
である。
The type of the heat-generating electronic component is not particularly limited, and the composition of the present invention is applied to a heat-generating electronic component such as a personal computer which generates an electromagnetic wave by applying a voltage and generates heat. Or a sheet is effective.

【0045】[0045]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0046】[実施例1〜4]アクリル樹脂と電磁波吸
収性充填材とを主成分とする混合物からなる軟化点が4
0℃以上のアクリル系熱伝導性電磁波吸収性組成物をシ
ート状に形成した熱軟化性電磁波吸収性放熱シートを下
記手順により作製した。
[Examples 1 to 4] The softening point of a mixture mainly composed of an acrylic resin and an electromagnetic wave absorbing filler was 4
A heat-softening electromagnetic-wave-absorbing heat-dissipating sheet in which an acrylic heat-conductive electromagnetic-wave-absorbing composition at 0 ° C. or higher was formed in a sheet shape was produced by the following procedure.

【0047】アクリル系熱伝導性電磁波吸収性組成物の
樹脂成分としてアクリル樹脂を用い、熱軟化成分として
パラフィンワックスを使用した。その他の成分として、
電磁波吸収性充填材及び熱伝導性充填材の表面処理剤と
してカーボンファンクショナルシランを用いた。下記に
配合原料成分を示す。
An acrylic resin was used as the resin component of the acrylic heat conductive electromagnetic wave absorbing composition, and paraffin wax was used as the heat softening component. As other ingredients,
Carbon functional silane was used as a surface treatment agent for the electromagnetic wave absorbing filler and the thermally conductive filler. The following shows the ingredients of the compounding ingredients.

【0048】原料説明 1)パラフィンワックス、パラフィンワックス115
(融点47℃)、パラフィンワックス130(融点55
℃)、いずれも日本精鑞(株)製商品名 2)アクリル樹脂、SKダイン1310(不揮発分32
〜34%、残りは溶剤)、綜研化学(株)製商品名 3)粉末の表面処理剤:カーボンファンクショナルシラ
ン、KBM−3103、信越化学工業(株)製商品名 4)熱伝導性充填材:アルミナ粉末、AS30、昭和電
工(株)製商品名 5)電磁波吸収性充填材:Fe−Cr(金属系軟磁性球
状粉末)、PMIC−15、大同特殊鋼(株)製商品名 6)電磁波吸収性充填材:Fe−Cr(金属系軟磁性扁
平状粉末)、PMIC−15F、大同特殊鋼(株)製商
品名
Description of Raw Materials 1) Paraffin wax, paraffin wax 115
(Melting point 47 ° C.), paraffin wax 130 (melting point 55)
2) Acrylic resin, SK Dyne 1310 (non-volatile content 32)
3434%, the remainder is solvent), trade name of Soken Chemical Co., Ltd. 3) Powder surface treating agent: carbon functional silane, KBM-3103, trade name of Shin-Etsu Chemical Co., Ltd. 4) Thermal conductive filler : Alumina powder, AS30, trade name of Showa Denko KK 5) Electromagnetic wave absorbing filler: Fe-Cr (metal-based soft magnetic spherical powder), PMIC-15, trade name of Daido Steel Co., Ltd. 6) Electromagnetic wave Absorbent filler: Fe-Cr (metallic soft magnetic flat powder), PMIC-15F, trade name of Daido Steel Co., Ltd.

【0049】熱軟化性電磁波吸収性放熱シート作製手順
及び性能評価 表1に示す配合処方の原材料をホモジナイザー(撹拌溶
解機)に投入し、室温で1時間撹拌混合した。得られた
溶液をコンマコーターにて、離型剤を塗布したPETフ
ィルム上にコーティングした後、100℃の雰囲気で、
10分間加熱することにより、溶剤分(揮発分)を除去
し、幅300mm、厚さ0.5mmのシートを作製し
た。
Preparation procedure of heat softening electromagnetic wave absorbing heat radiation sheet
And raw materials of formulations shown in the performance evaluation in Table 1 were charged into a homogenizer (stirred dissolver), it was mixed and stirred at room temperature for 1 hour. After coating the obtained solution on a PET film coated with a release agent using a comma coater, in an atmosphere of 100 ° C.,
By heating for 10 minutes, the solvent component (volatile content) was removed, and a sheet having a width of 300 mm and a thickness of 0.5 mm was produced.

【0050】得られた熱軟化性電磁波吸収性放熱シート
を所定の形状に打ち抜き成型し、PETフィルムを剥が
してから、ノイズ減衰率、可塑度、熱伝導率、熱抵抗、
粘度、熱軟化点を下記評価方法により測定した。 1)ノイズ減衰量測定方法:図1に測定ブロック図を示
す。
The obtained heat-softening electromagnetic-wave-absorbing heat-dissipating sheet is punched and formed into a predetermined shape, the PET film is peeled off, and then the noise attenuation rate, plasticity, thermal conductivity, thermal resistance,
The viscosity and the heat softening point were measured by the following evaluation methods. 1) Noise attenuation measurement method: FIG. 1 shows a measurement block diagram.

【0051】電波暗室1内に本発明の熱軟化性電磁波吸
収性放熱シート(幅30mm、長さ30mm、厚さ0.
5mm)をCPU(動作周波数533MHz)と、Al
製ヒートシンクの間に挟み込んだPC2を設置し、更に
そのPC2より3m離れた位置に受信アンテナ3を設置
した。即ち、これはFCC準拠3m法に合致するもので
ある。なお、図1中4はディスプレイ、5はキーボード
である。次いで、PC2を起動させ、発生したノイズを
受信アンテナ3と接続したシールドルーム6内のEMI
レシーバー(スペクトラムアナライザ)7により測定し
た。なお、測定時にはPC2と接続したディスプレイ4
の電源をOFFとし、ディスプレイ4からのノイズを受
信することを防止した。 2)可塑度測定方法:JIS K 6249の可塑度試
験により測定した。 3)熱伝導率測定方法:熱伝導率測定器QTM−500
(京都電機製商品名)で測定した。 4)熱抵抗測定方法:トランジスタTO−3型形状に打
ち抜いた厚み0.5mmのサンプルを、トランジスタ2
SD923(富士電機製商品名)とヒートシンクFBA
−150−PS((株)オーエス製商品名)の間に挟ん
で圧縮加重300gf/cm2で荷重した。ヒートシン
クは恒温水槽の中に入れ、60℃で保温した。次にトラ
ンジスタに10V、3Aの電力を供給し、5分後のトラ
ンジスタ(温度T1)とヒートシンク(温度T2)に埋め
込んでいる熱電対の温度を測定し、下記式からサンプル
の熱抵抗Rs(℃/W)を算出した。Rs=(T1
2)/305)粘度測定方法:ARES粘弾性システ
ム(レオメトリック サイエンティフィック社製)で測
定した。 6)熱軟化点測定方法:JIS K 7206のビカッ
ト軟化温度試験方法にて測定した。
In the anechoic chamber 1, the heat-softening electromagnetic wave-absorbing heat radiation sheet of the present invention (width 30 mm, length 30 mm, thickness 0.3 mm).
5 mm) with a CPU (operating frequency 533 MHz) and Al
The PC 2 sandwiched between the heat sinks was installed, and the receiving antenna 3 was installed at a position 3 m away from the PC 2. That is, it conforms to the FCC-compliant 3m method. In FIG. 1, reference numeral 4 denotes a display, and 5 denotes a keyboard. Next, the PC 2 is activated, and the generated noise is transmitted to the EMI in the shield room 6 connected to the receiving antenna 3.
The measurement was performed by a receiver (spectrum analyzer) 7. At the time of measurement, the display 4 connected to the PC 2
Is turned off to prevent reception of noise from the display 4. 2) Plasticity measurement method: Measured by a plasticity test according to JIS K6249. 3) Thermal conductivity measuring method: Thermal conductivity measuring instrument QTM-500
(Kyoto Denki brand name). 4) Thermal resistance measurement method: A 0.5 mm thick sample punched into a transistor TO-3 type shape was
SD923 (trade name of Fuji Electric) and heat sink FBA
-150-PS (trade name, manufactured by OS Co., Ltd.) and a load of 300 gf / cm 2 was applied. The heat sink was placed in a constant temperature water bath and kept at 60 ° C. Next, 10 V and 3 A power is supplied to the transistor, and after 5 minutes, the temperature of the thermocouple embedded in the transistor (temperature T 1 ) and the heat sink (temperature T 2 ) is measured, and the thermal resistance Rs of the sample is calculated from the following equation. (° C./W) was calculated. Rs = (T 1
T 2 ) / 305) Viscosity measurement method: Measured with an ARES viscoelastic system (manufactured by Rheometric Scientific). 6) Measurement method of thermal softening point: Measured by a Vicat softening temperature test method of JIS K7206.

【0052】なお、シート加工性、柔軟性、タック性、
取り扱い性は、下記の基準により評価した。これらの結
果を表1に示した。評価基準 シート加工性:押し出し成形性を評価した。 柔軟性:シートを90°に曲げた場合の亀裂の発生状態
により評価した。 タック性:図2に示すようにヒートシンク11表面に設
置し、放熱シート12が下側になるように5分間空中に
放置して、剥離脱落の有無により評価した。 取り扱い性:ヒートシンクヘの装着性を手作業により行
い、評価した。 ◎:優 ○:良 △:やや良 ×:不良
In addition, sheet workability, flexibility, tackiness,
The handleability was evaluated according to the following criteria. The results are shown in Table 1. Evaluation criteria Sheet workability: Extrusion moldability was evaluated. Flexibility: Evaluated by the state of crack generation when the sheet was bent at 90 °. Tackability: As shown in FIG. 2, it was placed on the surface of the heat sink 11 and left in the air for 5 minutes so that the heat radiation sheet 12 was on the lower side, and evaluated by the presence or absence of peeling and falling off. Handleability: The attachment to the heat sink was performed manually and evaluated. ◎: Excellent ○: Good △: Somewhat good ×: Poor

【0053】[0053]

【表1】 [Table 1]

【0054】[実施例5〜8]フッ素樹脂と電磁波吸収
性充填材とを主成分とする混合物からなる軟化点が40
℃以上のフッ素樹脂系熱伝導性電磁波吸収性組成物をシ
ート状に形成した熱軟化性電磁波吸収性放熱シートを下
記手順により作製した。
[Examples 5 to 8] The softening point of a mixture containing a fluororesin and an electromagnetic wave absorbing filler as main components was 40.
A heat-softening electromagnetic-wave-absorbing heat-dissipating sheet in which a fluororesin-based heat-conductive electromagnetic-wave-absorbing composition at a temperature of not less than ° C was formed in a sheet shape was produced by the following procedure.

【0055】フッ素樹脂系熱伝導性電磁波吸収性組成物
の樹脂としては液状フッ素樹脂を用い、熱軟化成分とし
ては、ポリフッ化ビニリデン−ヘキサフルオロプロピレ
ン−テトラフルオロエチレンからなる3元系樹脂を使用
した。その他の成分として、電磁波吸収性充填材及び熱
伝導性充填材の表面処理剤として、カーボンファンクシ
ョナルシランを用いた。下記に配合原料成分を示す。
A liquid fluororesin was used as the resin of the fluororesin-based thermally conductive electromagnetic wave absorbing composition, and a ternary resin composed of polyvinylidene fluoride-hexafluoropropylene-tetrafluoroethylene was used as the heat softening component. . As other components, carbon functional silane was used as a surface treatment agent for the electromagnetic wave absorbing filler and the heat conductive filler. The following shows the ingredients of the compounding ingredients.

【0056】原料説明 1)カイナー9301(熱軟化温度80℃)、ダイキン
工業(株)製商品名 2)液状フッ素樹脂、G101、ダイキン工業(株)製
商品名 3)粉末の表面処理剤:カーボンファンクショナルシラ
ン、KBM−3103、信越化学工業(株)製商品名 4)熱伝導性充填材:アルミナ粉末、AS30、昭和電
工(株)製商品名 5)電磁波吸収性充填材:Fe−Cr(金属系軟磁性球
状粉末)、PMIC−15、大同特殊鋼(株)製商品名 6)電磁波吸収性充填材:Fe−Cr(金属系軟磁性扁
平状粉末)、PMIC−15F、大同特殊鋼(株)製商
品名
Description of Raw Materials 1) Kiner 9301 (thermal softening temperature 80 ° C.), trade name of Daikin Industries, Ltd. 2) Liquid fluororesin, G101, trade name of Daikin Industries, Ltd. 3) Surface treatment agent for powder: carbon Functional silane, KBM-3103, brand name manufactured by Shin-Etsu Chemical Co., Ltd. 4) Thermal conductive filler: alumina powder, AS30, brand name manufactured by Showa Denko KK 5) Electromagnetic wave absorbing filler: Fe-Cr ( Metallic soft magnetic spherical powder), PMIC-15, trade name of Daido Steel Co., Ltd. 6) Electromagnetic wave absorbing filler: Fe-Cr (metallic soft magnetic flat powder), PMIC-15F, Daido Special Steel ( Co., Ltd. product name

【0057】熱軟化性電磁波吸収性放熱シート作製手順
及び性能評価 表2に示す配合処方の原材料をニーダーにて撹拌混合し
た。得られたコンパウンドを押し出し機にて押出成形を
行い、幅300mm、厚さ0.5mmのシートをPET
フィルム上に作製した。
Preparation procedure of heat-softening electromagnetic wave absorbing heat radiation sheet
And the raw materials of the formulation shown in the performance evaluation table 2 were stirred and mixed by a kneader. The obtained compound is extruded with an extruder, and a sheet having a width of 300 mm and a thickness of 0.5 mm is subjected to PET.
Made on film.

【0058】得られた熱軟化性シートを所定の形状に打
ち抜き成型し、PETフィルムを剥がしてから、ノイズ
減衰率、熱伝導率、熱抵抗、粘度、熱軟化点を実施例1
と同様の方法により測定した。また、シート加工性、柔
軟性、タック性、取り扱い性を実施例1と同様に評価し
た。これらの結果を表2に示した。
The obtained heat-softening sheet was punched and formed into a predetermined shape, the PET film was peeled off, and the noise attenuation rate, heat conductivity, heat resistance, viscosity, and heat softening point were determined in Example 1.
It was measured in the same manner as in Further, sheet workability, flexibility, tackiness, and handleability were evaluated in the same manner as in Example 1. Table 2 shows the results.

【0059】[0059]

【表2】 [Table 2]

【0060】[実施例9〜18、比較例1]シリコーン
樹脂と電磁波吸収性充填材とを主成分とする混合物から
なる軟化点が40℃以上のシリコーン系熱伝導性電磁波
吸収性組成物をシート状に形成した熱軟化性電磁波吸収
性放熱シートを下記手順により作製した。
Examples 9 to 18 and Comparative Example 1 A sheet of a silicone-based thermally conductive electromagnetic wave absorbing composition having a softening point of 40 ° C. or higher, comprising a mixture containing a silicone resin and an electromagnetic wave absorbing filler as main components, was prepared. A heat-softening electromagnetic-wave-absorbing heat-dissipating sheet formed into a shape was prepared by the following procedure.

【0061】シリコーン系熱伝導性電磁波吸収性組成物
の熱軟化成分としては、CH3SiO3/2、(CH32
iO、C65SiO3/2、(C65)(CH3)SiO、
(C652SiOの構造単位を組み合わせてできる共
重合体であるメチルフェニルシリコーンレジンを使用し
た。マトリックス成分としては、粘度の異なる2種類の
ビニル基含有ジメチルポリシロキサンを使用した。その
他の成分として、下記一般式(1)で示されるケイ素原
子結合アルコキシ基を含有するオルガノポリシロキサン
を電磁波吸収性充填材及び熱伝導性充填材の表面処理剤
として添加した。
As the heat softening component of the silicone-based heat conductive electromagnetic wave absorbing composition, CH 3 SiO 3/2 , (CH 3 ) 2 S
iO, C 6 H 5 SiO 3/2 , (C 6 H 5) (CH 3) SiO,
Methylphenyl silicone resin, which is a copolymer formed by combining (C 6 H 5 ) 2 SiO structural units, was used. Two kinds of vinyl group-containing dimethylpolysiloxanes having different viscosities were used as matrix components. As other components, an organopolysiloxane containing a silicon-bonded alkoxy group represented by the following general formula (1) was added as a surface treatment agent for the electromagnetic wave absorbing filler and the heat conductive filler.

【0062】[0062]

【化1】 (式中、R1はCH3,OHのいずれか一種を表し、R2
はSi(OCH33、Si(OC253、Si(C
32OH、Si(CH32NH2のいずれか一種を表
す。mは1以上100以下の任意の整数を表す。) また、シート装着時のライナーからの剥離性を向上する
ために、内添離型剤としてジメチルジフェニルポリシロ
キサンを使用した。下記に配合原料成分を示す。
Embedded image (In the formula, R 1 represents any one of CH 3, OH, R 2
Are Si (OCH 3 ) 3 , Si (OC 2 H 5 ) 3 , Si (C
H 3 ) 2 OH or Si (CH 3 ) 2 NH 2 . m represents an arbitrary integer of 1 or more and 100 or less. In addition, dimethyldiphenylpolysiloxane was used as an internal release agent in order to improve the releasability from the liner when the sheet was mounted. The following shows the ingredients of the compounding ingredients.

【0063】原料説明 1)熱軟化成分:メチルフェニルシリコーンレジンCH
3SiO3/2、(CH32SiO、C65SiO3/2
(C65)(CH3)SiO、(C652SiOの構造
単位を組み合わせてできる共重合体)、軟化温度が40
℃(レジンA)、60℃(レジンB)のものを合成して
使用。 2)マトリックス成分:ビニル基含有ジメチルポリシロ
キサン2種類を使用。高粘度成分:生ゴムKE−76V
BS、信越化学工業(株)製商品名 低粘度成分:30000cStビニル基含有ジメチルオ
イル、信越化学工業(株)製 3)粉末の表面処理剤:ケイ素原子結合アルコキシ基を
含有するオルガノポリシロキサン、信越化学工業(株)
製 4)内添離型剤:ジメチルジフェニルポリシロキサン、
KF−54、信越化学工業(株)製商品名 5)熱伝導性充填材:アルミナ粉末、AS30、昭和電
工(株)製商品名 6)熱伝導性充填材:窒化アルミニウム粉末、UM、東
洋アルミニウム(株)製商品名 7)熱伝導性充填材:炭化珪素粉末、GP#1000、
信濃電気精錬(株)製商品名 8)電磁波吸収性充填材:Fe−Cr(金属系軟磁性球
状粉末)、PMIC−15、大同特殊鋼(株)製商品名 9)電磁波吸収性充填材:Fe−Cr(金属系軟磁性扁
平状粉末)、PMIC−15F、大同特殊鋼(株)製商
品名 10)電磁波吸収性充填材:Mn−Znフェライト(酸
化物系軟磁性扁平状粉末)、BSF547、戸田工業
(株)製商品名 11)電磁波吸収性充填材:Fe−Ni(金属系軟磁性
球状粉末)、MHTパーマロイPC、三菱製鋼(株)製
商品名 12)電磁波吸収性充填材:Fe−Cr−Si(金属系
軟磁性球状粉末)、MHT410L−3Si、三菱製鋼
(株)製商品名 なお、リワーク性を向上させるために、発熱性電子部品
の動作による熱で、熱軟化性電磁波吸収性放熱シートの
シリコーンマトリックスを架橋させる場合(実施例1
8)には、更に、1分子中にケイ素原子に結合した水素
原子を2個以上含有したオルガノハイドロジェンポリシ
ロキサン、白金族金属系触媒、アセチレンアルコール系
反応制御剤を添加混合した。
Description of Raw Materials 1) Thermal softening component: methylphenyl silicone resin CH
3 SiO 3/2 , (CH 3 ) 2 SiO, C 6 H 5 SiO 3/2 ,
(C 6 H 5 ) (CH 3 ) SiO, a copolymer formed by combining structural units of (C 6 H 5 ) 2 SiO), having a softening temperature of 40
C. (Resin A) and 60.degree. C. (Resin B). 2) Matrix component: Two types of vinyl group-containing dimethylpolysiloxane are used. High viscosity component: raw rubber KE-76V
BS, product name manufactured by Shin-Etsu Chemical Co., Ltd. Low viscosity component: dimethyl oil containing 30000 cSt vinyl group, manufactured by Shin-Etsu Chemical Co., Ltd. 3) Surface treatment agent for powder: organopolysiloxane containing silicon-bonded alkoxy group, Shin-Etsu Chemical Industry Co., Ltd.
4) Internal release agent: dimethyldiphenylpolysiloxane,
KF-54, trade name of Shin-Etsu Chemical Co., Ltd. 5) Thermal conductive filler: alumina powder, AS30, trade name of Showa Denko KK 6) Thermal conductive filler: aluminum nitride powder, UM, Toyo Aluminum 7) Thermal conductive filler: silicon carbide powder, GP # 1000,
8) Electromagnetic wave absorbing filler: Fe-Cr (metallic soft magnetic spherical powder), PMIC-15, trade name of Daido Steel Co., Ltd. 9) Electromagnetic wave absorbing filler: Fe-Cr (metallic soft magnetic flat powder), PMIC-15F, trade name of Daido Steel Co., Ltd. 10) Electromagnetic wave absorbing filler: Mn-Zn ferrite (oxide soft magnetic flat powder), BSF547 11) Electromagnetic wave absorbing filler: Fe-Ni (metallic soft magnetic spherical powder), MHT Permalloy PC, Mitsubishi Steel Corporation 12) Electromagnetic wave absorbing filler: Fe -Cr-Si (metal-based soft magnetic spherical powder), MHT410L-3Si, trade name of Mitsubishi Steel Corporation In order to improve reworkability, heat-softening electromagnetic wave absorption is performed by the heat generated by the operation of the heat-generating electronic components. Heat dissipation sheet If cross-linking the recone matrix (Example 1
In 8), an organohydrogenpolysiloxane containing two or more hydrogen atoms bonded to silicon atoms in one molecule, a platinum group metal-based catalyst, and an acetylene alcohol-based reaction control agent were further added and mixed.

【0064】熱軟化性電磁波吸収性放熱シート作製手順
及び性能評価 表3,4に示す配合処方の原材料をプラネタリーミキサ
ーに投入し、120℃で2時間撹拌混合した。次に室温
で2本ロールにより脱気混合し、得られたコンパウンド
を押し出し機で幅100mm、厚さ0.5mmに押し出
し成型し、シート状に加工した。なお、シリコーンマト
リックスを架橋させる場合(実施例18)には、更に、
1分子中にケイ素原子に結合した水素原子を2個以上含
有したオルガノハイドロジェンポリシロキサン、白金族
金属系触媒及びアセチレンアルコール系反応制御剤を2
本ロールで室温添加した後、押し出し機で幅100m
m、厚さ0.5mmに押し出し成型し、シート状に加工
した。
Preparation procedure of heat-softening electromagnetic wave absorbing heat radiation sheet
And raw materials of formulations shown in performance evaluation Tables 3 and 4 were charged into a planetary mixer and stirred for 2 hours mixing at 120 ° C.. Next, the mixture was degassed and mixed with two rolls at room temperature, and the obtained compound was extruded into a sheet having a width of 100 mm and a thickness of 0.5 mm using an extruder. In the case where the silicone matrix is crosslinked (Example 18),
An organohydrogenpolysiloxane containing two or more silicon-bonded hydrogen atoms in one molecule, a platinum group metal-based catalyst and an acetylene alcohol-based reaction control agent
After adding at room temperature with this roll, width 100m with extruder
m, extruded to a thickness of 0.5 mm, and processed into a sheet.

【0065】得られた熱軟化性シートを所定の形状に打
ち抜き成型し、ノイズ減衰率、熱伝導率、熱抵抗、粘
度、熱軟化点を実施例1と同様の方法により測定した。
また、シート加工性、柔軟性、タック性、取り扱い性を
実施例1と同様に評価した。これらの結果を表3,4に
示した。
The obtained heat-softening sheet was punched and formed into a predetermined shape, and the noise attenuation rate, heat conductivity, heat resistance, viscosity and heat softening point were measured in the same manner as in Example 1.
Further, sheet workability, flexibility, tackiness, and handleability were evaluated in the same manner as in Example 1. The results are shown in Tables 3 and 4.

【0066】[0066]

【表3】 [Table 3]

【0067】[0067]

【表4】 [Table 4]

【0068】なお、リワーク性評価として、ヒートシン
クとCPU間に熱軟化性電磁波吸収性放熱シートをセッ
トし、CPUを3時間動作させた後の熱軟化性電磁波吸
収性放熱シートのヒートシンク及びCPUからの除去し
易さを評価したが、実施例18においてはシートを架橋
させたことによりリワーク性が向上し、熱軟化性電磁波
吸収性放熱シートの付着物を、乾燥した布で拭き取るこ
とで、簡単に、きれいに取り除くことができた。
As an evaluation of reworkability, a heat-softening electromagnetic wave-absorbing heat-dissipating sheet was set between the heat sink and the CPU, and after the CPU was operated for 3 hours, the heat-softening electromagnetic wave-absorbing heat-dissipating sheet was removed from the heat sink and CPU. Although the ease of removal was evaluated, in Example 18, the reworkability was improved by crosslinking the sheet, and the attached matter of the heat-softening electromagnetic wave absorbing heat-dissipating sheet was easily wiped off with a dry cloth. , Could be removed neatly.

【0069】[実施例19〜31、比較例2〜4]ポリ
オレフィンと電磁波吸収性充填材とを主成分とする混合
物からなる軟化点が40℃以上のポリオレフィン系熱伝
導性電磁波吸収性組成物をシート状に形成した熱軟化性
電磁波吸収性放熱シートを下記手順により作製した。
[Examples 19 to 31, Comparative Examples 2 to 4] A polyolefin-based thermally conductive electromagnetic wave absorbing composition having a softening point of 40 ° C. or higher, comprising a mixture containing a polyolefin and an electromagnetic wave absorbing filler as main components, was prepared. A heat-softening electromagnetic-wave-absorbing heat-dissipating sheet formed in a sheet shape was produced by the following procedure.

【0070】ポリオレフィン系熱伝導性電磁波吸収性組
成物の熱軟化成分としては、下記一般式(2) CH2=CH(CH2nCH3 (2) (nは16〜50である。)で示されるα−オレフィン
を使用した。マトリックス成分としては、下記一般式
(3)、(4)で示されるエチレン・α−オレフィン・
非共役ポリエンランダム共重合体ゴムを使用した。
The thermal softening component of the polyolefin-based thermally conductive electromagnetic wave absorbing composition is represented by the following general formula (2): CH 2 CHCH (CH 2 ) n CH 3 (2) (n is 16 to 50) Was used. As the matrix component, ethylene / α-olefin / (α-olefin) represented by the following general formulas (3) and (4)
A non-conjugated polyene random copolymer rubber was used.

【化2】 (式中、xは0〜10の整数であり、R3は水素原子又
は炭素数1〜10のアルキル基であり、R4は水素原子
又は炭素数1〜5のアルキル基である。)
Embedded image (In the formula, x is an integer of 0 to 10, R 3 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 4 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.)

【化3】 (式中、R5は水素原子又は炭素数1〜10のアルキル
基である。)また、シートに柔軟性とタック性を付与す
るために、下記一般式(5) [(CH2−CH2X−(CH2−CRH)YP (5) (ここで、RはCW2W+1で表されるアルキル基であ
り、X,Y,P,Wは整数であり、通常Xは1〜10
0、Yは5〜100、Pは5〜500、Wは1〜10で
ある。)で示される粘度の異なるポリマーを使用した。
下記に配合原料成分を示す。
Embedded image (In the formula, R 5 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.) In order to impart flexibility and tackiness to the sheet, the following general formula (5) [(CH 2 —CH 2 ) X - (CH 2 -CRH) Y] P (5) ( wherein, R is an alkyl group represented by C W H 2W + 1, X , Y, P, W is an integer, usually X Is 1 to 10
0, Y is 5 to 100, P is 5 to 500, and W is 1 to 10. The polymers having different viscosities shown in ()) were used.
The following shows the ingredients of the compounding ingredients.

【0071】原料説明 1)マトリックス成分:エチレン・α−オレフィン・非
共役ポリエンランダム共重合体 EPT−PX055(ムーニー粘度(100℃)8、エ
チレン含有量58重量%、三井化学(株)製商品名) EPT−4010(ムーニー粘度(100℃)8、エチ
レン含有量65重量%)、三井化学(株)製商品名 EPT−4021(ムーニー粘度(100℃)24、エ
チレン含有量67重量%)、三井化学(株)製商品名 EPT−X3012P(ムーニー粘度(100℃)1
5、エチレン含有量70重量%)、三井化学(株)製商
品名 2)マトリックス成分:エチレン・α−オレフィン共重
合体 ルーカントHC40(粘度350cSt(25℃))、
三井化学(株)製商品名 HC3000X(粘度25000cSt(25℃))、
三井化学(株)製商品名 HC10(粘度140cSt(25℃))、三井化学
(株)製商品名 3)熱軟化成分:α−オレフィン ダイヤレン30(n=30〜40)、三菱化学(株)製
商品名 ダイヤレン208(n=17〜25)、三菱化学(株)
製商品名 4)熱伝導性充填材:アルミナ粉末、AS30、昭和電
工(株)製商品名 5)熱伝導性充填材:窒化アルミニウム粉末、UM、東
洋アルミニウム(株)製商品名 6)熱伝導性充填材:炭化珪素粉末、GP#1000、
信濃電気精錬(株)製商品名 7)電磁波吸収性充填材:Fe−Cr(金属系軟磁性球
状粉末)、PMIC−15、大同特殊鋼(株)製商品名 8)電磁波吸収性充填材:Fe−Cr(金属系軟磁性扁
平状粉末)、PMIC−15F、大同特殊鋼(株)製商
品名 9)電磁波吸収性充填材:Mn−Znフェライト(酸化
物系軟磁性扁平状粉末)、BSF547、戸田工業
(株)製商品名 10)電磁波吸収性充填材:Fe−Ni(金属系軟磁性
球状粉末)、MHTパーマロイPC、三菱製鋼(株)製
商品名 11)電磁波吸収性充填材:Fe−Cr−Si(金属系
軟磁性球状粉末)、MHT410L−3Si、三菱製鋼
(株)製商品名 12)粉末の表面処理剤:カーボンファンクショナルシ
ラン、KBM−3103、信越化学工業(株)製商品名
Description of Raw Materials 1) Matrix component: ethylene / α-olefin / non-conjugated polyene random copolymer EPT-PX055 (Mooney viscosity (100 ° C.) 8, ethylene content 58% by weight, trade name of Mitsui Chemicals, Inc.) EPT-4010 (Mooney viscosity (100 ° C.) 8, ethylene content 65% by weight), trade name EPT-4021 manufactured by Mitsui Chemicals, Inc. (Moony viscosity (100 ° C.) 24, ethylene content 67% by weight), Mitsui Chemical name EPT-X3012P (Mooney viscosity (100 ° C) 1)
5, ethylene content 70% by weight), trade name of Mitsui Chemicals, Inc. 2) Matrix component: ethylene / α-olefin copolymer Lucant HC40 (viscosity 350 cSt (25 ° C.)),
Mitsui Chemicals Co., Ltd. product name HC3000X (viscosity 25000 cSt (25 ° C)),
Mitsui Chemicals Co., Ltd. product name HC10 (viscosity 140 cSt (25 ° C.)), Mitsui Chemicals Co., Ltd. product name 3) Thermal softening component: α-olefin dialen 30 (n = 30 to 40), Mitsubishi Chemical Corporation Product name Dialen 208 (n = 17 to 25), Mitsubishi Chemical Corporation
4) Thermal conductive filler: Alumina powder, AS30, trade name of Showa Denko KK 5) Thermal conductive filler: Aluminum nitride powder, UM, trade name of Toyo Aluminum Co., Ltd. 6) Thermal conductivity Filler: silicon carbide powder, GP # 1000,
7) Electromagnetic wave absorbing filler: Fe-Cr (metallic soft magnetic spherical powder), PMIC-15, trade name of Daido Steel Co., Ltd. 8) Electromagnetic wave absorbing filler: Fe-Cr (metallic soft magnetic flat powder), PMIC-15F, trade name of Daido Steel Co., Ltd. 9) Electromagnetic wave absorbing filler: Mn-Zn ferrite (oxide soft magnetic flat powder), BSF547 10) Electromagnetic wave absorbing filler: Fe-Ni (metallic soft magnetic spherical powder), MHT Permalloy PC, Mitsubishi Steel Corporation 11) Electromagnetic wave absorbing filler: Fe -Cr-Si (metal-based soft magnetic spherical powder), MHT410L-3Si, trade name of Mitsubishi Steel Corp. 12) Powder surface treatment agent: carbon functional silane, KBM-3103, product of Shin-Etsu Chemical Co., Ltd. Name

【0072】熱軟化性電磁波吸収性放熱シート作製手順
及び性能評価 表5,6に示す配合処方の原材料をプラネタリーミキサ
ーに投入し、100℃で2時間撹拌混合した。次に室温
で2本ロールにより脱気混合し、得られたコンパウンド
を押し出し機で幅100mm、厚さ0.5mmに押し出
し成型し、シート状に加工した。
Preparation procedure of heat-softening electromagnetic wave absorbing heat radiation sheet
And raw materials of formulations shown in performance Evaluation 5,6 were charged into a planetary mixer and stirred for 2 hours mixing at 100 ° C.. Next, the mixture was degassed and mixed with two rolls at room temperature, and the obtained compound was extruded into a sheet having a width of 100 mm and a thickness of 0.5 mm using an extruder.

【0073】得られた熱軟化性シートを所定の形状に打
ち抜き成型し、ノイズ減衰率、熱伝導率、熱抵抗、粘
度、熱軟化点を実施例1と同様の方法により測定した。
また、シート加工性、柔軟性、タック性、取り扱い性を
実施例1と同様に評価した。これらの結果を表5,6に
示した。
The obtained heat-softening sheet was punched and formed into a predetermined shape, and the noise attenuation rate, heat conductivity, heat resistance, viscosity and heat softening point were measured in the same manner as in Example 1.
Further, sheet workability, flexibility, tackiness, and handleability were evaluated in the same manner as in Example 1. The results are shown in Tables 5 and 6.

【0074】[0074]

【表5】 [Table 5]

【0075】[0075]

【表6】 [Table 6]

【0076】[比較例5〜8]比較のため市販されてい
るシリコーンゴム放熱シート(厚み0.5mm(比較例
5〜7))及びグリース(比較例8)の物性測定結果及
び取り扱い性試験結果を表7に示す。
[Comparative Examples 5 to 8] Measurement results of physical properties and handleability test results of a silicone rubber heat dissipation sheet (0.5 mm thick (Comparative Examples 5 to 7)) and grease (Comparative Example 8) which are commercially available for comparison. Are shown in Table 7.

【0077】[0077]

【表7】 [Table 7]

【0078】上記の結果より、本発明の実施例の熱軟化
性電磁波吸収性放熱シートは、熱伝導率が同程度のシリ
コーンゴム放熱シートと比較して、接触熱抵抗が無視で
きるレベルまで低下することで熱抵抗が小さくなること
から優れた放熱性能を持つことが確認され、かつ電子部
品の放熱に効果があることが確認された。また、ノイズ
減衰率が高く優れた電磁波吸収性能を持つことが確認さ
れた。
From the above results, the heat-softening electromagnetic wave-absorbing heat radiating sheet of the embodiment of the present invention has a contact heat resistance reduced to a negligible level as compared with a silicone rubber heat radiating sheet having the same thermal conductivity. As a result, the heat resistance was reduced, so that it was confirmed that the device had excellent heat dissipation performance, and that it was effective in heat dissipation of electronic components. Further, it was confirmed that the noise attenuation rate was high and the electromagnetic wave absorption performance was excellent.

【0079】[0079]

【発明の効果】本発明によれば、放熱性能に優れると共
に、電磁波吸収性に優れた電磁波吸収性熱伝導組成物及
びこれをシート状に形成した熱軟化性電磁波吸収性放熱
シートが得られる。
According to the present invention, it is possible to obtain an electromagnetic wave absorbing heat conductive composition having excellent heat radiation performance and excellent electromagnetic wave absorbing properties, and a heat softening electromagnetic wave absorbing heat radiating sheet formed from the composition.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ノイズ減衰量測定方法のブロック図である。FIG. 1 is a block diagram of a noise attenuation amount measuring method.

【図2】タック性の評価方法の説明図である。FIG. 2 is an explanatory diagram of a method of evaluating tackiness.

【符号の説明】[Explanation of symbols]

1 電波暗室 2 PC 3 受信アンテナ 4 ディスプレイ 5 キーボード 6 シールドルーム 7 EMIレシーバー(スペクトラムアナライザ) 11 ヒートシンク 12 放熱シート DESCRIPTION OF SYMBOLS 1 Anechoic chamber 2 PC 3 Receiving antenna 4 Display 5 Keyboard 6 Shield room 7 EMI receiver (spectrum analyzer) 11 Heat sink 12 Heat dissipation sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 郁男 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内 (72)発明者 鈴木 章央 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内 (72)発明者 美田 邦彦 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内 Fターム(参考) 4G002 AA04 AA06 AA11 AE02 4J002 BB021 BD121 BD161 BG031 CP031 DC006 DE116 FD206 GQ00 5E040 AA11 AB03 AB04 CA13 5E321 BB32 BB51 BB53 BB55 BB57 BB60 GG11 GH03 5F036 AA01 BB21 BD01 BD11 BD21 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Ikuo Sakurai 1-10 Hitomi, Matsuida-cho, Usui-gun, Gunma Prefecture Inside Silicon Electronics Research Laboratory, Shin-Etsu Chemical Co., Ltd. (72) Akihiro Suzuki, Matsuida-cho, Usui-gun, Gunma Prefecture 1-10 Hitomi, Shin-Etsu Chemical Co., Ltd. Silicone Electronic Materials Research Laboratory (72) Inventor Kunihiko Mita 1-10 Hitomi, Matsuida-cho, Usui-gun, Gunma Prefecture F-term in Silicon Electronic Materials Research Laboratory, Shin-Etsu Chemical Co., Ltd. Reference) 4G002 AA04 AA06 AA11 AE02 4J002 BB021 BD121 BD161 BG031 CP031 DC006 DE116 FD206 GQ00 5E040 AA11 AB03 AB04 CA13 5E321 BB32 BB51 BB53 BB55 BB57 BB60 GG11 GH03 5F036 AA11 BB21 BD01

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 動作することによって発熱して室温より
高い温度となり、電磁波発生源となる発熱性電子部品と
放熱部品との間に配置される電磁波吸収性放熱部材形成
用の熱伝導組成物であって、電子部品動作以前の室温状
態で非流動性であり、かつ電子部品動作時の発熱により
低粘度化、軟化又は融解して少なくとも表面が流動化す
ることによって上記電子部品と放熱部品との間に実質的
に空隙なく充填されることを特徴とする電磁波吸収性熱
伝導組成物。
1. A heat conductive composition for forming an electromagnetic wave absorbing heat radiation member disposed between a heat generating electronic component serving as an electromagnetic wave generation source and a heat radiation component, and generates heat by operation to become a temperature higher than room temperature. It is non-flowable at room temperature before the operation of the electronic component, and the heat generation during the operation of the electronic component lowers the viscosity, softens or melts, and at least the surface is fluidized, so that the electronic component and the heat radiating component An electromagnetic-wave-absorbing heat-conductive composition characterized by being filled with substantially no voids.
【請求項2】 発熱性電子部品が、電圧を印加すること
によって電磁波発生及び発熱するものである請求項1記
載の電磁波吸収性熱伝導組成物。
2. The electromagnetic wave absorbing heat conductive composition according to claim 1, wherein the heat generating electronic component generates and generates electromagnetic waves by applying a voltage.
【請求項3】 架橋反応による硬化性である請求項1又
は2記載の電磁波吸収性熱伝導組成物。
3. The electromagnetic wave absorbing heat conductive composition according to claim 1, which is curable by a crosslinking reaction.
【請求項4】 有機バインダー成分、及び電磁波吸収性
充填材又は電磁波吸収性充填材と熱伝導性充填材を主成
分とし、低粘度化、軟化又は融解する温度が40℃以上
で、発熱性電子部品の発熱による最高到達温度以下であ
る請求項1、2又は3記載の電磁波吸収性熱伝導組成
物。
4. An organic binder component and an electromagnetic wave absorbing filler or an electromagnetic wave absorbing filler and a heat conductive filler as main components, wherein the temperature at which viscosity is reduced, softened or melted is 40 ° C. or more, 4. The electromagnetic wave absorbing heat conductive composition according to claim 1, wherein the temperature is not higher than the highest temperature due to heat generation of the component.
【請求項5】 有機バインダー成分が、シロキサン系重
合体、アクリル系重合体、ポリオレフィン系重合体、フ
ッ素系重合体から選択される1種以上を含むことを特徴
とする請求項4記載の電磁波吸収性熱伝導組成物。
5. The electromagnetic wave absorber according to claim 4, wherein the organic binder component contains at least one selected from a siloxane polymer, an acrylic polymer, a polyolefin polymer, and a fluorine polymer. Heat conductive composition.
【請求項6】 電磁波吸収性充填材が、金属系強磁性粉
末及び酸化物系強磁性粉末から選択される少なくとも1
種であることを特徴とする請求項4又は5記載の電磁波
吸収性熱伝導組成物。
6. The at least one electromagnetic wave absorbing filler selected from a metal-based ferromagnetic powder and an oxide-based ferromagnetic powder.
The electromagnetic wave absorbing heat conductive composition according to claim 4, wherein the composition is a seed.
【請求項7】 金属系強磁性粉末が鉄及び鉄を含む合金
から選ばれる少なくとも1種であることを特徴とする請
求項6記載の電磁波吸収性熱伝導組成物。
7. The electromagnetic wave absorbing heat conductive composition according to claim 6, wherein the metal-based ferromagnetic powder is at least one selected from iron and an alloy containing iron.
【請求項8】 強磁性の鉄合金が、Fe−Ni系、Fe
−Co系、Fe−Cr系、Fe−Si系、Fe−Al
系、Fe−Cr−Si系、Fe−Cr−Al系、Fe−
Al−Si系、Fe−B−Si系、Ni−Fe系、Co
−Fe−Ni−Si−B系の磁性合金から選ばれる少な
くとも1種であることを特徴とする請求項7記載の電磁
波吸収性熱伝導組成物。
8. The ferromagnetic iron alloy is made of an Fe—Ni alloy, Fe
-Co system, Fe-Cr system, Fe-Si system, Fe-Al
System, Fe-Cr-Si system, Fe-Cr-Al system, Fe-
Al-Si system, Fe-B-Si system, Ni-Fe system, Co
The electromagnetic wave absorbing heat conductive composition according to claim 7, wherein the composition is at least one selected from the group consisting of -Fe-Ni-Si-B magnetic alloys.
【請求項9】 酸化物系強磁性粉末がフェライトから選
ばれる少なくとも1種であることを特徴とする請求項6
記載の電磁波吸収性熱伝導組成物。
9. The oxide-based ferromagnetic powder is at least one selected from ferrite.
The electromagnetic wave absorbing heat conductive composition according to the above.
【請求項10】 フェライトが、ZnFe24、MnF
24、MgFe24、CoFe24、NiFe24
CuFe24、Fe34、Cu−Zn−フェライト、N
i−Zn−フェライト、Mn−Zn−フェライトを基本
組成とするスピネル型フェライトから選ばれる少なくと
も1種であることを特徴とする請求項9記載の電磁波吸
収性熱伝導組成物。
10. The ferrite is made of ZnFe 2 O 4 , MnF.
e 2 O 4, MgFe 2 O 4, CoFe 2 O 4, NiFe 2 O 4,
CuFe 2 O 4 , Fe 3 O 4 , Cu-Zn-ferrite, N
The electromagnetic wave-absorbing heat conductive composition according to claim 9, wherein the composition is at least one selected from i-Zn-ferrite and spinel-type ferrite having a basic composition of Mn-Zn-ferrite.
【請求項11】 フェライトが、Ba2Co2Fe
1222、Ba2Ni2Fe1222、Ba2Zn2Fe
1222、Ba2Mn2Fe1222、Ba2Mg2Fe
1222、Ba2Cu2Fe1222、Ba3Co2Fe2441
を基本組成とするフェロクスプレーナー(Y型、Z型)
型六方晶フェライトから選ばれる少なくとも1種である
ことを特徴とする請求項9記載の電磁波吸収性熱伝導組
成物。
11. The ferrite is made of Ba 2 Co 2 Fe.
12 O 22 , Ba 2 Ni 2 Fe 12 O 22 , Ba 2 Zn 2 Fe
12 O 22 , Ba 2 Mn 2 Fe 12 O 22 , Ba 2 Mg 2 Fe
12 O 22 , Ba 2 Cu 2 Fe 12 O 22 , Ba 3 Co 2 Fe 24 O 41
Ferrox Sprayer (Y type, Z type)
The electromagnetic wave absorbing heat conductive composition according to claim 9, wherein the composition is at least one selected from type hexagonal ferrite.
【請求項12】 フェライトが、BaFe1219、Sr
Fe1219及び/又はBaFe1219、SrFe1219
のFe元素をTi、Co、Mn、Cu、Zn、Ni、M
gで置換したものを基本組成とするマグネプランバイト
(M型)型六方晶フェライトから選ばれる少なくとも1
種であることを特徴とする請求項9記載の電磁波吸収性
熱伝導組成物。
12. A ferrite comprising BaFe 12 O 19 , Sr
Fe 12 O 19 and / or BaFe 12 O 19 , SrFe 12 O 19
Fe element of Ti, Co, Mn, Cu, Zn, Ni, M
at least one selected from the group consisting of magnetoplumbite (M-type) hexagonal ferrites having a basic composition replaced by g
The electromagnetic wave absorbing heat conductive composition according to claim 9, which is a seed.
【請求項13】 熱伝導性充填材が、非磁性の金属、金
属酸化物、金属窒化物、及び炭化珪素から選ばれる少な
くとも1種であることを特徴とする請求項4記載の電磁
波吸収性熱伝導組成物。
13. The electromagnetic wave absorbing heat according to claim 4, wherein the heat conductive filler is at least one selected from non-magnetic metals, metal oxides, metal nitrides, and silicon carbide. Conductive composition.
【請求項14】 熱伝導率が0.5W/mK以上であ
り、80℃における粘度が1×102〜1×105Pa・
sであることを特徴とする請求項1乃至13のいずれか
1項記載の電磁波吸収性熱伝導組成物。
14. A thermal conductivity of 0.5 W / mK or more and a viscosity at 80 ° C. of 1 × 10 2 to 1 × 10 5 Pa ·
The electromagnetic wave absorbing heat conductive composition according to any one of claims 1 to 13, wherein the composition is s.
【請求項15】 請求項1乃至14のいずれか1項記載
の電磁波吸収性熱伝導組成物をシート状に形成したこと
を特徴とする熱軟化性電磁波吸収性放熱シート。
15. A heat-softening electromagnetic wave-absorbing heat-dissipating sheet, wherein the electromagnetic wave-absorbing heat-conductive composition according to claim 1 is formed in a sheet shape.
【請求項16】 動作することによって発熱して室温よ
り高い温度となり、電磁波発生源となる発熱性電子部品
と放熱部品との間に請求項1乃至14のいずれか1項記
載の電磁波吸収性熱伝導組成物を配置し、上記発熱性電
子部品を動作させて発熱させることにより、上記組成物
を低粘度化、軟化又は融解して少なくともその表面を流
動化させると共に、上記発熱性電子部品と放熱部品との
少なくとも一方から上記組成物を押圧して上記電子部品
と放熱部品との間に実質的に空隙なく充填することを特
徴とする電磁波吸収性熱伝導組成物の施工方法。
16. The electromagnetic wave-absorbing heat as claimed in claim 1, wherein the device generates heat by operating to have a temperature higher than room temperature, and is located between the heat-generating electronic component serving as an electromagnetic wave generation source and the heat-radiating component. By disposing a conductive composition and operating the heat-generating electronic component to generate heat, the composition is reduced in viscosity, softened or melted to fluidize at least its surface, and the heat-generating electronic component is radiated to the heat-generating electronic component. A method for applying an electromagnetic-wave-absorbing heat-conducting composition, characterized in that the composition is pressed from at least one of the components to fill the space between the electronic component and the heat-dissipating component with substantially no gap.
JP2001080870A 2001-03-21 2001-03-21 Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method Expired - Fee Related JP3608612B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001080870A JP3608612B2 (en) 2001-03-21 2001-03-21 Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method
EP02705388.3A EP1372162B1 (en) 2001-03-21 2002-03-20 Electromagnetic wave absorbing thermally conductive composition and method of installing it
CNB028050029A CN1248244C (en) 2001-03-21 2002-03-20 Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat disspation work
KR1020037009515A KR100690254B1 (en) 2001-03-21 2002-03-20 Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat dissipation work
US10/250,685 US7417078B2 (en) 2001-03-21 2002-03-20 Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat dissipation work
TW091105333A TWI302923B (en) 2001-03-21 2002-03-20
PCT/JP2002/002667 WO2002075755A1 (en) 2001-03-21 2002-03-20 Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat dissipation work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001080870A JP3608612B2 (en) 2001-03-21 2001-03-21 Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method

Publications (2)

Publication Number Publication Date
JP2002280207A true JP2002280207A (en) 2002-09-27
JP3608612B2 JP3608612B2 (en) 2005-01-12

Family

ID=18937074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001080870A Expired - Fee Related JP3608612B2 (en) 2001-03-21 2001-03-21 Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method

Country Status (7)

Country Link
US (1) US7417078B2 (en)
EP (1) EP1372162B1 (en)
JP (1) JP3608612B2 (en)
KR (1) KR100690254B1 (en)
CN (1) CN1248244C (en)
TW (1) TWI302923B (en)
WO (1) WO2002075755A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272599A (en) * 2004-03-24 2005-10-06 Nippon Shokubai Co Ltd Resin composition for heat dissipating material and heat dissipating material
JP2006049876A (en) * 2004-07-07 2006-02-16 Furukawa Electric Co Ltd:The Heat dissipating sheet against electromagnetic-wave interruption
JP2007035699A (en) * 2005-07-22 2007-02-08 Bridgestone Corp Electromagnetic wave absorber, curing composition therefor, and its manufacturing method
JP2007180469A (en) * 2005-12-02 2007-07-12 Dowa Holdings Co Ltd Magnetic powder for radio wave absorber, its production process and radio wave absorber
JP2007287840A (en) * 2006-04-14 2007-11-01 Nec Tokin Corp Electromagnetic interference suppressing body
JP2008066364A (en) * 2006-09-05 2008-03-21 Dowa Holdings Co Ltd Magnetic powder for radio wave absorber and its manufacturing method, and radio wave absorber
JP2008085057A (en) * 2006-09-27 2008-04-10 Nitta Ind Corp Electromagnetic wave absorbing material
JP2008133381A (en) * 2006-11-29 2008-06-12 Asahi Kasei Chemicals Corp Magnetic powder-containing resin composition
JP2008169378A (en) * 2006-12-12 2008-07-24 Asahi Kasei Chemicals Corp Resin composition
JP2009527794A (en) * 2006-02-23 2009-07-30 エルジー・ケム・リミテッド Display device, heat conductive adhesive sheet for display device, and manufacturing method thereof
JP2010093283A (en) * 2004-07-07 2010-04-22 Furukawa Electric Co Ltd:The Heat-dissipating sheet for countermeasure against disturbance by electromagnetic wave
JP2010111812A (en) * 2008-11-07 2010-05-20 Asahi Kasei E-Materials Corp Polymer composition and noise suppressing sheet including the polymer composition
JP2010285287A (en) * 2009-06-09 2010-12-24 Mate Co Ltd Solid solution system y-type hexagonal ferrite material and molded product using the same
CN102763216A (en) * 2010-02-22 2012-10-31 索尼化学&信息部件株式会社 Thermally conductive sheet
WO2013161494A1 (en) * 2012-04-26 2013-10-31 株式会社村田製作所 Magnetic metal containing resin, and coil component and electronic component, using same
JP2013234244A (en) * 2012-05-08 2013-11-21 Toyo Tire & Rubber Co Ltd Thermal conductivity-variable material
JP2013239459A (en) * 2013-08-01 2013-11-28 Jfe Chemical Corp Electromagnetic wave absorption heating element and cooking appliance for microwave oven
JP2014239236A (en) * 2014-07-11 2014-12-18 デクセリアルズ株式会社 Thermally conductive sheet
JP2016046446A (en) * 2014-08-25 2016-04-04 台湾東電化股▲ふん▼有限公司 Coil device for non-contact power supply
JP2018203857A (en) * 2017-06-02 2018-12-27 日本ゼオン株式会社 Thermally conductive sheet
KR20210152433A (en) * 2020-02-14 2021-12-15 한양대학교 에리카산학협력단 Composite material with enhanced electromagnetic wave shielding and heat dissipation characteristic including controlled agglomeration hexaferrite particle cluster
KR20220034174A (en) 2019-08-09 2022-03-17 후지필름 가부시키가이샤 Radio wave absorbing composition and radio wave absorber
WO2022163192A1 (en) * 2021-01-29 2022-08-04 積水ポリマテック株式会社 Heat-conductive sheet, method for installing same, and method for manufacturing same

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608612B2 (en) 2001-03-21 2005-01-12 信越化学工業株式会社 Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method
CN100433310C (en) * 2001-04-23 2008-11-12 信越化学工业株式会社 Heat radiating member
JP4365067B2 (en) * 2002-05-14 2009-11-18 東レ・ダウコーニング株式会社 Curable silicone composition for forming composite soft magnetic material and composite soft magnetic material
JP2004363184A (en) * 2003-06-02 2004-12-24 Grand Power Sources Inc Method of forming heat sink and its structure
KR100704063B1 (en) * 2003-07-07 2007-04-09 가부시키가이샤 고베 세이코쇼 Resin-coated metal sheet
JP2005286195A (en) * 2004-03-30 2005-10-13 Geltec Co Ltd Extrudable crosslinked grease-like electromagnetic wave absorber, container packing and encapsulating absorber, method of manufacturing cotnainer, and method for electromagnetic wave absorption utilizing them
US20070196671A1 (en) * 2004-03-30 2007-08-23 Geltec Co., Ltd. Electromagnetic wave absorber
DE102004041651B4 (en) 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological materials with magnetic and non-magnetic inorganic additives and their use
DE102004041650B4 (en) 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological materials with high switching factor and their use
DE102004041649B4 (en) 2004-08-27 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological elastomers and their use
CN101069461B (en) * 2004-12-03 2010-12-08 新田股份有限公司 Electromagnetic interference suppressor, antenna device and electronic information transmitting apparatus
CN100445342C (en) * 2004-12-28 2008-12-24 同济大学 Electromagnetic wave absorbing silicon-carbide material coated with barium ferrite film and its preparation process
CN100369861C (en) * 2005-11-17 2008-02-20 江苏大学 Spinel type ferrite fiber, and its prepn. method
DE102006050872A1 (en) * 2006-10-27 2008-04-30 Rhode & Schwarz Gmbh & Co. Kg Measuring method for output and quality of mobile radio terminal, involves selecting operating parameter to be measured and variable parameter, and measuring selected operating parameter in dependent of selected variable parameter
EP2045285A1 (en) * 2007-10-01 2009-04-08 Doo Sung Industrial Co., Ltd. Roll-type composite sheet having improved heat-releasing, electromagnetic wave-absorbing, and impact-absorbing properties, and method of manufacturing the same
CN101621714B (en) * 2008-06-30 2013-06-12 华为技术有限公司 Node and data processing system and data processing method
US9353304B2 (en) 2009-03-02 2016-05-31 Honeywell International Inc. Thermal interface material and method of making and using the same
KR101223485B1 (en) 2010-11-12 2013-01-17 한국과학기술연구원 Multifuctional thermal spreading particles and array thereof, and the fabrication method thereof
JP5553006B2 (en) * 2010-11-12 2014-07-16 信越化学工業株式会社 Thermally conductive silicone grease composition
US8634195B2 (en) 2011-09-01 2014-01-21 International Business Machines Corporation Heatsink with substance embedded to suppress electromagnetic interference
CN102924923B (en) * 2012-10-24 2014-12-03 江苏大学 High thermal conductive magnetic metal fiber/silicon rubber composite material and preparation method thereof
US9999158B2 (en) 2013-01-03 2018-06-12 Henkel IP & Holding GmbH Thermally conductive EMI suppression compositions
JP6511832B2 (en) * 2014-05-14 2019-05-15 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder core using the powder
US10027035B2 (en) 2014-09-30 2018-07-17 Skyworks Solutions, Inc. Modified Z-type hexagonal ferrite materials with enhanced resonant frequency
US10276287B2 (en) * 2014-10-24 2019-04-30 Skyworks Solutions, Inc. Incorporation of oxides into ferrite material for improved radio radiofrequency properties
US11229147B2 (en) * 2015-02-06 2022-01-18 Laird Technologies, Inc. Thermally-conductive electromagnetic interference (EMI) absorbers with silicon carbide
CN106531391A (en) * 2015-09-10 2017-03-22 介面光电股份有限公司 Soft magnetic powder composition and manufacturing method for magnetic element
EP3348124B1 (en) 2015-10-16 2021-05-26 Laird Technologies, Inc. Thermally-conductive electromagnetic interference (emi) absorbers positioned or positionable between board level shields and heat sinks
TWI588251B (en) 2015-12-08 2017-06-21 財團法人工業技術研究院 Magnetic and thermally conductive material and thermally conductive and dielectric layer
US11004583B2 (en) * 2016-01-18 2021-05-11 Rogers Corporation Magneto-dielectric material comprising hexaferrite fibers, methods of making, and uses thereof
JP6947158B2 (en) * 2016-02-25 2021-10-13 日本ゼオン株式会社 Heat conductive sheet and its manufacturing method, and heat dissipation device
KR102567381B1 (en) * 2016-02-25 2023-08-14 니폰 제온 가부시키가이샤 Thermal conduction sheet, manufacturing method thereof, and heat dissipation device
JP6900693B2 (en) * 2017-02-07 2021-07-07 日本ゼオン株式会社 Heat conduction sheet
CN107484400A (en) * 2017-03-03 2017-12-15 倪进焕 A kind of composite with high heat conduction radiating and suction wave energy and its production and use
EP3668297A4 (en) * 2017-09-29 2021-05-05 Maxell Holdings, Ltd. Electromagnetic wave absorbing composition and electromagnetic wave absorbing body
GB2585299B (en) 2018-02-23 2022-04-06 Rogers Corp Polytetrafluoroethylene hexaferrite composites
US20210023818A1 (en) * 2018-03-30 2021-01-28 Daikin Industries, Ltd. Radio wave absorbing material and radio wave absorbing sheet
US11785752B2 (en) * 2019-06-10 2023-10-10 Fuji Polymer Industries Co., Ltd. Electromagnetic wave absorbing thermally conductive composition and sheet thereof
CN113994443A (en) 2019-07-16 2022-01-28 罗杰斯公司 Magneto-dielectric material, method for producing same and use thereof
TW202116700A (en) 2019-09-24 2021-05-01 美商羅傑斯公司 Bismuth ruthenium m-type hexaferrite, a composition and composite comprising the same, and a method of making
US11783975B2 (en) 2019-10-17 2023-10-10 Rogers Corporation Nanocrystalline cobalt doped nickel ferrite particles, method of manufacture, and uses thereof
US11691892B2 (en) 2020-02-21 2023-07-04 Rogers Corporation Z-type hexaferrite having a nanocrystalline structure
KR102542423B1 (en) 2020-09-23 2023-06-12 라이르드 테크놀로지스, 아이엔씨 THERMALLY-CONDUCTIVE ElectroMAGNETIC INTERFERENCE (EMI) ABSORBERS
CN113072812A (en) * 2021-04-22 2021-07-06 西安理工大学 Cobalt ferrite magnetic nanoparticle filled strain rate sensitive composite material and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272954A (en) * 1985-05-28 1986-12-03 Fujitsu Ltd Cooling structure using magnetic fluid
JPS6290909A (en) * 1985-06-05 1987-04-25 Tdk Corp Electromagnetic shielding material
JPH05248788A (en) * 1991-03-04 1993-09-24 Hitachi Ltd Heat transfer apparatus, electronic apparatus, semiconductor device and thermal conductive compound
JPH05275554A (en) * 1992-03-25 1993-10-22 Sumitomo Special Metals Co Ltd Semiconductor device
JPH08213521A (en) * 1995-02-06 1996-08-20 Shin Etsu Polymer Co Ltd Cooling structure of semiconductor device
JPH11335472A (en) * 1998-03-23 1999-12-07 Fuji Kobunshi Kogyo Kk Electromagnetic wave-absorbing and heat conductive silicone gel-molded sheet and production thereof
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device
JP2001053486A (en) * 1999-08-16 2001-02-23 Sony Corp Electromagnetic wave absorption method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189959A (en) * 1989-01-18 1990-07-25 Mitsubishi Electric Corp Semiconductor device
US5011870A (en) * 1989-02-08 1991-04-30 Dow Corning Corporation Thermally conductive organosiloxane compositions
JPH03188698A (en) * 1989-08-19 1991-08-16 Mitsubishi Electric Corp Electronic device with heat dissipation mechanism
JP3157080B2 (en) * 1994-07-08 2001-04-16 ティーディーケイ株式会社 Manufacturing method of ferrite material
AU723258B2 (en) 1996-04-29 2000-08-24 Parker-Hannifin Corporation Conformal thermal interface material for electronic components
DE59710926D1 (en) * 1996-08-18 2003-12-04 Helmut Kahl CONDUCTIVE SEALING MATERIAL AND SEALING PROFILE
JP4015722B2 (en) * 1997-06-20 2007-11-28 東レ・ダウコーニング株式会社 Thermally conductive polymer composition
US5945217A (en) * 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
US6284363B1 (en) * 1998-03-23 2001-09-04 Fuji Polymer Industries Co., Ltd. Electromagnetic wave absorbing thermoconductive silicone gel molded sheet and method for producing the same
JP2000114440A (en) * 1998-10-07 2000-04-21 Daido Steel Co Ltd Heat radiating sheet
US6391442B1 (en) * 1999-07-08 2002-05-21 Saint-Gobain Performance Plastics Corporation Phase change thermal interface material
JP2001068312A (en) * 1999-08-26 2001-03-16 Fuji Elelctrochem Co Ltd Radio wave absorbing heat conduction sheet
JP2001118973A (en) * 1999-10-20 2001-04-27 Fuji Kobunshi Kogyo Kk Forming method of heat conductive film
JP3611761B2 (en) * 1999-11-02 2005-01-19 花王株式会社 Absorbent articles
JP3597098B2 (en) * 2000-01-21 2004-12-02 住友電気工業株式会社 Alloy fine powder, method for producing the same, molding material using the same, slurry, and electromagnetic wave shielding material
JP4623244B2 (en) 2000-04-11 2011-02-02 信越化学工業株式会社 Electromagnetic wave absorbing heat conductive silicone rubber composition
JP2002076683A (en) * 2000-08-23 2002-03-15 Nitto Shinko Kk Electromagnetic wave absorbing radiating sheet
JP3719382B2 (en) 2000-10-25 2005-11-24 信越化学工業株式会社 Electromagnetic wave absorbing silicone rubber composition
JP3608612B2 (en) 2001-03-21 2005-01-12 信越化学工業株式会社 Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272954A (en) * 1985-05-28 1986-12-03 Fujitsu Ltd Cooling structure using magnetic fluid
JPS6290909A (en) * 1985-06-05 1987-04-25 Tdk Corp Electromagnetic shielding material
JPH05248788A (en) * 1991-03-04 1993-09-24 Hitachi Ltd Heat transfer apparatus, electronic apparatus, semiconductor device and thermal conductive compound
JPH05275554A (en) * 1992-03-25 1993-10-22 Sumitomo Special Metals Co Ltd Semiconductor device
JPH08213521A (en) * 1995-02-06 1996-08-20 Shin Etsu Polymer Co Ltd Cooling structure of semiconductor device
JPH11335472A (en) * 1998-03-23 1999-12-07 Fuji Kobunshi Kogyo Kk Electromagnetic wave-absorbing and heat conductive silicone gel-molded sheet and production thereof
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device
JP2001053486A (en) * 1999-08-16 2001-02-23 Sony Corp Electromagnetic wave absorption method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272599A (en) * 2004-03-24 2005-10-06 Nippon Shokubai Co Ltd Resin composition for heat dissipating material and heat dissipating material
JP2010093283A (en) * 2004-07-07 2010-04-22 Furukawa Electric Co Ltd:The Heat-dissipating sheet for countermeasure against disturbance by electromagnetic wave
JP2006049876A (en) * 2004-07-07 2006-02-16 Furukawa Electric Co Ltd:The Heat dissipating sheet against electromagnetic-wave interruption
JP4532362B2 (en) * 2004-07-07 2010-08-25 古河電気工業株式会社 Electromagnetic interference countermeasure heat dissipation sheet
JP2007035699A (en) * 2005-07-22 2007-02-08 Bridgestone Corp Electromagnetic wave absorber, curing composition therefor, and its manufacturing method
JP2007180469A (en) * 2005-12-02 2007-07-12 Dowa Holdings Co Ltd Magnetic powder for radio wave absorber, its production process and radio wave absorber
JP4639384B2 (en) * 2005-12-02 2011-02-23 Dowaエレクトロニクス株式会社 Method for producing magnetic powder for radio wave absorber and radio wave absorber
JP2009527794A (en) * 2006-02-23 2009-07-30 エルジー・ケム・リミテッド Display device, heat conductive adhesive sheet for display device, and manufacturing method thereof
JP2007287840A (en) * 2006-04-14 2007-11-01 Nec Tokin Corp Electromagnetic interference suppressing body
JP2008066364A (en) * 2006-09-05 2008-03-21 Dowa Holdings Co Ltd Magnetic powder for radio wave absorber and its manufacturing method, and radio wave absorber
JP2008085057A (en) * 2006-09-27 2008-04-10 Nitta Ind Corp Electromagnetic wave absorbing material
WO2008069059A1 (en) * 2006-11-29 2008-06-12 Asahi Kasei Chemicals Corporation Resin composition
US8263224B2 (en) 2006-11-29 2012-09-11 Asahi Kasei Chemicals Corporation Resin composition
JP2008133381A (en) * 2006-11-29 2008-06-12 Asahi Kasei Chemicals Corp Magnetic powder-containing resin composition
KR101128593B1 (en) * 2006-11-29 2012-03-23 아사히 가세이 케미칼즈 가부시키가이샤 Resin composition
JP2008169378A (en) * 2006-12-12 2008-07-24 Asahi Kasei Chemicals Corp Resin composition
JP2010111812A (en) * 2008-11-07 2010-05-20 Asahi Kasei E-Materials Corp Polymer composition and noise suppressing sheet including the polymer composition
JP2010285287A (en) * 2009-06-09 2010-12-24 Mate Co Ltd Solid solution system y-type hexagonal ferrite material and molded product using the same
CN102763216A (en) * 2010-02-22 2012-10-31 索尼化学&信息部件株式会社 Thermally conductive sheet
WO2013161494A1 (en) * 2012-04-26 2013-10-31 株式会社村田製作所 Magnetic metal containing resin, and coil component and electronic component, using same
JP2013234244A (en) * 2012-05-08 2013-11-21 Toyo Tire & Rubber Co Ltd Thermal conductivity-variable material
JP2013239459A (en) * 2013-08-01 2013-11-28 Jfe Chemical Corp Electromagnetic wave absorption heating element and cooking appliance for microwave oven
JP2014239236A (en) * 2014-07-11 2014-12-18 デクセリアルズ株式会社 Thermally conductive sheet
JP2016046446A (en) * 2014-08-25 2016-04-04 台湾東電化股▲ふん▼有限公司 Coil device for non-contact power supply
JP2018203857A (en) * 2017-06-02 2018-12-27 日本ゼオン株式会社 Thermally conductive sheet
JP7024213B2 (en) 2017-06-02 2022-02-24 日本ゼオン株式会社 Heat conduction sheet and its manufacturing method
KR20220034174A (en) 2019-08-09 2022-03-17 후지필름 가부시키가이샤 Radio wave absorbing composition and radio wave absorber
KR20210152433A (en) * 2020-02-14 2021-12-15 한양대학교 에리카산학협력단 Composite material with enhanced electromagnetic wave shielding and heat dissipation characteristic including controlled agglomeration hexaferrite particle cluster
KR102463152B1 (en) * 2020-02-14 2022-11-04 한양대학교 에리카산학협력단 Composite material with enhanced electromagnetic wave shielding and heat dissipation characteristic including controlled agglomeration hexaferrite particle cluster
WO2022163192A1 (en) * 2021-01-29 2022-08-04 積水ポリマテック株式会社 Heat-conductive sheet, method for installing same, and method for manufacturing same

Also Published As

Publication number Publication date
EP1372162A4 (en) 2008-12-31
US7417078B2 (en) 2008-08-26
TWI302923B (en) 2008-11-11
KR100690254B1 (en) 2007-03-12
JP3608612B2 (en) 2005-01-12
CN1528002A (en) 2004-09-08
EP1372162A1 (en) 2003-12-17
EP1372162B1 (en) 2013-11-27
CN1248244C (en) 2006-03-29
US20040054029A1 (en) 2004-03-18
WO2002075755A1 (en) 2002-09-26
KR20040014450A (en) 2004-02-14

Similar Documents

Publication Publication Date Title
JP3608612B2 (en) Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method
JP3938681B2 (en) Heat dissipation structure
TWI668261B (en) Thermal interface material with mixed aspect ratio particle dispersions
JP5089908B2 (en) High thermal conductive resin compound / high thermal conductive resin molding / mixing particles for heat radiating sheet, high thermal conductive resin compound / high thermal conductive resin molding / heat radiating sheet, and manufacturing method thereof
JP2002329995A (en) Electromagnetic wave absorbing body
TWI282156B (en) Heat conductive sheet with magnetic wave absorption
JP2004526822A (en) Compliant crosslinkable thermal interface material
JP2002129019A (en) Electromagnetic wave-absorbing silicone rubber composition
JP4054986B2 (en) Heat dissipation member
CN107207950B (en) Thermally conductive electromagnetic interference (EMI) absorbers with silicon carbide
JP2002234952A (en) Heat-softening radiating sheet
TW200416976A (en) Electromagnetic-wave absorptive heat-conduction sheet
JP2007150349A (en) Thermoplastic thermally-conductive member
JP4901327B2 (en) Heat dissipation member
JP3944741B2 (en) Electromagnetic wave absorbing heat conductive silicone composition and molded article thereof
JP2001044687A (en) Wave absorber and its manufacture
JP3925805B2 (en) Heat dissipation member
JP3932125B2 (en) Thermosoftening heat conductive member
JP2005347449A (en) Soft magnetic powder and application thereof
KR101920706B1 (en) Electrically insulated and heat radiated non-substrate tape and manufacturing method thereof
JP2005320390A (en) Curable composition, molded product and heat-releasing member
JP2002076683A (en) Electromagnetic wave absorbing radiating sheet
JP2003080640A (en) Heat-softened sheet
TW201116615A (en) Thermally conductive composition
JP2024039712A (en) Electromagnetic wave absorption heat dissipation sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees