JP2002279917A - Crystalline conductive particulate, manufacturing method of the particulate, coating solution for transparent conductive film formation, base material with the transparent conductive film, and display device - Google Patents

Crystalline conductive particulate, manufacturing method of the particulate, coating solution for transparent conductive film formation, base material with the transparent conductive film, and display device

Info

Publication number
JP2002279917A
JP2002279917A JP2001078895A JP2001078895A JP2002279917A JP 2002279917 A JP2002279917 A JP 2002279917A JP 2001078895 A JP2001078895 A JP 2001078895A JP 2001078895 A JP2001078895 A JP 2001078895A JP 2002279917 A JP2002279917 A JP 2002279917A
Authority
JP
Japan
Prior art keywords
conductive fine
fine particles
transparent conductive
particles
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001078895A
Other languages
Japanese (ja)
Other versions
JP4519343B2 (en
Inventor
Chihiro Sakurai
井 千 尋 桜
Mitsuaki Kumazawa
沢 光 章 熊
Tsuguo Koyanagi
柳 嗣 雄 小
Toshiharu Hirai
井 俊 晴 平
Yuuji Tawarasako
迫 祐 二 俵
Michio Komatsu
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001078895A priority Critical patent/JP4519343B2/en
Publication of JP2002279917A publication Critical patent/JP2002279917A/en
Application granted granted Critical
Publication of JP4519343B2 publication Critical patent/JP4519343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide crystalline conductive particulates that can be used in the formation of a base material with a transparent conductive film, having a low surface resistance of about 10<7> Ω/(square) or lower, of superior a antistatic property and an electromagnetic wave shielding property, having low luminous reflectance and excelling in an antireflective property, and to provide a manufacturing method of the particulate; and the like. SOLUTION: The crystalline conductive particulate has void ratio in the range of 0.10 to 0.60 ml/g. The manufacturing method of the crystalline conductive particulate comprises a step of adding a doping agent, if necessary, to a solution of metal salt in water and adding alkali to the mixture for hydrolysis to prepare hydrous oxide particles or doped hydrous oxide particles of the metal; a step of filtering and washing the hydrous oxide particles or doped hydrous oxide particles; a step of dispersing the washed hydrous oxide particles or doped hydrous oxide particles in water and maturing the solution at 50 to 350 deg.C; a step of filtering out and drying the metal hydroxide or doped hydrous oxide particles in the matured dispersion solution; and a step of baking the dried hydrous oxide particles or doped hydrous oxide particles at 200 to 800 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、結晶性導電性微粒子、該
微粒子の製造方法、該微粒子を含む透明導電性被膜形成
用塗布液、透明導電性被膜付基材、および該基材を備え
た表示装置に関する。さらに詳しくは、前記結晶性導電
性微粒子が粒子外表面および/または内部に穴部または
空洞を有し、かつ結晶性が高いため、屈折率が低く、こ
のため結晶性導電性微粒子からなる導電性微粒子層の導
電性を低下させることなく屈折率を低下させることがで
き、導電性微粒子層と該層上に形成された透明被膜との
屈折率差を小さくすることができる上に、視感反射率が
低く(反射率カーブがブロードで)、帯電防止性、電磁
波遮蔽性、反射防止性等に優れた透明導電性被膜付基材
を得ることができる結晶性導電性微粒子、該微粒子の製
造方法、該微粒子を含む透明導電性被膜形成用塗布液、
透明導電性被膜付基材および該基材を備えた表示装置に
関する。
TECHNICAL FIELD The present invention relates to crystalline conductive fine particles, a method for producing the fine particles, a coating solution for forming a transparent conductive film containing the fine particles, a substrate with a transparent conductive film, and the substrate. It relates to a display device. More specifically, since the crystalline conductive fine particles have holes or cavities on the outer surface and / or inside of the particles and have high crystallinity, the refractive index is low. The refractive index can be reduced without lowering the conductivity of the fine particle layer, and the difference in refractive index between the conductive fine particle layer and the transparent film formed on the layer can be reduced. Crystalline conductive fine particles having a low reflectance (broad reflectance curve) and capable of obtaining a substrate with a transparent conductive film having excellent antistatic properties, electromagnetic wave shielding properties, antireflective properties, etc., and a method for producing the fine particles , A coating solution for forming a transparent conductive film containing the fine particles,
The present invention relates to a substrate having a transparent conductive film and a display device including the substrate.

【0002】[0002]

【発明の技術的背景】従来、陰極線管、蛍光表示管、液
晶表示板などの表示パネルのような透明基材の表面の帯
電防止および反射防止を目的として、これらの表面に帯
電防止機能を有する導電性被膜と、反射防止機能を有す
る透明被膜とを形成することが行われていた。
2. Description of the Related Art Conventionally, for the purpose of preventing the surface of a transparent substrate such as a display panel such as a cathode ray tube, a fluorescent display tube and a liquid crystal display panel from being charged and antireflective, these surfaces have an antistatic function. Formation of a conductive film and a transparent film having an antireflection function has been performed.

【0003】また、陰極線管などから電磁波が放出され
ることが知られており、従来の帯電防止、反射防止に加
えてこれらの電磁波および電磁波の放出に伴って形成さ
れる電磁場を導電性被膜によって遮蔽することも行われ
ている。帯電防止用導電性被膜としては、表面抵抗が1
7Ω/□程度の表面抵抗を有している必要があり、電
磁遮蔽用の導電性被膜としては102〜104Ω/□程度
の表面抵抗を有することが必要である。
Also, it is known that electromagnetic waves are emitted from a cathode ray tube or the like. In addition to the conventional antistatic and antireflection methods, these electromagnetic waves and the electromagnetic field formed due to the emission of the electromagnetic waves are covered by a conductive film. Shielding is also being done. The antistatic conductive film has a surface resistance of 1
0 7 Ω / □ must have a surface resistance of degree, as the conductive film for electromagnetic shielding is necessary to have 10 2 ~10 4 Ω / □ degree of surface resistivity.

【0004】上記帯電防止機能を有する導電性被膜は、
たとえばSbドープ酸化錫またはSnドープ酸化インジウ
ムのような導電性酸化物から構成され、このような導電
性酸化物を含む塗布液を塗布し、乾燥することによって
得ることができる。また、電磁波遮蔽用の導電性被膜
は、たとえばAgなどの金属から構成され、たとえばコ
ロイド状の金属微粒子を極性溶媒に分散させた導電性被
膜形成用塗布液を、基材の表面に塗布し、乾燥すること
によって形成することができる。
[0004] The conductive film having the antistatic function is as follows:
For example, it is composed of a conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide, and can be obtained by applying and drying a coating solution containing such a conductive oxide. Further, the conductive film for shielding electromagnetic waves is made of, for example, a metal such as Ag. For example, a conductive film forming coating liquid in which colloidal metal fine particles are dispersed in a polar solvent is applied to the surface of the substrate, It can be formed by drying.

【0005】さらにまた、反射防止を目的とする透明被
膜は、通常シリカ等の低屈折率材質から構成され、CV
D法、塗布法などの公知の方法で通常導電性被膜表面に
形成される。ところで、このような透明被膜付基材で
は、可視光(波長域:400〜700nm)領域では、
ボトム反射率(波長400〜700nmの範囲で反射率
が最も低い波長での反射率)が1%程度となるものの、
400nmおよび700nm付近の波長域になると反射
率が高くなり、このため反射(映り込み)や着色が認め
られ、画像の一部が不鮮明になるなど表示性能に劣る問
題があり、このためボトム反射率とともに視感反射率
(可視光全域にわたる平均反射率)の低減が求められて
いる。
Further, the transparent coating for the purpose of preventing reflection is usually made of a low refractive index material such as silica.
It is usually formed on the surface of the conductive film by a known method such as a method D or a coating method. By the way, in such a substrate with a transparent coating, in the visible light (wavelength range: 400 to 700 nm) region,
Although the bottom reflectivity (reflectance at the wavelength having the lowest reflectance in the wavelength range of 400 to 700 nm) is about 1%,
In the wavelength region near 400 nm and 700 nm, the reflectance becomes high, and therefore reflection (reflection) and coloring are recognized, and there is a problem in that the display performance is poor such as part of the image being unclear. At the same time, a reduction in luminous reflectance (average reflectance over the entire visible light range) is required.

【0006】本発明者等は、反射防止性能に優れた透明
導電性被膜についてさらに検討した結果、導電性微粒子
として、粒子の外部表面および/または内部に穴部およ
び/または空洞を有する結晶性導電性微粒子を用いるこ
とにより、導電性を維持できるとともに、導電性微粒子
の屈折率を下げることができ、その結果、得られる透明
導電性被膜付基材が高い帯電防止性能、電磁波遮蔽性能
を維持しつつ、視感反射率が低く反射防止性能に優れて
いることを見出して本発明を完成するに至った。
The present inventors have further studied a transparent conductive film excellent in antireflection performance, and as a result, as a conductive fine particle, a crystalline conductive film having holes and / or cavities on the outer surface and / or inside of the particle. By using the conductive fine particles, the conductivity can be maintained, and the refractive index of the conductive fine particles can be reduced. As a result, the obtained substrate with a transparent conductive film maintains high antistatic performance and electromagnetic wave shielding performance. In addition, they have found that the luminous reflectance is low and the antireflection performance is excellent, and have completed the present invention.

【0007】[0007]

【発明の目的】本発明は、上記のような従来技術の問題
点を解決し、107Ω/□程度以下の低い表面抵抗を有
し、帯電防止性、電磁波遮蔽性に優れるとともに、視感
反射率が低く反射防止性能に優れた透明導電性被膜付基
材の形成に用いることができる結晶性導電性微粒子、該
微粒子の製造方法、該微粒子を含む透明導電性被膜形成
用塗布液、透明導電性被膜付基材および該基材を備えた
表示装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, has a low surface resistance of about 10 7 Ω / □ or less, is excellent in antistatic properties and electromagnetic wave shielding properties, and has a high visual sensitivity. Crystalline conductive fine particles that can be used for forming a substrate with a transparent conductive film having a low reflectance and excellent antireflection performance, a method for producing the fine particles, a coating liquid for forming a transparent conductive film containing the fine particles, and a transparent liquid It is an object of the present invention to provide a substrate provided with a conductive film and a display device provided with the substrate.

【0008】[0008]

【発明の概要】本発明に係る結晶性導電性微粒子は、空
隙率が0.10〜0.60ml/gの範囲にあることを
特徴としている。前記結晶性導電性微粒子が、酸化ス
ズ、Sb、FまたはPがドーピングされた酸化スズ、酸
化インジウム、SnまたはFがドーピングされた酸化イ
ンジウム、酸化アンチモン、低次酸化チタンまたはこれ
らの混合物が好ましい。
SUMMARY OF THE INVENTION The crystalline conductive fine particles according to the present invention are characterized in that the porosity is in the range of 0.10 to 0.60 ml / g. The crystalline conductive fine particles are preferably tin oxide, tin oxide doped with Sb, F or P, indium oxide, indium oxide doped with Sn or F, antimony oxide, lower titanium oxide or a mixture thereof.

【0009】本発明に係る結晶性導電性微粒子の製造方
法は、下記の工程(a)〜(e)からなる; (a)金属塩水溶液に、必要に応じてドーピング剤を添加
し、これにアルカリを添加して加水分解し、該金属の水
和酸化物粒子またはドーピング水和酸化物粒子を調製す
る工程 (b)前記水和酸化物粒子またはドーピング水和酸化物粒
子を濾過し、洗浄する工程 (c)洗浄した水和酸化物粒子またはドーピング水和酸化
物粒子を水に分散させ、これを50〜350℃で熟成す
る工程 (d)前記熟成した分散液から水和酸化物粒子またはドー
ピング水和酸化物粒子を濾別し、乾燥する工程 (e)前記乾燥した水和酸化物粒子またはドーピング水和
酸化物粒子を200〜800℃で焼成する工程。
The method for producing crystalline conductive fine particles according to the present invention comprises the following steps (a) to (e): (a) a doping agent is added to a metal salt aqueous solution, if necessary, Step of preparing hydrated oxide particles or doped hydrated oxide particles of the metal by adding an alkali and hydrolyzing (b) filtering and washing the hydrated oxide particles or the doped hydrated oxide particles Step (c) dispersing the washed hydrated oxide particles or doped hydrated oxide particles in water and aging the same at 50 to 350 ° C. (d) hydrating oxide particles or doping from the aged dispersion (E) a step of baking the dried hydrated oxide particles or the doped hydrated oxide particles at 200 to 800 ° C.

【0010】前記金属塩がSn、In、Sb、Tiから選ば
れる1種の金属の金属塩であり、前記ドーピング剤がS
b、F、Pから選ばれる1種の元素を含む化合物である
ことが好ましい。本発明に係る透明導電性被膜形成用塗
布液は、前記結晶性導電性微粒子と極性溶媒とからな
る。
The metal salt is a metal salt of one metal selected from Sn, In, Sb and Ti, and the doping agent is
It is preferably a compound containing one element selected from b, F and P. The coating liquid for forming a transparent conductive film according to the present invention comprises the crystalline conductive fine particles and a polar solvent.

【0011】本発明に係る透明導電性被膜付基材は、基
材と、基材上の前記結晶性導電性微粒子を含む透明導電
性微粒子層と、該透明導電性微粒子層上に設けられ、該
透明導電性微粒子層よりも屈折率が低い透明被膜とから
なる。
A substrate with a transparent conductive film according to the present invention is provided on a substrate, a transparent conductive fine particle layer containing the crystalline conductive fine particles on the substrate, and provided on the transparent conductive fine particle layer; It is composed of a transparent film having a lower refractive index than the transparent conductive fine particle layer.

【0012】本発明に係る表示装置は、前記透明導電性
被膜付基材で構成された前面板を備え、透明導電性被膜
が該前面板の外表面に形成されていることを特徴として
いる。
A display device according to the present invention is characterized in that the display device includes a front plate made of the base material with the transparent conductive film, and a transparent conductive film is formed on an outer surface of the front plate.

【0013】[0013]

【発明の具体的説明】以下、本発明について具体的に説
明する。結晶性導電性微粒子 まず、本発明に係る結晶性導電性微粒子について説明す
る。本発明に係る結晶性導電性微粒子は0.10〜0.
60ml/g、好ましくは0.15〜0.50ml/g
の範囲にある空隙率を有している。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described specifically. First, the crystalline conductive fine particles according to the present invention will be described. The crystalline conductive fine particles according to the present invention have 0.10 to 0.1.
60 ml / g, preferably 0.15 to 0.50 ml / g
Has a porosity in the range.

【0014】結晶性導電性微粒子の空隙率が0.10m
l/g未満の場合は、導電性微粒子層の屈折率を低下さ
せる効果が不充分であり、視感反射率を低下させる効果
が充分に得られず、結晶性導電性微粒子の空隙率が0.
60ml/gを越えると、導電性微粒子の導電性が低下
し、帯電防止性能が不充分となることがある。このよう
な結晶性導電性微粒子の空隙率は以下のようにして求め
ることができる。
The porosity of the crystalline conductive fine particles is 0.10 m
If it is less than 1 / g, the effect of lowering the refractive index of the conductive fine particle layer is insufficient, the effect of lowering the luminous reflectance is not sufficiently obtained, and the porosity of the crystalline conductive fine particles is 0. .
If it exceeds 60 ml / g, the conductivity of the conductive fine particles may decrease, and the antistatic performance may be insufficient. The porosity of such crystalline conductive fine particles can be determined as follows.

【0015】結晶性導電性微粒子を200℃で2時間加
熱処理した試料について、液体窒素温度での窒素吸着等
温線を求め、穴部径が1nm〜20nmに相当する相対
圧の範囲での窒素の吸着容積(ml/g)を空隙率とし
て求める。このような結晶性導電性微粒子の1例とし
て、後述する実施例1で得られた結晶性導電性微粒子の
透過型電子顕微鏡写真(TEM写真)を図1に示す。図
1中、色調の薄い箇所が穴部・空洞である。
For a sample obtained by heating crystalline conductive fine particles at 200 ° C. for 2 hours, a nitrogen adsorption isotherm at the temperature of liquid nitrogen was determined, and the nitrogen adsorption in a range of relative pressure corresponding to a hole diameter of 1 nm to 20 nm was determined. The adsorption volume (ml / g) is determined as the porosity. As an example of such crystalline conductive fine particles, FIG. 1 shows a transmission electron micrograph (TEM photograph) of the crystalline conductive fine particles obtained in Example 1 described later. In FIG. 1, holes and cavities are portions having a light color tone.

【0016】結晶性導電性微粒子は、導電性を有し、か
つ上記の特性を有するもので有れば、とくに制限無く用
いることができるが、本発明に用いる結晶性導電性微粒
子としては、酸化スズ、Sb、FまたはPがドーピング
された酸化スズ、酸化インジウム、SnまたはFがドー
ピングされた酸化インジウム、酸化アンチモン、低次酸
化チタン、またはこれらの混合物であることが好まし
い。
The crystalline conductive fine particles can be used without particular limitation as long as they have conductivity and have the above-mentioned characteristics. However, the crystalline conductive fine particles used in the present invention include oxidized fine particles. It is preferably tin oxide, indium oxide doped with tin, Sb, F or P, indium oxide doped with Sn or F, antimony oxide, lower titanium oxide, or a mixture thereof.

【0017】本発明に係る結晶性導電性微粒子は、平均
粒子径が2〜200nmの範囲、好ましくは4〜150
nmの範囲にある。結晶性導電性微粒子の平均粒子径が
2nm未満の場合は、粒子が小さすぎて、空隙率が小さ
いために屈折率を有効に低下できる結晶性導電性微粒子
を得ることが困難である。また、粒子が小さいもので空
隙率を高めようとすると、結晶性が不充分となり、導電
性が充分発現しないことがある。また、粒径が小さすぎ
ると粒界抵抗が大きくなるために粒子層の表面抵抗が急
激に大きくなり、帯電防止性能、電磁波遮蔽性能が不充
分となることがある。
The crystalline conductive fine particles according to the present invention have an average particle diameter in the range of 2 to 200 nm, preferably 4 to 150 nm.
in the range of nm. When the average particle diameter of the crystalline conductive fine particles is less than 2 nm, it is difficult to obtain crystalline conductive fine particles capable of effectively lowering the refractive index because the particles are too small and the porosity is small. Also, if the porosity is increased with small particles, the crystallinity becomes insufficient and the conductivity may not be sufficiently exhibited. On the other hand, if the particle size is too small, the surface resistance of the particle layer increases rapidly because the grain boundary resistance increases, and the antistatic performance and electromagnetic wave shielding performance may be insufficient.

【0018】結晶性導電性微粒子の平均粒子径が200
nmを越えると、透明導電性被膜形成用塗布液の安定性
が低下したり、被膜の形成性、基材との密着性、膜の強
度等が低下したり、被膜の膜厚にもよるが粒子層の光透
過率が低下したり、ヘーズが大きくなることがある。こ
のような本発明の結晶性導電性微粒子の外部表面および
/または内部には穴部(外部表面の場合)あるいは空洞
(内部の場合)を有している。穴部および空洞の大きさ
としては、特に制限されるものではなく、通常、直径が
1〜20nm、好ましくは1〜10nmの範囲にある。
穴部または空洞の直径が1nm未満の場合は、粒子自体
が緻密なため、空隙率が0.10ml/g未満となり導
電性微粒子層の屈折率が充分低くならないために視感反
射率を下げる効果が得られないことがある。
The average particle diameter of the crystalline conductive fine particles is 200
When the thickness exceeds nm, the stability of the coating solution for forming the transparent conductive film decreases, the formability of the film, the adhesion to the substrate, the strength of the film, and the like are reduced. The light transmittance of the particle layer may decrease or the haze may increase. The crystalline conductive fine particles of the present invention have a hole (in the case of the external surface) or a cavity (in the case of the internal) on the external surface and / or inside. The sizes of the holes and the cavities are not particularly limited, and usually have a diameter of 1 to 20 nm, preferably 1 to 10 nm.
When the diameter of the hole or the cavity is less than 1 nm, the particles themselves are dense, the porosity is less than 0.10 ml / g, and the refractive index of the conductive fine particle layer is not sufficiently low, so that the effect of lowering the luminous reflectance is reduced. May not be obtained.

【0019】本発明に係る結晶性導電性微粒子は穴部ま
たは空洞のいずれか一方を有していればよく、また双方
を有していてもよい。このような、穴部または空洞の直
径は、TEM写真を撮影し、長径および短径を測定しそ
の平均値として求めることができる。本発明に係る結晶
性導電性微粒子は、結晶度が0.9〜1.3、好ましくは
1〜1.25の範囲にあることが望ましい。結晶度が0.
9未満であると導電性が不充分であり帯電防止効果が充
分に得られないことがある。また、結晶度が1.3以上
の結晶性導電性微粒子は得ることが困難であり、得られ
たとしても空隙率が不充分となる傾向がある。
The crystalline conductive fine particles according to the present invention may have either a hole or a cavity, or may have both. The diameter of such a hole or cavity can be determined by taking a TEM photograph, measuring the major axis and the minor axis, and determining the average value. It is desirable that the crystalline conductive fine particles according to the present invention have a crystallinity of 0.9 to 1.3, preferably 1 to 1.25. Crystallinity is 0.
If it is less than 9, the conductivity is insufficient and the antistatic effect may not be sufficiently obtained. Further, it is difficult to obtain crystalline conductive fine particles having a crystallinity of 1.3 or more, and even if obtained, the porosity tends to be insufficient.

【0020】上記結晶度は以下のようにして求めること
ができる。結晶性導電性微粒子粉体のX線回折スペクト
ルを測定し、回折強度の最も高いピークの高さ(Ic)
を、標準試料(1)の同様のピークの高さ(Is)と比
較し、以下のようにして求める。 結晶度=Ic/Is なお、標準試料(1)としては、空隙率が実質的にゼロ
のものを用いるがたとえば、後述する実施例の結晶性導
電性微粒子の製造方法において、同一組成であるが熟成
工程を経ることなく得られた導電性微粒子を1000℃
で5時間焼成した粒子を用いる。
The above crystallinity can be determined as follows. The X-ray diffraction spectrum of the crystalline conductive fine particle powder is measured, and the peak height of the diffraction intensity (Ic)
Is compared with the similar peak height (Is) of the standard sample (1), and is determined as follows. Crystallinity = Ic / Is As the standard sample (1), one having a porosity of substantially zero is used. For example, in the method for producing crystalline conductive fine particles in Examples described later, the same composition is used. The conductive fine particles obtained without going through the aging step
Used for 5 hours.

【0021】このような結晶性導電性微粒子は、体積抵
抗率が概ね0.1Ω・cm以下であることが好ましい。
結晶性導電性微粒子は体積抵抗率が上記範囲にあれば、
得られる透明導電性被膜付基材の表面抵抗値が102
107Ω/□の範囲となり、膜厚にもよるが充分な帯電
防止性能と、電磁波遮蔽性能を有する透明導電性被膜付
基材を得ることができる。たとえば、結晶性導電性微粒
子がSnまたはFがドーピングされた酸化インジウムの
場合、表面抵抗が概ね102〜104Ω/□の範囲にある
透明導電性被膜付基材を形成できるので、帯電防止性能
に加えて電磁波の放出に伴って生じる電磁場を効果的に
遮蔽することができる。また、結晶性導電性微粒子が、
酸化スズ、酸化インジウム、Sb、FまたはPがドーピ
ングされた酸化スズ、酸化アンチモン、低次酸化チタン
の場合、表面抵抗が概ね104〜107Ω/□にある透明
導電性被膜を形成できるとともに、優れた帯電防止性能
を発揮することができる。
The crystalline conductive fine particles preferably have a volume resistivity of about 0.1 Ω · cm or less.
If the crystalline conductive fine particles have a volume resistivity in the above range,
The resulting substrate with a transparent conductive film has a surface resistance of 10 2 to
In the range of 10 7 Ω / □, it is possible to obtain a substrate with a transparent conductive film having sufficient antistatic performance and electromagnetic wave shielding performance depending on the film thickness. For example, when the crystalline conductive fine particles are indium oxide doped with Sn or F, a base material having a transparent conductive film having a surface resistance in a range of approximately 10 2 to 10 4 Ω / □ can be formed, and thus, antistatic can be achieved. In addition to the performance, the electromagnetic field generated due to the emission of the electromagnetic wave can be effectively shielded. In addition, crystalline conductive fine particles,
In the case of tin oxide, indium oxide, tin oxide doped with Sb, F or P, antimony oxide, or low-order titanium oxide, a transparent conductive film having a surface resistance of approximately 10 4 to 10 7 Ω / □ can be formed. And excellent antistatic performance.

【0022】このような結晶性導電性微粒子は、たとえ
ば、以下のような製造方法で得ることができる。結晶性導電性微粒子の製造方法 つぎに、本発明の結晶性導電性微粒子の製造方法につい
て説明する。本発明の結晶性導電性微粒子の製造方法
は、下記の工程(a)〜(e)からなっている。
Such crystalline conductive fine particles can be obtained, for example, by the following manufacturing method. Next, a method for producing the crystalline conductive fine particles of the present invention will be described. The method for producing crystalline conductive fine particles of the present invention comprises the following steps (a) to (e).

【0023】工程(a):金属塩水溶液に、必要に応じて
ドーピング剤を添加し、これにアルカリを添加して加水
分解し、該金属の水和酸化物粒子またはドーピング水和
酸化物粒子を調製する。金属塩としては所望の酸化物前
駆体(すなわち水酸化物)が得られるもので有れば特に
制限はなく使用することができるが、上記したように、
酸化物としては、酸化スズ、酸化インジウム、酸化アン
チモン、低次酸化チタンまたはこれらの混合物が好まし
いので、金属塩として具体的には、塩化錫、硝酸錫、硫
酸錫、塩化インジウム、硝酸インジウム、硫酸インジウ
ム、塩化アンチモン、硝酸アンチモン、硫酸アンチモ
ン、4塩化チタン、3塩化チタン、硝酸チタン、硫酸チ
タニルなどが好適に使用される。
Step (a): A doping agent is added to the aqueous metal salt solution, if necessary, and an alkali is added thereto to hydrolyze the hydrated oxide particles or doped hydrated oxide particles of the metal. Prepare. The metal salt can be used without particular limitation as long as a desired oxide precursor (that is, hydroxide) can be obtained.
As the oxide, tin oxide, indium oxide, antimony oxide, lower titanium oxide or a mixture thereof is preferable, and specific examples of the metal salt include tin chloride, tin nitrate, tin sulfate, indium chloride, indium nitrate, and sulfuric acid. Indium, antimony chloride, antimony nitrate, antimony sulfate, titanium tetrachloride, titanium trichloride, titanium nitrate, titanyl sulfate and the like are preferably used.

【0024】ドーピング剤としては、酸化物が酸化錫、
酸化インジウムである場合に、これらにSb、Sn、Fま
たはPがドーピングできるものであれば特に制限される
ものではない。なお前記したように酸化スズ、Sb、F
またはPがドーピングされた酸化スズ、酸化インジウ
ム、SnまたはFがドーピングされた酸化インジウム、
酸化アンチモン、低次酸化チタンまたはこれらの混合物
たとえば、塩化アンチモン、硝酸アンチモン、塩化錫、
硝酸錫、フッ化カルシウム、リン酸などが使用される。
As the doping agent, the oxide is tin oxide,
In the case of indium oxide, there is no particular limitation as long as it can be doped with Sb, Sn, F or P. As described above, tin oxide, Sb, F
Or P-doped tin oxide, indium oxide, Sn or F-doped indium oxide,
Antimony oxide, lower titanium oxide or a mixture thereof, for example, antimony chloride, antimony nitrate, tin chloride,
Tin nitrate, calcium fluoride, phosphoric acid and the like are used.

【0025】前記金属塩の水溶液に、必要に応じて前記
ドーピング剤を添加し、アルカリを添加して加水分解
し、水和酸化物粒子またはドーピング剤入り水和酸化物
粒子を調製する。前記金属塩水溶液の濃度は、金属酸化
物として0.5〜30重量%、さらには5〜20重量%
の範囲にあることが好ましい。
If necessary, the above-mentioned doping agent is added to the aqueous solution of the metal salt, and an alkali is added thereto to carry out hydrolysis to prepare hydrated oxide particles or hydrated oxide particles containing a doping agent. The concentration of the aqueous metal salt solution is 0.5 to 30% by weight as a metal oxide, and more preferably 5 to 20% by weight.
Is preferably within the range.

【0026】金属塩水溶液の濃度が0.5重量%未満の
場合は、濃度が低いために水和酸化物粒子の収率や生産
効率が低く、金属塩水溶液の濃度が30重量%を越える
と、後述する熟成後の結晶度が0.9を越えて高くなら
ないことがあり、また最終的に得られる結晶性導電性微
粒子の穴部や空洞が充分生成しないことがある。また、
必要に応じて添加するドーピング剤の量は、前記水和酸
化物粒子あるいはドーピング剤の種類によって異なる
が、従来公知のドーピング剤入り導電性酸化物と同様
に、通常酸化物として、前記金属酸化物の1〜20重量
%、さらには2〜10重量%の範囲にあることが好まし
い。
When the concentration of the aqueous metal salt solution is less than 0.5% by weight, the yield and production efficiency of the hydrated oxide particles are low due to the low concentration, and when the concentration of the aqueous metal salt solution exceeds 30% by weight. In some cases, the crystallinity after ripening described below does not exceed 0.9 and does not increase, and holes and cavities of the finally obtained crystalline conductive fine particles may not be sufficiently formed. Also,
The amount of the doping agent to be added as necessary depends on the type of the hydrated oxide particles or the doping agent. However, like the conventionally known conductive oxide containing a doping agent, the metal oxide is usually used as the oxide. Is preferably in the range of 1 to 20% by weight, more preferably 2 to 10% by weight.

【0027】ドーピング剤の添加量が上記範囲にあれ
ば、結晶性を損なうことなく、導電性の高い結晶性導電
性微粒子を得ることができる。添加するアルカリは、前
記金属塩を加水分解することができればとくに制限はな
く、水酸化ナトリウム水溶液、水酸化カリウム水溶液な
どのアルカリ金属水溶液、アンモニア水溶液、4級アミ
ンなどの塩基性化合物を用いることができる。このよう
なアルカリの添加量は水和酸化物が得られれば特に制限
はないが、通常水溶液のpHが7〜13の範囲となるよ
うに添加すればよい。また、加水分解する際の水溶液の
温度は通常室温であるが、必要に応じて加熱することも
できるし、冷却することもできる。
When the amount of the dopant is within the above range, crystalline conductive fine particles having high conductivity can be obtained without impairing the crystallinity. The alkali to be added is not particularly limited as long as the metal salt can be hydrolyzed, and an alkali metal aqueous solution such as an aqueous sodium hydroxide solution and an aqueous potassium hydroxide solution, an aqueous ammonia solution, and a basic compound such as a quaternary amine may be used. it can. The amount of such an alkali added is not particularly limited as long as a hydrated oxide is obtained, but may be usually added so that the pH of the aqueous solution is in the range of 7 to 13. The temperature of the aqueous solution during hydrolysis is usually room temperature, but it can be heated or cooled as necessary.

【0028】水溶液のpHが7未満の場合は、最終的に
得られる導電性微粒子が緻密になる傾向があり、空隙率
が小さくなり、屈折率の低下効果が得られないことがあ
る。水溶液のpHが上記範囲にあると、結晶度が高く、
空隙率が0.10〜0.60ml/gの範囲にある結晶
性導電性微粒子を得ることができる。工程(b):洗浄 調製された前記水和酸化物粒子またはドーピング水和酸
化物粒子を、次ぎに洗浄する。
If the pH of the aqueous solution is less than 7, the conductive fine particles finally obtained tend to be dense, the porosity is reduced, and the effect of lowering the refractive index may not be obtained. When the pH of the aqueous solution is in the above range, the crystallinity is high,
Crystalline conductive fine particles having a porosity in the range of 0.10 to 0.60 ml / g can be obtained. Step (b): The prepared hydrated oxide particles or doped hydrated oxide particles are then washed.

【0029】洗浄方法としては、前記金属塩やドーピン
グ剤、添加するアルカリに由来するカチオンやアニオン
などの不純物を除去することができればとくに制限はな
く、従来公知の方法によって洗浄することができる。具
体的には、通常の濾過洗浄方法、限外濾過膜法などが好
適である。洗浄後の不純物量が水和酸化物粒子またはド
ーピング剤入り水和酸化物粒子中に1重量%以下、さら
には0.5重量%以下であることが好ましい。不純物量
が1重量%以下であれば、結晶性や導電性が高く、0.
10〜0.60ml/gの範囲の空隙率を有する結晶性
導電性微粒子を得ることができる。
The washing method is not particularly limited as long as impurities such as cations and anions derived from the metal salt, the doping agent and the added alkali can be removed, and the washing can be carried out by a conventionally known method. Specifically, a normal filtration and washing method, an ultrafiltration membrane method and the like are suitable. The amount of impurities after washing is preferably 1% by weight or less, more preferably 0.5% by weight or less, in the hydrated oxide particles or the hydrated oxide particles containing a doping agent. When the amount of impurities is 1% by weight or less, the crystallinity and conductivity are high,
Crystalline conductive fine particles having a porosity in the range of 10 to 0.60 ml / g can be obtained.

【0030】工程(c):熟成 洗浄した水和酸化物粒子またはドーピング剤入り水和酸
化物粒子を水に分散させ、これを50〜350℃、好ま
しくは60〜250℃で熟成する。この熟成工程によっ
て水和酸化物粒子またはドーピング剤入り水和酸化物粒
子の結晶度が高くなるとともに、最終的に得られる導電
性酸化物粒子の穴部および/または空洞が形成される。
Step (c): Aged and washed hydrated oxide particles or hydrated oxide particles containing a doping agent are dispersed in water and aged at 50 to 350 ° C., preferably 60 to 250 ° C. By this aging step, the crystallinity of the hydrated oxide particles or the hydrated oxide particles containing the doping agent is increased, and holes and / or cavities of the finally obtained conductive oxide particles are formed.

【0031】水和酸化物粒子またはドーピング剤入り水
和酸化物粒子の水分散液中の濃度は、水和酸化物粒子ま
たはドーピング剤入り水和酸化物粒子を酸化物に換算し
た濃度が1〜20重量%、さらには2〜10重量%の範
囲にあることが好ましい。水和酸化物粒子またはドーピ
ング剤入り水和酸化物粒子の濃度が酸化物に換算して1
重量%未満の場合は、粒子成長速度が遅く、得られる結
晶性導電性微粒子の粒子径が微細であったり不均一であ
ったり、結晶度が不充分となることがある。
The concentration of the hydrated oxide particles or the hydrated oxide particles containing the doping agent in the aqueous dispersion is from 1 to 1 when the hydrated oxide particles or the hydrated oxide particles containing the doping agent are converted into the oxide. It is preferably in the range of 20% by weight, more preferably 2 to 10% by weight. The concentration of the hydrated oxide particles or the hydrated oxide particles containing the dopant is 1 in terms of oxide.
When the amount is less than the weight percentage, the particle growth rate is low, and the resulting crystalline conductive fine particles may have a fine or non-uniform particle size, or may have insufficient crystallinity.

【0032】水和酸化物粒子またはドーピング剤入り水
和酸化物粒子の濃度が20重量%を越えると、粒子が凝
集する傾向があり、最終的に得られる結晶性導電性微粒
子の空隙率が小さくなり、導電性微粒子層の屈折率を低
下させる効果が不充分となる傾向がある。また、熟成温
度が50℃未満の場合は、熟成時間にもよるが、粒子成
長速度が遅く、得られる結晶性導電性微粒子の粒子径が
微細であったり不均一であったり、結晶度が不充分とな
ることがある。
If the concentration of the hydrated oxide particles or the hydrated oxide particles containing the doping agent exceeds 20% by weight, the particles tend to aggregate, and the porosity of the finally obtained crystalline conductive fine particles is small. Therefore, the effect of lowering the refractive index of the conductive fine particle layer tends to be insufficient. When the aging temperature is lower than 50 ° C., although depending on the aging time, the particle growth rate is slow, and the obtained crystalline conductive fine particles have a fine or non-uniform particle size, or the crystallinity is poor. May be sufficient.

【0033】熟成温度が350℃を越えると、最終的に
得られる結晶性導電性微粒子には穴部および空洞などの
空隙が殆ど無く、導電性微粒子層の屈折率を低下させる
効果が得られない。また、熟成時間は、熟成温度によっ
ても異なるが、通常0.5〜48時間である。
When the aging temperature exceeds 350 ° C., the crystalline conductive fine particles finally obtained have almost no voids such as holes and cavities, and the effect of lowering the refractive index of the conductive fine particle layer cannot be obtained. . The aging time varies depending on the aging temperature, but is usually 0.5 to 48 hours.

【0034】本発明の結晶性導電性微粒子の製造方法に
おいては、熟成後の水和酸化物粒子またはドーピング剤
入り水和酸化物粒子の結晶性が重要であり、このときの
結晶度は1以上、好ましくは1.1以上であることが好
ましい。熟成後の粒子の結晶度が1未満の場合は、最終
的に得られる結晶性導電性微粒子の結晶度が不充分であ
り、また前述したような空隙率を有する微粒子を得るこ
とができないことがある。
In the method for producing crystalline conductive fine particles of the present invention, the crystallinity of the aged hydrated oxide particles or the hydrated oxide particles containing a doping agent is important, and the crystallinity at this time is 1 or more. , Preferably 1.1 or more. When the crystallinity of the aged particles is less than 1, the crystallinity of the finally obtained crystalline conductive fine particles is insufficient, and the fine particles having the porosity as described above cannot be obtained. is there.

【0035】また、上記熟成後の水和酸化物粒子または
ドーピング剤入り水和酸化物粒子の平均粒子径は特に制
限されるものではないが、通常、2〜200nmの範囲
にあることが望ましい。熟成後の水和酸化物粒子または
ドーピング剤入り水和酸化物粒子の平均粒子径が2nm
未満の場合は、空隙率の高い結晶性導電性微粒子が生成
しにくく、本願発明の効果が得られない。
The average particle diameter of the hydrated oxide particles after aging or the hydrated oxide particles containing a doping agent is not particularly limited, but is generally preferably in the range of 2 to 200 nm. The average particle diameter of the hydrated oxide particles after aging or the hydrated oxide particles containing a doping agent is 2 nm.
If it is less than 1, crystalline conductive fine particles having a high porosity are difficult to generate, and the effects of the present invention cannot be obtained.

【0036】熟成後の水和酸化物粒子またはドーピング
剤入り水和酸化物粒子の平均粒子径が200nmを越え
ると、得られる結晶性導電性微粒子を用いた導電性微粒
子層を形成するための塗布液の安定性が低下したり、導
電性微粒子層の透明性が低下したり、導電性微粒子層と
基材との密着性が不充分となることがある。上記、熟成
後の水和酸化物粒子またはドーピング剤入り水和酸化物
粒子の結晶性は次のようにして求める。
If the average particle diameter of the hydrated oxide particles after aging or the hydrated oxide particles containing a dopant exceeds 200 nm, a coating for forming a conductive fine particle layer using the obtained crystalline conductive fine particles. The stability of the liquid may be reduced, the transparency of the conductive fine particle layer may be reduced, or the adhesion between the conductive fine particle layer and the substrate may be insufficient. The crystallinity of the hydrated oxide particles after aging or the hydrated oxide particles containing a doping agent is determined as follows.

【0037】粒子を105℃で5時間乾燥し、乾燥した
微粒子粉体のX線回折スペクトルを測定し、回折強度の
最も高いピークの高さ(Ica)を、標準試料(II)の同
様のピークの高さIsa)と比較し、以下のようにして求
める。 結晶度=Ica/Isa なお、標準試料(II)としては、後述する本願発明の結
晶性導電性微粒子の製造方法において、同一組成の洗浄
後の水和酸化物粒子またはドーピング剤入り水和酸化物
粒子を105℃で5時間乾燥して得られた粒子を用い
る。
The particles were dried at 105 ° C. for 5 hours, the X-ray diffraction spectrum of the dried fine particle powder was measured, and the height (Ica) of the peak having the highest diffraction intensity was determined by the same peak as that of the standard sample (II). And the height is calculated as follows. Crystallinity = Ica / Isa The standard sample (II) is a hydrated oxide particle having the same composition or a hydrated oxide containing a doping agent in the method for producing crystalline conductive fine particles of the present invention described later. The particles obtained by drying the particles at 105 ° C. for 5 hours are used.

【0038】工程(d)分離・乾燥 前記熟成を終了した分散液から水和酸化物粒子またはド
ーピング剤入り水和酸化物粒子を濾別し、乾燥する。乾
燥温度は、溶媒が揮散する温度で有れば特に制限される
ものではない。なお、乾燥処理は、水和酸化物粒子また
はドーピング剤入り水和酸化物粒子を完全に乾燥するこ
となく、次工程の焼成処理をおこなってもよい。
Step (d) Separation / Drying The hydrated oxide particles or the hydrated oxide particles containing a doping agent are separated from the dispersion liquid after the aging by filtration and dried. The drying temperature is not particularly limited as long as it is a temperature at which the solvent evaporates. In the drying treatment, the baking treatment in the next step may be performed without completely drying the hydrated oxide particles or the hydrated oxide particles containing the doping agent.

【0039】工程(e)焼成 前記乾燥した水和酸化物粒子またはドーピング剤入り水
和酸化物粒子を200〜800℃で焼成する。水和酸化
物粒子またはドーピング剤入り水和酸化物粒子の焼成温
度が200℃未満の場合は、結晶水が残存しているため
に充分な導電性が得られないことがある。
Step (e) Firing The dried hydrated oxide particles or hydrated oxide particles containing a doping agent are fired at 200 to 800 ° C. When the calcination temperature of the hydrated oxide particles or the hydrated oxide particles containing the doping agent is lower than 200 ° C., sufficient conductivity may not be obtained due to the remaining crystallization water.

【0040】焼成温度が800℃を越えると、穴部およ
び/または空洞が消失して充分な空隙率が得られないこ
とがあり、またドーピング剤入り粒子ではドーピング剤
が昇華等して導電性が損なわれることがある。また、本
発明の結晶性導電性微粒子の製造方法では、前記工程
(d)および/または工程(e)の後に、必要に応じて粉砕し
て所望の大きさに調整してもよい。粉砕方法としてはボ
ールミル、サンドミルなど従来公知の方法を好適に採用
することができる。粉砕時には、硝酸、塩酸などの酸、
水酸化ナトリウム、水酸化カリウム、アンモニアなどの
アルカリでpHを調整してもよく、さらに粉砕後にイオ
ン交換樹脂で処理して不純物(酸、アルカリ)イオンを
除去してもよい。
If the sintering temperature exceeds 800 ° C., holes and / or cavities may disappear and a sufficient porosity may not be obtained. May be impaired. In the method for producing crystalline conductive fine particles of the present invention, the step
After (d) and / or step (e), it may be ground to a desired size, if necessary. As a pulverizing method, a conventionally known method such as a ball mill and a sand mill can be suitably adopted. During grinding, acids such as nitric acid and hydrochloric acid,
The pH may be adjusted with an alkali such as sodium hydroxide, potassium hydroxide, ammonia, or the like, and may be further treated with an ion exchange resin after pulverization to remove impurity (acid, alkali) ions.

【0041】透明導電性被膜形成用塗布液 ついで、本発明に係る透明導電性被膜形成用塗布液につ
いて説明する。本発明に係る透明導電性被膜形成用塗布
液は、結晶性導電性微粒子と極性溶媒からなっている。
結晶性導電性微粒子としては前記のものを用いることが
できる。
Next, the coating solution for forming a transparent conductive film according to the present invention will be described. The coating liquid for forming a transparent conductive film according to the present invention comprises crystalline conductive fine particles and a polar solvent.
As the crystalline conductive fine particles, those described above can be used.

【0042】本発明では、透明導電性被膜形成用塗布液
中に、前記結晶性導電性微粒子が0.1〜10重量%、
好ましくは0.5〜5重量%の範囲で含まれていること
が望ましい。透明導電性被膜形成用塗布液中の結晶性導
電性微粒子の濃度が0.1重量%未満の場合は、得られ
る被膜の膜厚が薄くなり、充分な導電性が得られないこ
とがある。
According to the present invention, the crystalline conductive fine particles are contained in an amount of 0.1 to 10% by weight in the coating liquid for forming a transparent conductive film.
Preferably, it is contained in the range of 0.5 to 5% by weight. When the concentration of the crystalline conductive fine particles in the coating liquid for forming a transparent conductive film is less than 0.1% by weight, the film thickness of the obtained film may be small, and sufficient conductivity may not be obtained.

【0043】透明導電性被膜形成用塗布液中の結晶性導
電性微粒子の濃度が10重量%を越えると、塗布液の安
定性が低下したり、膜厚が厚くなり光透過率が低下して
透明性が悪化するとともに外観が悪くなる傾向がある。
また、極性溶媒としては、水;メタノール、エタノー
ル、プロパノール、ブタノール、ジアセトンアルコー
ル、フルフリルアルコール、テトラヒドロフルフリルア
ルコール、エチレングリコール、ヘキシレングリコール
などのアルコール類;酢酸メチルエステル、酢酸エチル
エステルなどのエステル類;ジエチルエーテル、エチレ
ングリコールモノメチルエーテル、エチレングリコール
モノエチルエーテル、エチレングリコールモノブチルエ
ーテル、ジエチレングリコールモノメチルエーテル、ジ
エチレングリコールモノエチルエーテルなどのエーテル
類;アセトン、メチルエチルケトン、アセチルアセト
ン、アセト酢酸エステルなどのケトン類などが挙げられ
る。これらは単独で使用してもよく、また2種以上混合
して使用してもよい。
When the concentration of the crystalline conductive fine particles in the coating solution for forming a transparent conductive film exceeds 10% by weight, the stability of the coating solution is reduced, or the film thickness is increased and the light transmittance is reduced. The transparency tends to deteriorate and the appearance tends to deteriorate.
Examples of the polar solvent include water; alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol and hexylene glycol; and methyl acetate, ethyl acetate, and the like. Esters: ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone, and acetoacetate; No. These may be used alone or as a mixture of two or more.

【0044】このような透明導電性被膜形成用塗布液に
は、上記結晶性導電性微粒子以外の導電性微粒子が含ま
れていてもよい。結晶性導電性微粒子以外の導電性微粒
子としては、Ag、Ag-Pd等従来公知の金属微粒子、合
金微粒子あるいは微粒子カーボンなどを用いることがで
きる。このような結晶性導電性微粒子以外の導電性微粒
子の平均粒子径も1〜200nm、好ましくは2〜15
0nmの範囲にあることが好ましい。
Such a coating liquid for forming a transparent conductive film may contain conductive fine particles other than the crystalline conductive fine particles. As the conductive fine particles other than the crystalline conductive fine particles, conventionally known metal fine particles such as Ag and Ag-Pd, alloy fine particles, and fine carbon particles can be used. The average particle size of the conductive fine particles other than the crystalline conductive fine particles is also 1 to 200 nm, preferably 2 to 15 nm.
It is preferably in the range of 0 nm.

【0045】本発明に係る透明導電性被膜形成用塗布液
には、被膜形成後の結晶性導電性微粒子のバインダー
(マトリックスともいう)として作用するマトリックス
形成成分が含まれていてもよい。このようなマトリック
ス形成成分として、具体的には、アルコキシシランなど
の有機ケイ素化合物の加水分解重縮合物またはアルカリ
金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重
縮合物、または(ポリエステル樹脂、ウレタン樹脂、エ
ポキシ樹脂、アクリル樹脂、アルキド樹脂)などの塗料
用樹脂などが挙げられる。このマトリックス形成成分
は、前記結晶性導電性微粒子1重量部当たり、0.01
〜0.5重量部、好ましくは0.03〜0.3重量部の量
で含まれていればよい。また、硬化用の触媒が含まれて
いてもよい。
The coating liquid for forming a transparent conductive film according to the present invention may contain a matrix-forming component which acts as a binder (also referred to as a matrix) for the crystalline conductive fine particles after the film is formed. As such a matrix forming component, specifically, a hydrolyzed polycondensate of an organosilicon compound such as an alkoxysilane or a silicic acid polycondensate obtained by de-alkalizing an aqueous alkali metal silicate solution, or (polyester resin , Urethane resin, epoxy resin, acrylic resin, alkyd resin) and the like. The matrix-forming component is contained in an amount of 0.01 per part by weight of the crystalline conductive fine particles.
It may be contained in an amount of 0.5 to 0.5 parts by weight, preferably 0.03 to 0.3 parts by weight. Further, a curing catalyst may be included.

【0046】また、本発明の透明導電性被膜形成用塗布
液には、結晶性導電性微粒子の分散性や安定性を向上さ
せるため、透明導電性被膜形成用塗布液中に有機系安定
剤が含まれていてもよい。このような有機系安定剤とし
て具体的には、ゼラチン、ポリビニルアルコール、ポリ
ビニルピロリドン、シュウ酸、マロン酸、コハク酸、グ
ルタール酸、アジピン酸、セバシン酸、マレイン酸、フ
マル酸、フタル酸、クエン酸などの多価カルボン酸およ
びその塩、複素環化合物あるいはこれらの混合物などが
挙げられる。
Further, the coating liquid for forming a transparent conductive film of the present invention contains an organic stabilizer in the coating liquid for forming a transparent conductive film in order to improve the dispersibility and stability of the crystalline conductive fine particles. May be included. Specific examples of such organic stabilizers include gelatin, polyvinyl alcohol, polyvinylpyrrolidone, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and citric acid. And its salts, heterocyclic compounds and mixtures thereof.

【0047】このような有機系安定剤は、結晶性導電性
微粒子1重量部に対し、0.005〜0.5重量部、好ま
しくは0.01〜0.2重量部含まれていればよい。有機
系安定剤の量が0.005重量部未満の場合は充分な分
散性や安定性が得られないことがあり、0.5重量部を
超えて高い場合は導電性が阻害されることがある。さら
に透明導電性被膜形成用塗布液には、可視光の広い波長
領域において可視光の透過率が一定になるように、染
料、顔料などが添加されていてもよい。
Such an organic stabilizer may be contained in an amount of 0.005 to 0.5 part by weight, preferably 0.01 to 0.2 part by weight, based on 1 part by weight of the crystalline conductive fine particles. . When the amount of the organic stabilizer is less than 0.005 parts by weight, sufficient dispersibility and stability may not be obtained. When the amount is more than 0.5 parts by weight, conductivity may be impaired. is there. Further, a dye, a pigment, and the like may be added to the coating liquid for forming a transparent conductive film so that the visible light transmittance is constant in a wide wavelength range of visible light.

【0048】本発明で用いられる透明導電性被膜形成用
塗布液中の固形分濃度(結晶性導電性微粒子と必要に応
じて添加される結晶性導電性微粒子以外の導電性微粒
子、染料、顔料などの添加剤の総量)は、液の流動性、
塗布液中における結晶性導電性微粒子などの粒状成分の
分散性などの点から、15重量%以下、好ましくは0.
15〜5重量%であることが好ましい。
The solid content concentration in the coating liquid for forming a transparent conductive film used in the present invention (the conductive fine particles other than the crystalline conductive fine particles and the crystalline conductive fine particles added as necessary, dyes, pigments, etc.) The total amount of additives) is the fluidity of the liquid,
From the viewpoint of the dispersibility of particulate components such as crystalline conductive fine particles in the coating liquid, the content is preferably 15% by weight or less, preferably 0.1% by weight.
It is preferably 15 to 5% by weight.

【0049】透明導電性被膜付基材 次に、本発明に係る透明導電性被膜付基材について具体
的に説明する。本発明に係る透明導電性被膜付基材で
は、ガラス、プラスチック、セラミックなどからなるフ
ィルム、シートあるいはその他の成形体などの基材上に
形成された前記結晶性導電性微粒子を含む透明導電性微
粒子層と、該透明導電性微粒子層上に設けられ、該透明
導電性微粒子層よりも屈折率が低い透明被膜とからなる
ことを特徴としている。
Next, the substrate with a transparent conductive film according to the present invention will be specifically described. In the substrate with a transparent conductive film according to the present invention, transparent conductive fine particles containing the crystalline conductive fine particles formed on a substrate such as a film, a sheet, or another molded body made of glass, plastic, ceramic, or the like. And a transparent film provided on the transparent conductive fine particle layer and having a lower refractive index than the transparent conductive fine particle layer.

【0050】[透明導電性微粒子層]結晶性導電性微粒子
としては前記したと同様のものを用いることができる。
透明導電性微粒子層は、膜厚が約5〜200nm、好ま
しくは10〜150nmの範囲にあることが好ましく、
この範囲の膜厚であれば帯電防止性能、電磁波遮蔽性能
に優れるとともにとくに視感反射率が低く反射防止性能
に優れた透明導電性被膜付基材を得ることができる。
[Transparent conductive fine particle layer] As the crystalline conductive fine particles, those described above can be used.
The transparent conductive fine particle layer has a thickness of about 5 to 200 nm, preferably 10 to 150 nm,
When the film thickness is in this range, a substrate with a transparent conductive film having excellent antistatic performance and electromagnetic wave shielding performance and particularly low luminous reflectance and excellent antireflection performance can be obtained.

【0051】このような透明導電性微粒子層には、必要
に応じて、上記結晶性導電性微粒子以外の導電性微粒
子、バインダー、有機系安定剤を含んでいてもよい。結
晶性導電性微粒子以外の導電性微粒子、有機系安定剤と
して具体的には、前記透明導電性被膜形成用塗布液にて
例示したものと同様のものが挙げられる。また、バイン
ダーとしては、前記マトリックス形成成分である有機ケ
イ素化合物の加水分解重縮合物、ケイ酸重縮合物などか
ら誘導されるシリカ、塗料用樹脂などが使用される。
Such a transparent conductive fine particle layer may contain conductive fine particles other than the above-mentioned crystalline conductive fine particles, a binder, and an organic stabilizer, if necessary. Specific examples of the conductive fine particles other than the crystalline conductive fine particles and the organic stabilizer include those similar to those exemplified in the coating liquid for forming a transparent conductive film. Further, as the binder, silica derived from a hydrolytic polycondensate of an organosilicon compound as the matrix-forming component, a silicic acid polycondensate, or the like, a resin for paint, or the like is used.

【0052】本発明では、透明導電性微粒子層が異なる
2層以上の透明導電性微粒子層を積層したものであって
もよい。積層する場合、基材側の層から外側に向かっ
て、順次、屈折率を低下させることが好ましい。 [透明被膜]本発明に係る透明導電性被膜付基材では、
前記透明導電性微粒子層の上に、前記透明導電性微粒子
層よりも屈折率の低い透明被膜が形成されている。
In the present invention, two or more transparent conductive fine particle layers having different transparent conductive fine particle layers may be laminated. In the case of laminating, it is preferable to decrease the refractive index sequentially from the layer on the substrate side to the outside. [Transparent coating] In the substrate with a transparent conductive coating according to the present invention,
A transparent film having a lower refractive index than the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer.

【0053】形成される透明被膜の膜厚は、50〜30
0nm、好ましくは80〜200nmの範囲にあること
が好ましい。このような透明被膜は、たとえば、シリ
カ、チタニア、ジルコニアなどの無機酸化物、およびこ
れらの複合酸化物などから形成される。本発明では、透
明被膜として、特に加水分解性有機ケイ素化合物の加水
分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱
アルカリして得られるケイ酸重縮合物からなるシリカ系
被膜が好ましい。このような透明被膜が形成された透明
導電性被膜付基材は、反射防止性能に優れている。
The thickness of the formed transparent film is 50 to 30.
0 nm, preferably in the range of 80 to 200 nm. Such a transparent film is formed of, for example, an inorganic oxide such as silica, titania, and zirconia, and a composite oxide thereof. In the present invention, as the transparent film, a hydrolytic polycondensate of a hydrolyzable organosilicon compound, or a silica-based film composed of a silicic acid polycondensate obtained by dealkalization of an aqueous alkali metal silicate solution is particularly preferred. The substrate with a transparent conductive film on which such a transparent film is formed has excellent antireflection performance.

【0054】また、このような透明被膜には、本願出願
人による特開平7−133105号で提案した屈折率が
1.44以下の複合酸化物粒子を配合して用いると、得
られる透明被膜の屈折率が低くなり、さらに反射防止性
能に優れた透明導電性被膜付基材が得られる。また、上
記透明被膜中には、必要に応じて、フッ化マグネシウム
などの低屈折率材料で構成された微粒子、染料、顔料な
どの添加剤を含まれていてもよい。
Further, when such a transparent film is mixed and used with a composite oxide particle having a refractive index of 1.44 or less as proposed in Japanese Patent Application Laid-Open No. Hei 7-133105 by the present applicant, the resulting transparent film is obtained. A substrate with a transparent conductive film having a low refractive index and excellent antireflection performance can be obtained. In addition, the transparent coating may contain additives such as fine particles, dyes, and pigments made of a low refractive index material such as magnesium fluoride, if necessary.

【0055】本発明では、透明被膜が異なる2層以上の
透明被膜を積層膜であってもよい。透明膜を積層する場
合、内側の被膜から外側に向かって、順次、屈折率を低
下させることが好ましい。透明導電性被膜付基材の製造方法 次に、このような本発明に係る透明導電性被膜付基材の
製造方法について説明する。
In the present invention, two or more transparent films having different transparent films may be laminated. When laminating a transparent film, it is preferable to decrease the refractive index sequentially from the inner coating to the outer coating. Method for Manufacturing Substrate with Transparent Conductive Film Next, a method for manufacturing the substrate with a transparent conductive film according to the present invention will be described.

【0056】上記透明導電性被膜付基材は、まず上記し
た透明導電性被膜形成用塗布液を基材上に塗布・乾燥し
て透明導電性微粒子層を形成し、次いで該微粒子層上に
透明被膜形成用塗布液を塗布して前記透明導電性微粒子
層上に該微粒子層よりも屈折率の低い透明被膜を形成す
ることによって得ることができる。なお、用いられる透
明導電性被膜形成用塗布液は、液中に存在するアルカリ
金属イオン、アンモニウムイオンおよび多価金属イオン
ならびに鉱酸などの無機陰イオン、酢酸、蟻酸などの有
機陰イオンなどのイオン濃度の合計量が、少ないことが
望ましく、具体的には塗布液中の固形分100g当り1
0ミリモル以下の量であることが望ましい。イオン濃度
を少なくするために、たとえば、アニオン交換樹脂、カ
チオン交換樹脂、活性炭などで処理してもよい。
The substrate with a transparent conductive film is coated with the above-mentioned coating solution for forming a transparent conductive film on a substrate and dried to form a layer of transparent conductive fine particles. It can be obtained by applying a coating solution for forming a film to form a transparent film having a lower refractive index than the fine particle layer on the transparent conductive fine particle layer. The coating liquid for forming the transparent conductive film used is composed of alkali metal ions, ammonium ions, polyvalent metal ions, inorganic anions such as mineral acids, and organic anions such as acetic acid and formic acid. It is desirable that the total amount of the concentration is small, specifically, 1 to 100 g of the solid content in the coating solution.
Desirably, the amount is 0 mmol or less. In order to reduce the ion concentration, for example, the material may be treated with an anion exchange resin, a cation exchange resin, activated carbon or the like.

【0057】透明導電性微粒子層を形成する方法として
は、たとえば、透明導電性被膜形成用塗布液をディッピ
ング法、スピナー法、スプレー法、ロールコーター法、
フレキソ印刷法などの方法で、基材上に塗布したのち、
常温〜約90℃の範囲の温度で乾燥する。透明導電性被
膜形成用塗布液中に上記のようなマトリックス形成成分
が含まれている場合には、マトリックス形成成分の硬化
処理を行ってもよい。
As a method for forming the transparent conductive fine particle layer, for example, a coating solution for forming a transparent conductive film is dipped, spinnered, sprayed, roll-coated,
After applying it on the substrate by a method such as flexographic printing,
Dry at a temperature ranging from normal temperature to about 90 ° C. When the matrix forming component as described above is contained in the coating liquid for forming a transparent conductive film, the matrix forming component may be cured.

【0058】具体的には、このような透明被膜形成用塗
布液を塗布して形成した被膜を、乾燥時、または乾燥後
に、150℃以上で加熱するか、未硬化の被膜に可視光
線よりも波長の短い紫外線、電子線、X線、γ線などの
電磁波を照射するか、あるいはアンモニアなどの活性ガ
ス雰囲気中に晒してもよい。このようにすると、被膜形
成成分の硬化が促進され、得られる透明導電性微粒子層
の硬度が高くなる。
Specifically, the coating film formed by applying such a coating liquid for forming a transparent coating film is heated at 150 ° C. or more at the time of drying or after drying, or the uncured film is exposed to visible light. Electromagnetic waves such as ultraviolet rays, electron beams, X-rays, and γ-rays having a short wavelength may be irradiated, or may be exposed to an atmosphere of an active gas such as ammonia. By doing so, the curing of the film-forming component is promoted, and the hardness of the obtained transparent conductive fine particle layer is increased.

【0059】上記のような方法によって形成された透明
導電性微粒子層の膜厚は、約50〜200nmの範囲が好
ましく、この範囲の膜厚であれば電磁遮蔽効果に優れた
透明導電性被膜付基材を得ることができる。次ぎに、上
記のようにして形成された透明導電性微粒子層の上に、
該微粒子層よりも屈折率の低い透明被膜を形成する。
The thickness of the transparent conductive fine particle layer formed by the above method is preferably in the range of about 50 to 200 nm. A substrate can be obtained. Next, on the transparent conductive fine particle layer formed as described above,
A transparent film having a lower refractive index than the fine particle layer is formed.

【0060】透明被膜の膜厚は、50〜300nm、好
ましくは80〜200nmの範囲であることが好まし
く、このような範囲の膜厚であると優れた反射防止性を
発揮する。透明被膜の形成方法としては、特に制限はな
く、この透明被膜の材質に応じて、真空蒸発法、スパッ
タリング法、イオンプレーティング法などの乾式薄膜形
成方法、あるいは上述したようなディッピング法、スピ
ナー法、スプレー法、ロールコーター法、フレキソ印刷
法などの湿式薄膜形成方法を採用することができる。
The thickness of the transparent coating is preferably in the range of 50 to 300 nm, and more preferably in the range of 80 to 200 nm. When the thickness is in such a range, excellent antireflection properties are exhibited. There is no particular limitation on the method of forming the transparent film, and depending on the material of the transparent film, a dry thin film forming method such as a vacuum evaporation method, a sputtering method, or an ion plating method, or a dipping method or a spinner method as described above. And a wet thin film forming method such as a spray method, a roll coater method, and a flexographic printing method.

【0061】上記透明被膜を湿式薄膜形成方法で形成す
る場合、従来公知の透明被膜形成用塗布液を用いること
ができる。このような透明被膜形成用塗布液としては、
具体的に、シリカ、チタニア、ジルコニアなどの無機酸
化物、またはこれらの複合酸化物を透明被膜形成成分と
して含む塗布液が用いられる。本発明では、透明被膜形
成用塗布液として加水分解性有機ケイ素化合物の加水分
解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱ア
ルカリして得られるケイ酸液を含むシリカ系透明被膜形
成用塗布液が好ましく、特に下記一般式[1]で表され
るアルコキシシランの加水分解重縮合物を含有している
ことが好ましい。このような塗布液から形成されるシリ
カ系被膜は、複合金属微粒子含有の導電性微粒子層より
も屈折率が小さく、得られる透明被膜付基材は反射防止
性に優れている。
When the transparent film is formed by a wet thin film forming method, a conventionally known coating liquid for forming a transparent film can be used. Examples of such a coating liquid for forming a transparent film include:
Specifically, a coating liquid containing an inorganic oxide such as silica, titania, or zirconia, or a composite oxide thereof as a transparent film forming component is used. In the present invention, a coating solution for forming a silica-based transparent film containing a hydrolyzable polycondensate of a hydrolyzable organosilicon compound or a silicic acid solution obtained by dealkalizing an aqueous solution of an alkali metal silicate is used as a coating solution for forming a transparent film. The liquid is preferable, and particularly preferably contains a hydrolyzed polycondensate of an alkoxysilane represented by the following general formula [1]. The silica-based coating formed from such a coating solution has a smaller refractive index than the conductive fine particle layer containing the composite metal fine particles, and the resulting substrate with a transparent coating has excellent antireflection properties.

【0062】RaSi(OR')4-a [1] (式中、Rはビニル基、アリール基、アクリル基、炭素
数1〜8のアルキル基、水素原子またはハロゲン原子で
あり、R'はビニル基、アリール基、アクリル基、炭系
数1〜8のアルキル基、−C24OCn2n+1(n=1
〜4)または水素原子であり、aは1〜3の整数であ
る。)このようなアルコキシランとしては、テトラメト
キシシラン、テトラエトキシシラン、テトライソプロポ
キシシラン、テトラブトキシシラン、テトラオクチルシ
ラン、メチルトリメトキシシラン、メチルトリエトキシ
シラン、エチルトリエトキシシラン、メチルトリイソプ
ロポキシシラン、ビニルトリメトキシシラン、フェニル
トリメトキシシラン、ジメチルジメトキシシランなどが
挙げられる。
R a Si (OR ′) 4-a [1] (wherein R is a vinyl group, an aryl group, an acryl group, an alkyl group having 1 to 8 carbon atoms, a hydrogen atom or a halogen atom, vinyl group, an aryl group, an acrylic group, an alkyl group of carbon-based number 1~8, -C 2 H 4 OC n H 2n + 1 (n = 1
To 4) or a hydrogen atom, and a is an integer of 1 to 3. Examples of such alkoxylans include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, methyltriisopropoxysilane , Vinyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane and the like.

【0063】上記のアルコキシシランの1種または2種
以上を、たとえば水−アルコール混合溶媒中で酸触媒の
存在下、加水分解すると、アルコキシシランの加水分解
重縮合物を含む透明被膜形成用塗布液が得られる。この
ような塗布液中に含まれる被膜形成成分の濃度は、酸化
物換算で0.5〜2.0重量%であることが好ましい。本
発明で使用される透明被膜形成用塗布液は、前記透明導
電性被膜形成用塗布液の場合と同様に、脱イオン処理を
行い、透明導電性塗布液のイオン濃度を前記透明導電性
被膜形成用塗布液中の濃度と同じレベルまで低減させて
もよい。
When one or more of the above-mentioned alkoxysilanes are hydrolyzed in, for example, a water-alcohol mixed solvent in the presence of an acid catalyst, a coating liquid for forming a transparent film containing a hydrolyzed polycondensate of the alkoxysilane is obtained. Is obtained. The concentration of the film forming component contained in such a coating solution is preferably 0.5 to 2.0% by weight in terms of oxide. The coating solution for forming a transparent film used in the present invention is subjected to a deionization treatment in the same manner as in the case of the coating solution for forming a transparent conductive film, and the ionic concentration of the transparent conductive coating solution is changed to the value for forming the transparent conductive film. It may be reduced to the same level as the concentration in the application liquid.

【0064】また、このような透明被膜形成用塗布液に
は、本願出願人による特開平7−133105号公報で
提案した屈折率が1.44以下の複合酸化物粒子を配合
して用いると、得られる透明被膜の屈折率が低くなり、
さらに反射防止性能に優れた透明導電性被膜付基材が得
られる。さらにまた、本発明で使用される透明被膜形成
用塗布液には、フッ化マグネシウムなどの低屈折率材料
で構成された微粒子、透明被膜の透明度および反射防止
性能を阻害しない程度に少量の導電性微粒子および/ま
たは染料または顔料などの添加剤が含まれていてもよ
い。
Further, in such a coating liquid for forming a transparent film, a composite oxide particle having a refractive index of 1.44 or less proposed in Japanese Patent Application Laid-Open No. Hei 7-133105 by the present applicant is blended and used. The refractive index of the resulting transparent film is low,
Further, a substrate with a transparent conductive film having excellent antireflection performance can be obtained. Furthermore, the coating liquid for forming a transparent film used in the present invention contains fine particles composed of a low refractive index material such as magnesium fluoride, and a small amount of conductive material that does not impair the transparency and antireflection performance of the transparent film. Fine particles and / or additives such as dyes or pigments may be included.

【0065】本発明では、このような透明被膜形成用塗
布液を塗布して形成した被膜を、乾燥時、または乾燥後
に、150℃以上で加熱するか、未硬化の被膜に可視光
線よりも波長の短い紫外線、電子線、X線、γ線などの
電磁波を照射するか、あるいはアンモニアなどの活性ガ
ス雰囲気中に晒してもよい。このようにすると、被膜形
成成分の硬化が促進され、得られる透明被膜の硬度が高
くなる。
In the present invention, the coating film formed by applying such a coating liquid for forming a transparent film is heated at 150 ° C. or more at the time of drying or after drying, or the uncured film has a wavelength shorter than that of visible light. Irradiation with electromagnetic waves such as ultraviolet rays, electron beams, X-rays, and γ-rays, or exposure to an active gas atmosphere such as ammonia. By doing so, the curing of the film-forming component is promoted, and the hardness of the obtained transparent film is increased.

【0066】さらに、透明被膜形成用塗布液を塗布して
被膜を形成する際に、透明導電性微粒子層を約40〜9
0℃に保持しながら透明被膜形成用塗布液を塗布して、
前記のような処理を行うと、透明被膜の表面にリング状
の凹凸が形成し、ギラツキの少ないアンチグレアの透明
被膜付基材が得られる。表示装置 つぎに、本発明に係る表示装置について説明する。
Further, when a coating liquid for forming a transparent coating is applied to form a coating, the transparent conductive fine particle layer is applied to a thickness of about 40 to 9
Applying a coating liquid for forming a transparent film while maintaining the temperature at 0 ° C.
By performing the above-described treatment, ring-shaped irregularities are formed on the surface of the transparent film, and an antiglare substrate with a transparent film having less glare can be obtained. Next, a display device according to the present invention will be described.

【0067】本発明に係る前記透明導電性被膜付基材
は、帯電防止、電磁波遮蔽に必要な102〜107Ω/□
の範囲の表面抵抗を有し、かつ可視光領域および近赤外
領域で充分な反射防止性能を有する透明導電性被膜付基
材は、表示装置の前面板として好適に用いられる。本発
明に係る表示装置は、ブラウン管(CRT)、蛍光表示
管(FIP)、プラズマディスプレイ(PDP)、液晶
用ディスプレイ(LCD)などのような電気的に画像を
表示する装置であり、上記のような透明導電性被膜付基
材で構成された前面板を備えている。
The substrate with a transparent conductive film according to the present invention has a resistance of 10 2 to 10 7 Ω / □ required for antistatic and electromagnetic wave shielding.
The substrate having a transparent conductive film having a surface resistance in the range described above and having sufficient antireflection performance in the visible light region and the near infrared region is suitably used as a front plate of a display device. The display device according to the present invention is a device for displaying an image electrically, such as a cathode ray tube (CRT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like. A front plate made of a transparent base material with a transparent conductive film.

【0068】従来の前面板を備えた表示装置を作動させ
ると、基材が帯電しこれに粉塵等が付着したり、また前
面板に画像が表示されると同時に電磁波が前面板から放
出され、この電磁波が観察者の人体に影響を及ぼすこと
がある。これに対して、本発明に係る表示装置では、特
定の表面抵抗を有する全面板が形成されているので、発
生した静電気が効果的に除去され、さらに前面板から放
出される電磁波も効果的に除去される。特に前面板の表
面抵抗が概ね104〜107Ω/□にあるときは帯電防止
性能を発揮することができ、また前面板の表面抵抗が概
ね102〜104Ω/□にあるときは帯電防止性能に加え
て電磁波、およびこの電磁波の放出に伴って生じる電磁
場を効果的に遮蔽することができる。
When a conventional display device having a front panel is operated, the base material is charged and dust or the like adheres to the substrate, and an image is displayed on the front panel, and simultaneously, an electromagnetic wave is emitted from the front panel. This electromagnetic wave may affect the human body of the observer. On the other hand, in the display device according to the present invention, since the full surface plate having the specific surface resistance is formed, the generated static electricity is effectively removed, and the electromagnetic waves emitted from the front plate are also effectively reduced. Removed. In particular, when the surface resistance of the front plate is approximately 10 4 to 10 7 Ω / □, the antistatic performance can be exhibited. When the surface resistance of the front plate is approximately 10 2 to 10 4 Ω / □, In addition to the antistatic performance, it is possible to effectively shield an electromagnetic wave and an electromagnetic field generated by emission of the electromagnetic wave.

【0069】また、表示装置の前面板で反射光が生じる
と、この反射光によって表示画像が見にくくなったり、
また視感反射率が大きいと目で感じる反射(映り込み)
が強く感じられたり反射色の色付きを抑制することが困
難なことがあるが、本発明に係る表示装置では、屈折率
の低い結晶性導電性微粒子を用いて導電性微粒子層が形
成されているので、透明導電性微粒子層と透明導電性微
粒子層上に形成された透明導電性微粒子層よりも屈折率
の低い透明被膜との屈折率差が小さく、このため反射光
を効果的に防止することができるとともに、視感反射率
が小さいために映り込みが弱く、反射色の色付きが抑制
されている。
When reflected light is generated on the front plate of the display device, the reflected light makes it difficult to view a displayed image,
In addition, reflection that is perceived by the eyes when the luminous reflectance is large (reflection)
In some cases, it is difficult to suppress the coloring of the reflection color or to feel strongly, but in the display device according to the present invention, the conductive fine particle layer is formed using crystalline conductive fine particles having a low refractive index. Therefore, the difference in the refractive index between the transparent conductive fine particle layer and the transparent coating having a lower refractive index than the transparent conductive fine particle layer formed on the transparent conductive fine particle layer is small, and therefore, it is possible to effectively prevent reflected light. And the luminous reflectance is small, so that the reflection is weak and the coloring of the reflected color is suppressed.

【0070】[0070]

【発明の効果】本発明によれば、帯電防止性能、電磁波
遮蔽性能を有するとともに屈折率の低い透明導電性微粒
子層が形成され、ボトム反射率とともに視感反射率(可
視光全域にわたる平均反射率)の低い、反射防止性能に
優れた透明導電性被膜付基材に用いることができる結晶
性導電性微粒子を得ることができる。
According to the present invention, a transparent conductive fine particle layer having an antistatic property, an electromagnetic wave shielding property and a low refractive index is formed, and the luminous reflectance (average reflectance over the entire visible light region) is formed together with the bottom reflectance. ), Which can be used as a substrate with a transparent conductive film having excellent antireflection performance.

【0071】本発明によれば、帯電防止性能、電磁波遮
蔽性能を有するとともに屈折率の低い透明導電性微粒子
層が形成された反射防止性能に優れた透明導電性被膜付
基材に用いることができる結晶性導電性微粒子の製造方
法を提供することができる。また、本発明によれば、帯
電防止性能、電磁波遮蔽性能を有するとともに屈折率の
低い透明導電性微粒子層が形成され反射防止性能に優れ
た透明導電性被膜付基材を製造するための透明導電性被
膜形成用塗布液を得ることができる。
According to the present invention, it can be used as a substrate with a transparent conductive coating having an anti-reflection property and having an anti-static property and an electromagnetic wave shielding property and having a transparent conductive fine particle layer having a low refractive index formed thereon. A method for producing crystalline conductive fine particles can be provided. Further, according to the present invention, a transparent conductive film for producing a substrate with a transparent conductive film having an antistatic performance, an electromagnetic wave shielding performance and a transparent conductive fine particle layer having a low refractive index and having an excellent antireflection performance is formed. Thus, a coating solution for forming a functional film can be obtained.

【0072】さらに、本発明によれば、帯電防止性能、
電磁波遮蔽性能を有するとともに屈折率の低い透明導電
性微粒子層が形成された反射防止性能に優れた透明導電
性被膜付基材を得ることができる。このような透明導電
性被膜付基材を表示装置の前面板として用いれば、電磁
遮蔽性に優れるとともに反射防止性にも優れた表示装置
を得ることができる。
Further, according to the present invention, antistatic performance,
It is possible to obtain a substrate with a transparent conductive film having excellent anti-reflection performance and having an electromagnetic wave shielding performance and a transparent conductive fine particle layer having a low refractive index formed thereon. When such a substrate with a transparent conductive film is used as a front plate of a display device, a display device having excellent electromagnetic shielding properties and excellent antireflection properties can be obtained.

【0073】[0073]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0074】[0074]

【実施例1】導電性微粒子(P-1)の調製 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液と、ドーピング剤として錫酸カリウム12.7
gを濃度10重量%の水酸化カリウム溶液に溶解して得
られた溶液とを調製し、これらの溶液を、50℃に保持
された1000gの純水に2時間かけて添加した。この
間、系内のpHを11に保持した。得られたSnドープ
水和酸化インジウム粒子分散液からSnドープ水和酸化
インジウム粒子を濾別・洗浄した。
Example 1 Preparation of conductive fine particles (P-1) A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water, and 12.7 g of potassium stannate as a doping agent
g was dissolved in a 10% by weight potassium hydroxide solution to prepare a solution, and these solutions were added to 1000 g of pure water maintained at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. The Sn-doped hydrated indium oxide particles were filtered and washed from the obtained Sn-doped hydrated indium oxide particle dispersion.

【0075】洗浄したSnドープ水和酸化インジウム粒
子を酸化物としての濃度が10重量%となるように純水
に懸濁し、ついで温度95℃で24時間熟成をした。熟
成した水和物粒子を105℃で乾燥し、結晶度と平均粒
子径を測定した。なお結晶度は前記した方法で評価し、
微粒子の粒子径は、マイクロトラック粒度分析計((株)
日機装製)で評価した。結果を表1に示す。
The washed Sn-doped indium oxide hydrate particles were suspended in pure water so that the concentration as an oxide became 10% by weight, and then aged at a temperature of 95 ° C. for 24 hours. The aged hydrate particles were dried at 105 ° C., and the crystallinity and the average particle size were measured. The crystallinity was evaluated by the method described above,
The particle size of the fine particles can be measured using a Microtrac particle size analyzer (by
Nikkiso). Table 1 shows the results.

【0076】次いで空気中、350℃で、熟成後の水和
物粒子を3時間焼成し、さらに窒素ガス雰囲気中、60
0℃で2時間焼成することによりSnドープ酸化インジ
ウム微粒子(P-1)を得た。このときの結晶度、平均粒子
径、穴部・空洞径および空隙率を測定した。なお結晶
度、平均粒子径、穴部・空洞径および空隙率を前記した
方法で評価した。
Next, the aged hydrate particles were calcined in air at 350 ° C. for 3 hours, and further dried in a nitrogen gas atmosphere at 60 ° C.
By baking at 0 ° C. for 2 hours, Sn-doped indium oxide fine particles (P-1) were obtained. At this time, the crystallinity, average particle diameter, hole / cavity diameter, and porosity were measured. The crystallinity, average particle diameter, hole / cavity diameter, and porosity were evaluated by the methods described above.

【0077】結果を表1に示す。得られたSnドープ酸
化インジウム微粒子(P-1)を濃度が30重量%となるよ
うに純水に分散させ、さらに硝酸水溶液でpHを3.5
に調製した後、この混合液を30℃に保持しながらサン
ドミルで、3時間粉砕してゾルを調製した。次に、この
ゾルをイオン交換樹脂で処理して硝酸イオンを除去し、
純水を加えて濃度20重量%のSnドープ酸化インジウ
ム微粒子(P-1)分散液を調製した。得られた分散液の微
粒子の平均粒子径を測定し、結果を表1に示す。
Table 1 shows the results. The obtained Sn-doped indium oxide fine particles (P-1) were dispersed in pure water so as to have a concentration of 30% by weight, and the pH was further adjusted to 3.5 with an aqueous nitric acid solution.
Then, the mixture was pulverized with a sand mill for 3 hours while maintaining the mixture at 30 ° C. to prepare a sol. Next, this sol is treated with an ion exchange resin to remove nitrate ions,
Pure water was added to prepare a Sn-doped indium oxide fine particle (P-1) dispersion having a concentration of 20% by weight. The average particle diameter of the fine particles of the obtained dispersion was measured, and the results are shown in Table 1.

【0078】また得られた微粒子分散液の一部を採取
し、乾燥してTEM写真観察を行った。得られた微粒子の
写真を図1に示す。図1より、粒子内に空隙(空洞、穴
部)を有するSnドープ酸化インジウム微粒子が得られ
た。
A part of the obtained fine particle dispersion was collected, dried, and observed with a TEM photograph. FIG. 1 shows a photograph of the obtained fine particles. As shown in FIG. 1, Sn-doped indium oxide fine particles having voids (cavities and holes) in the particles were obtained.

【0079】[0079]

【実施例2】導電性微粒子(P-2)の調製 熟成温度を180℃とした以外は実施例1と同様にして
Snドープ酸化インジウム微粒子(P-2)分散液を調製し
た。熟成後の水和物粒子の結晶度と平均粒子径、および
焼成後の導電性微粒子の結晶度、平均粒子径、穴部・空
洞径および空隙率、および最終的に得られた分散液中の
導電性微粒子(P-2)の平均粒子径を測定した。
Example 2 Preparation of conductive fine particles (P-2) A dispersion of Sn-doped indium oxide fine particles (P-2) was prepared in the same manner as in Example 1, except that the aging temperature was set at 180 ° C. The crystallinity and average particle size of the hydrated particles after aging, and the crystallinity, average particle size, hole / cavity diameter and porosity of the conductive fine particles after firing, and in the finally obtained dispersion liquid The average particle size of the conductive fine particles (P-2) was measured.

【0080】結果をあわせて表1に示す。The results are shown in Table 1.

【0081】[0081]

【実施例3】導電性微粒子(P-3)の調製 熟成温度を30℃とした以外は実施例1と同様にしてS
nドープ酸化インジウム微粒子(P-3)分散液を調製した。
熟成後の水和物粒子の結晶度と平均粒子径、および焼成
後の導電性微粒子の結晶度、平均粒子径、穴部・空洞径
および空隙率、および最終的に得られた分散液の微粒子
の平均粒子径(P-3)を測定した。
Example 3 Preparation of Conductive Fine Particles (P-3) The procedure of Example 1 was repeated except that the aging temperature was 30 ° C.
An n-doped indium oxide fine particle (P-3) dispersion was prepared.
Crystallinity and average particle size of hydrated particles after aging, and crystallinity, average particle size, hole / cavity diameter and porosity of conductive fine particles after firing, and fine particles of finally obtained dispersion liquid Was measured for the average particle size (P-3).

【0082】結果をあわせて表1に示す。The results are shown in Table 1.

【0083】[0083]

【比較例1】導電性微粒子(P-4)の調製 熟成をしなかった以外は実施例1と同様にしてSnドー
プ酸化インジウム微粒子(P-4)分散液を調製した。調製
時の水和物の結晶度と平均粒子径、焼成後の導電性微粒
子の結晶度、平均粒子径、穴部・空洞径および空隙率、
さらに最終的に得られた分散液中の微粒子(P-4)の平均
粒子径を測定した。
Comparative Example 1 Preparation of conductive fine particles (P-4) A dispersion of Sn-doped indium oxide fine particles (P-4) was prepared in the same manner as in Example 1, except that aging was not performed. Crystallinity and average particle size of hydrate at the time of preparation, crystallinity of conductive fine particles after firing, average particle size, hole / cavity diameter and porosity,
Furthermore, the average particle diameter of the fine particles (P-4) in the finally obtained dispersion was measured.

【0084】その結果もあわせて表1に示す。Table 1 also shows the results.

【0085】[0085]

【実施例4】導電性微粒子(P-5)の調製 塩化錫57.7gとドーピング剤の塩化アンチモン7.0
gとをメタノール100gに溶解して溶液を調製した。
調製した溶液を4時間かけて、90℃、攪拌下の純水1
000gに添加して加水分解を行い、得られたSbドー
プ水和酸化錫分散液からSbドープ水和酸化錫を濾別・
洗浄した。ついで、洗浄したSbドープ水和酸化錫を、
酸化物としての濃度が20重量%となるように純水に懸
濁し、ついで温度95℃で24時間熟成をした。熟成し
た水和物を105℃で乾燥し、結晶度、平均粒子径、穴
部・空洞径および空隙率を測定した。結果を表1に示
す。
Example 4 Preparation of conductive fine particles (P-5) 57.7 g of tin chloride and 7.0 of antimony chloride as a doping agent
g was dissolved in 100 g of methanol to prepare a solution.
The prepared solution was added to pure water 1 under stirring at 90 ° C. for 4 hours.
000 g, hydrolyzed, and filtered Sb-doped hydrated tin oxide from the resulting Sb-doped hydrated tin oxide dispersion.
Washed. Then, the washed Sb-doped hydrated tin oxide was
The suspension was suspended in pure water so that the concentration as an oxide became 20% by weight, and then aged at a temperature of 95 ° C. for 24 hours. The aged hydrate was dried at 105 ° C., and the crystallinity, average particle size, hole / cavity size, and porosity were measured. Table 1 shows the results.

【0086】ついで、空気中、500℃で2時間焼成し
てSbをドーピングした導電性酸化錫の粉末(P-5)を得
た。粉末(P-5)の結晶度と平均粒子径を測定した。結果
を表1に示す。この粉末30gを水酸化カリウム水溶液
(KOHとして3.0g含有)70gに加え、混合液を
30℃に保持しながらサンドミルで、3時間粉砕してゾ
ルを調製した。ついでこのゾルをイオン交換樹脂処理し
て、脱アルカリし、純水を加えて濃度20重量%のSb
ドープ酸化錫微粒子(P-5)分散液を調製した。
Then, the mixture was calcined in air at 500 ° C. for 2 hours to obtain a conductive tin oxide powder (P-5) doped with Sb. The crystallinity and average particle size of the powder (P-5) were measured. Table 1 shows the results. 30 g of this powder was added to 70 g of an aqueous potassium hydroxide solution (containing 3.0 g as KOH), and the mixture was pulverized with a sand mill for 3 hours while maintaining the mixture at 30 ° C. to prepare a sol. Then, the sol is treated with an ion exchange resin, dealkalized, and pure water is added to the sol to obtain a 20 wt% Sb
A dispersion of doped tin oxide fine particles (P-5) was prepared.

【0087】分散液中の微粒子の平均粒子径を測定し
た。結果を表1に示す。
The average particle size of the fine particles in the dispersion was measured. Table 1 shows the results.

【0088】[0088]

【比較例2】導電性微粒子(P-6)の調製 熟成をしなかった以外は実施例4と同様にしてSnドー
プ酸化インジウム微粒子(P-6)の分散液を調製した。調
製時の水和物粒子の結晶度と平均粒子径、焼成後の導電
性微粒子の結晶度、平均粒子径、穴部・空洞径および空
隙率、および分散液中の導電性微粒子(P-6)の微粒子の
平均粒子径を測定した。
Comparative Example 2 Preparation of Conductive Fine Particles (P-6) A dispersion of Sn-doped indium oxide fine particles (P-6) was prepared in the same manner as in Example 4 except that ripening was not performed. Crystallinity and average particle size of hydrate particles at the time of preparation, crystallinity of conductive fine particles after firing, average particle size, hole / cavity diameter and porosity, and conductive fine particles in the dispersion (P-6 ) The average particle diameter of the fine particles was measured.

【0089】結果を表1に示す。Table 1 shows the results.

【0090】[0090]

【実施例5】導電性微粒子(P-7)の調製 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液を、50℃に保持された1000gの純水に2
時間かけて添加した。この間、系内のpHを11に保持
した。得られた水和酸化インジウム粒子分散液から水和
酸化インジウム粒子を濾別・洗浄した。
Example 5 Preparation of conductive fine particles (P-7) A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water was added to 1000 g of pure water maintained at 50 ° C.
Added over time. During this time, the pH in the system was maintained at 11. The hydrated indium oxide particles were separated from the obtained hydrated indium oxide particle dispersion by filtration and washed.

【0091】洗浄した水和酸化インジウム粒子を酸化物
としての濃度が10重量%となるように純水に懸濁し、
ついで温度95℃で24時間熟成をした。熟成した水和
酸化インジウム粒子を105℃で乾燥し、結晶度と平均
粒子径を測定した。次いで空気中、350℃で3時間焼
成し、さらに窒素ガス雰囲気中、600℃で2時間焼成
することにより酸化インジウム微粒子(P-7)を得た。こ
のときの結晶度、平均粒子径、穴部・空洞径および空隙
率を測定した。結果を表1に示す。
The washed hydrated indium oxide particles were suspended in pure water so that the concentration as an oxide was 10% by weight.
Then, aging was performed at a temperature of 95 ° C. for 24 hours. The aged hydrated indium oxide particles were dried at 105 ° C., and the crystallinity and the average particle size were measured. Next, the resultant was fired in air at 350 ° C. for 3 hours and further fired in a nitrogen gas atmosphere at 600 ° C. for 2 hours to obtain indium oxide fine particles (P-7). At this time, the crystallinity, average particle diameter, hole / cavity diameter, and porosity were measured. Table 1 shows the results.

【0092】これを濃度が30重量%となるように純水
に分散させ、さらに硝酸水溶液でpHを3.5に調製し
た後、この混合液を30℃に保持しながらサンドミル
で、3時間粉砕してゾルを調製した。次に、このゾルを
イオン交換樹脂で処理して硝酸イオンを除去し、純水を
加えて濃度20重量%の酸化インジウム微粒子(P-1)分
散液を調製した。得られた分散液の微粒子の平均粒子径
を測定した。
This was dispersed in pure water to a concentration of 30% by weight, and the pH was adjusted to 3.5 with an aqueous nitric acid solution. Then, the mixture was pulverized with a sand mill for 3 hours while maintaining the mixture at 30 ° C. Thus, a sol was prepared. Next, this sol was treated with an ion exchange resin to remove nitrate ions, and pure water was added to prepare a dispersion of indium oxide fine particles (P-1) having a concentration of 20% by weight. The average particle size of the fine particles of the obtained dispersion was measured.

【0093】結果を表1に示す。Table 1 shows the results.

【0094】[0094]

【比較例3】導電性微粒子(P-8)の調製 熟成をしなかった以外は実施例5と同様にして酸化イン
ジウム微粒子(P-8)および酸化インジウム微粒子(P-8)分
散液を調製した。水和物粒子の結晶度と平均粒子径、焼
成後の導電性微粒子の結晶度、平均粒子径、穴部・空洞
径および空隙率、および分散液中の導電性微粒子(P-8)
の平均粒子径を測定した。
Comparative Example 3 Preparation of Conductive Fine Particles (P-8) Indium oxide fine particles (P-8) and a dispersion of indium oxide fine particles (P-8) were prepared in the same manner as in Example 5 except that aging was not performed. did. Crystallinity and average particle size of hydrate particles, crystallinity of conductive fine particles after firing, average particle size, hole / cavity diameter and porosity, and conductive fine particles in dispersion (P-8)
Was measured for the average particle size.

【0095】結果を表1に示す。Table 1 shows the results.

【0096】[0096]

【表1】 [Table 1]

【0097】[0097]

【実施例6〜10、比較例4〜6】a)透明導電性被膜
形成用塗布液の調製 表1に示す(P-1)〜(P-8)の分散液と、エタノール/1-
エトキシ-2-プロパノール(1:1重量混合比)とを混
合して固形分濃度3重量%の透明導電性被膜形成用塗布
液(C-1)〜(C-8)を調製した。
Examples 6 to 10, Comparative Examples 4 to 6 a) Transparent conductive film
Preparation of Coating Solution for Formation Dispersions of (P-1) to (P-8) shown in Table 1 and ethanol / 1-
Ethoxy-2-propanol (1: 1 weight ratio) was mixed to prepare coating liquids (C-1) to (C-8) for forming a transparent conductive film having a solid content of 3% by weight.

【0098】b)透明被膜形成用塗布液の調製 正珪酸エチル(SiO2:28重量%)50g、エタノー
ル194.6g、濃硝酸1.4gおよび純水34gの混合
溶液を室温で5時間攪拌してSiO2濃度5重量%のマト
リックス形成成分を含む液を調製した。ついで、これ
に、エタノール/ブタノール/ジアセ トンアルコール
/イソプロパノール(2:1:1:5重量混合比)の混
合溶媒を加え、SiO2濃度1重量%の透明被膜形成用塗
布液を調製した。
B) Preparation of a Coating Solution for Forming a Transparent Film A mixed solution of 50 g of ethyl orthosilicate (SiO 2 : 28% by weight), 194.6 g of ethanol, 1.4 g of concentrated nitric acid and 34 g of pure water was stirred at room temperature for 5 hours. Thus, a liquid containing a matrix-forming component having an SiO 2 concentration of 5% by weight was prepared. Then, a mixed solvent of ethanol / butanol / diacetone alcohol / isopropanol (2: 1: 1: 5 weight mixing ratio) was added thereto to prepare a coating liquid for forming a transparent film having a SiO 2 concentration of 1% by weight.

【0099】c)透明導電性被膜付パネルガラスの製造 ブラウン管用パネルガラス(14")の表面を40℃に保
持しながら、スピナー法で100rpm、90秒の条件で
上記透明導電性被膜形成用塗布液(C-1)〜(C-8)をそれぞ
れ塗布し乾燥した。次いで、このようにして形成された
透明導電性微粒子層上に、同じように、スピナー法で1
00rpm、90秒の条件で透明被膜形成用塗布液を塗布
・乾燥し、160℃で30分焼成して透明導電性被膜付
基材を得た。
C) Production of Panel Glass with Transparent Conductive Coating While maintaining the surface of the CRT panel glass (14 ″) at 40 ° C., the above-mentioned coating for forming a transparent conductive film was performed at 100 rpm for 90 seconds by a spinner method. Each of the liquids (C-1) to (C-8) was applied and dried, and then, on the transparent conductive fine particle layer thus formed, the same was applied by spinner method.
The coating solution for forming a transparent film was applied and dried under the conditions of 00 rpm and 90 seconds, and baked at 160 ° C. for 30 minutes to obtain a substrate with a transparent conductive film.

【0100】これらの透明導電性被膜付基材の表面抵抗
を表面抵抗計(三菱油化(株)製:LORESTA)で測定し、ヘ
ーズをへーズコンピューター(日本電色(株)製:3000A)
で測定した。ボトム反射率および視感反射率は反射率計
(大塚電子(株)製:MCPD-2000)を用いて測定し、波長4
00〜700nmの範囲で、反射率が最も低い波長でのボ
トム反射率と、前記波長範囲での平均反射率を視感反射
率として表示した。
The surface resistance of these substrates having a transparent conductive film was measured with a surface resistance meter (LORESTA, manufactured by Mitsubishi Yuka Co., Ltd.), and the haze was measured by a haze computer (3000A, manufactured by Nippon Denshoku Co., Ltd.).
Was measured. The bottom reflectivity and the luminous reflectivity were measured using a reflectometer (MCPD-2000, manufactured by Otsuka Electronics Co., Ltd.), and the wavelength 4
In the range of 00 to 700 nm, the bottom reflectance at the wavelength having the lowest reflectance and the average reflectance in the above wavelength range were displayed as luminous reflectance.

【0101】また、導電性微粒子層の屈折率は、上記
c)でのブラウン管用パネルガラスの代わりにシリコン
ウェハーを用い、この表面を40℃に保持しながら、ス
ピナー法で100rpm、90秒の条件で透明導電性被膜
形成用塗布液(C-1)〜(C-8)をそれぞれ塗布し乾燥し、1
60℃で30分間焼成して導電性微粒子層を形成した。
各導電性微粒子層について、分光エリプソメータで屈折
率を測定した。
The refractive index of the conductive fine particle layer was determined by using a silicon wafer instead of the CRT panel glass in the above c) and keeping the surface at 40 ° C. by spinner method at 100 rpm for 90 seconds. Each of the coating liquids (C-1) to (C-8) for forming a transparent conductive film is applied and dried.
Baking was performed at 60 ° C. for 30 minutes to form a conductive fine particle layer.
The refractive index of each conductive fine particle layer was measured with a spectroscopic ellipsometer.

【0102】結果をあわせて表2に示す。また、上記で
得た透明導電性被膜付基材を用いて、表示装置を組み立
て、表示性能として画像および画像面から5mの距離に
ある蛍光灯の反射の程度(映り込み)および着色程度を
観察し、以下の基準で評価した。 反射(映り込み)および着色が弱く、画像が鮮明であるもの :◎ 反射(映り込み)は弱いが着色が認められるものの画像が鮮明であるもの:○ 反射(映り込み)および着色が強く、画像の一部が不鮮明であるもの :△ 反射(映り込み)および着色が強く、映り込みが画像より鮮明であるもの:× この結果も表2に示す。
The results are shown in Table 2. Further, a display device was assembled using the base material with the transparent conductive film obtained above, and the degree of reflection (reflection) and the degree of coloring of the fluorescent lamp at a distance of 5 m from the image and the image surface were observed as display performance. And evaluated according to the following criteria. Reflection (reflection) and coloring are weak, and the image is clear: ◎ Reflection (reflection) is weak but coloring is recognized, but the image is clear: ○ Reflection (reflection) and coloring are strong, and the image is strong A part of which is unclear: が Reflection (reflection) and coloring are strong, and reflection is clearer than the image: × The results are also shown in Table 2.

【0103】[0103]

【表2】 [Table 2]

【0104】表2の結果より、本発明に係る結晶性導電
性微粒子を使用した透明導電性被膜付基材は、ボトム反
射率が低いとともに、視感反射率も低く反射防止性能に
優れている。また表示性能にも優れている。これに対
し、比較例1〜3のように結晶度が低く、空隙率の小さ
い導電性微粒子では、ボトム反射率、視感反射率ともに
高く、反射防止性能が不充分である。また、表示性能も
必ずしも満足しうるものではない。
From the results in Table 2, it can be seen that the substrate with a transparent conductive film using the crystalline conductive fine particles according to the present invention has a low bottom reflectance, a low luminous reflectance and excellent antireflection performance. . Also, the display performance is excellent. On the other hand, the conductive fine particles having a low crystallinity and a small porosity as in Comparative Examples 1 to 3 have high bottom reflectance and luminous reflectance, and have insufficient antireflection performance. Further, the display performance is not always satisfactory.

【図面の簡単な説明】[Brief description of the drawings]

【図1】結晶性導電性微粒子の透過型電子顕微鏡写真
(TEM写真)を示す。
FIG. 1 shows a transmission electron micrograph (TEM photograph) of crystalline conductive fine particles.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 23/00 C01G 23/00 C 5G307 30/00 30/00 5G323 H01B 1/20 H01B 1/20 A 5/00 5/00 F 5/14 5/14 A 13/00 501 13/00 501Z 503 503B (72)発明者 小 柳 嗣 雄 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 (72)発明者 平 井 俊 晴 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 (72)発明者 俵 迫 祐 二 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 (72)発明者 小 松 通 郎 福岡県北九州市若松区北湊町13番2号 触 媒化成工業株式会社若松工場内 Fターム(参考) 4F100 AA02A AA03 AA17A AA20 AA21A AA28A AA29A AA33A AB22A AT00B BA03 BA07 CC00A DE01A EH462 EJ862 GB41 JA11A JA20A JD08 JG01A JG03 JG04 JM02C JN01C JN18C 4G047 CA05 CB04 CC02 CD04 4G048 AA03 AB02 AB05 AC04 AD02 AD04 AE05 5C032 AA02 DD02 DE01 DG02 DG10 5G301 DA23 DD02 DE03 5G307 AA08 FA01 FA02 FB01 FC08 5G323 BA02 BB01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01G 23/00 C01G 23/00 C 5G307 30/00 30/00 5G323 H01B 1/20 H01B 1/20 A 5 / 00 5/00 F 5/14 5/14 A 13/00 501 13/00 501Z 503 503B (72) Inventor Tsuguo Koyanagi 13-2 Kitaminato-cho, Wakamatsu-ku, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Prefecture Inside the Wakamatsu Plant (72) Inventor Toshiharu Hirai 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Prefecture Inside the Wakamatsu Plant, Catalyst Chemicals Co., Ltd. No. 13 No. 2 in the Wakamatsu Plant of Catalyst Chemicals Co., Ltd. (72) Inventor Toshiro Komatsu No. 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 4F100 AA02A AA03 AA17A AA20 AA21A AA28A AA29A AA33A AB22A AT00B BA03 BA07 CC00A DE01A EH462 EJ862 GB41 JA11A JA20A JD08 JG01A JG03 JG04 JM02C JN01C JN18C4G04 A04 0 5G307 AA08 FA01 FA02 FB01 FC08 5G323 BA02 BB01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】空隙率が0.10〜0.60ml/gの範
囲にあることを特徴とする結晶性導電性微粒子。
1. Crystalline conductive fine particles having a porosity in the range of 0.10 to 0.60 ml / g.
【請求項2】前記結晶性導電性微粒子が、酸化スズ、S
b、FまたはPがドーピングされた酸化スズ、酸化イン
ジウム、SnまたはFがドーピングされた酸化インジウ
ム、酸化アンチモン、低次酸化チタンまたはこれらの混
合物である請求項1に記載の結晶性導電性微粒子。
2. The method according to claim 2, wherein the crystalline conductive fine particles are tin oxide, S
2. The crystalline conductive fine particles according to claim 1, wherein the conductive fine particles are tin oxide, indium oxide, Sn or F-doped indium oxide, antimony oxide, low-order titanium oxide, or a mixture thereof.
【請求項3】下記の工程(a)〜(e)からなる請求項1また
は2に記載の結晶性導電性微粒子の製造方法。 (a)金属塩水溶液に、必要に応じてドーピング剤を添加
し、これにアルカリを添加して加水分解し、該金属の水
和酸化物粒子またはドーピング水和酸化物粒子を調製す
る工程 (b)前記水和酸化物粒子またはドーピング水和酸化物粒
子を濾過し、洗浄する工程 (c)洗浄した水和酸化物粒子またはドーピング水和酸化
物粒子を水に分散させ、これを50〜350℃で熟成す
る工程 (d)前記熟成した分散液から水和酸化物粒子またはドー
ピング水和酸化物粒子を濾別し、乾燥する工程 (e)前記乾燥した水和酸化物粒子またはドーピング水和
酸化物粒子を200〜800℃で焼成する工程。
3. The method for producing crystalline conductive fine particles according to claim 1, comprising the following steps (a) to (e). (a) adding a doping agent, if necessary, to an aqueous solution of a metal salt, adding an alkali thereto and hydrolyzing the same to prepare hydrated oxide particles or doped hydrated oxide particles of the metal (b) ) A step of filtering and washing the hydrated oxide particles or the doped hydrated oxide particles; (c) dispersing the washed hydrated oxide particles or the doped hydrated oxide particles in water; (D) filtering out the hydrated oxide particles or the doped hydrated oxide particles from the aged dispersion, and drying (e) the dried hydrated oxide particles or the doped hydrated oxide Firing the particles at 200-800 ° C.
【請求項4】前記金属塩がSn、In、Sb、Tiから選ば
れる1種の金属の金属塩であり、前記ドーピング剤がS
b、F、Pから選ばれる1種の元素を含む化合物である
ことを特徴とする請求項3に記載の結晶性導電性微粒子
の製造方法。
4. The method according to claim 1, wherein the metal salt is a metal salt of one metal selected from Sn, In, Sb and Ti, and the doping agent is S
4. The method for producing crystalline conductive fine particles according to claim 3, wherein the compound is a compound containing one element selected from b, F, and P.
【請求項5】請求項1または2に記載の結晶性導電性微
粒子と極性溶媒とからなる透明導電性被膜形成用塗布
液。
5. A coating solution for forming a transparent conductive film, comprising the crystalline conductive fine particles according to claim 1 and a polar solvent.
【請求項6】基材と、 基材上の、請求項1または2に記載の結晶性導電性微粒
子を含む透明導電性微粒子層と、 該透明導電性微粒子層上に設けられ、該透明導電性微粒
子層よりも屈折率が低い透明被膜とからなる透明導電性
被膜付基材。
6. A substrate, a transparent conductive fine particle layer containing the crystalline conductive fine particles according to claim 1 on the substrate, and a transparent conductive fine particle layer provided on the transparent conductive fine particle layer. A substrate with a transparent conductive coating comprising a transparent coating having a lower refractive index than the conductive fine particle layer.
【請求項7】請求項6に記載の透明導電性被膜付基材で
構成された前面板を備え、透明導電性被膜が該前面板の
外表面に形成されていることを特徴とする表示装置。
7. A display device comprising a front plate made of the substrate with a transparent conductive film according to claim 6, wherein a transparent conductive film is formed on an outer surface of the front plate. .
JP2001078895A 2001-03-19 2001-03-19 Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device Expired - Lifetime JP4519343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078895A JP4519343B2 (en) 2001-03-19 2001-03-19 Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078895A JP4519343B2 (en) 2001-03-19 2001-03-19 Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device

Publications (2)

Publication Number Publication Date
JP2002279917A true JP2002279917A (en) 2002-09-27
JP4519343B2 JP4519343B2 (en) 2010-08-04

Family

ID=18935438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078895A Expired - Lifetime JP4519343B2 (en) 2001-03-19 2001-03-19 Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device

Country Status (1)

Country Link
JP (1) JP4519343B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068964A (en) * 2004-08-31 2006-03-16 Nbc Inc Member for cutting off near infrared rays
JP2006124655A (en) * 2004-10-01 2006-05-18 Dainippon Printing Co Ltd Composition for antistatic layer
JP2006225256A (en) * 2005-01-19 2006-08-31 Mitsubishi Materials Corp Indium tin oxide precursor, indium tin oxide film, and method for production thereof
JP2006306670A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Indium oxide powder
JP2009242225A (en) * 2008-03-11 2009-10-22 Mitsui Mining & Smelting Co Ltd Tin-doped indium oxide particles and their manufacturing method
JP2018521939A (en) * 2015-05-19 2018-08-09 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Tungsten oxide colloidal suspension doped with tungsten and method for preparing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350121A (en) * 1989-05-10 1991-03-04 Rhone Poulenc Chim Porous zirconia and preparation thereof
JPH05178617A (en) * 1991-12-28 1993-07-20 Naigai Ceramics Kk Production of spherical particulate made of titanate and spherical particulate obtained by the same
JPH0748527A (en) * 1993-08-06 1995-02-21 Sumitomo Osaka Cement Co Ltd Optical meterial having antireflection layer and production thereof
JPH0948602A (en) * 1994-08-03 1997-02-18 Showa Denko Kk Production of powdery complex metal oxide
JPH0978008A (en) * 1995-09-18 1997-03-25 Mitsubishi Materials Corp Transparent electroconductive film of low reflection
JPH1179743A (en) * 1997-08-29 1999-03-23 Natl Inst For Res In Inorg Mater Mesoporous body having hollandite type crystal structure and its production
JPH11326601A (en) * 1998-05-12 1999-11-26 Fuji Photo Film Co Ltd Antireflection film and image display device using the same
JP2000196287A (en) * 1998-12-28 2000-07-14 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent conductive film, base with the transparent conductive film, and indicator
JP2001031422A (en) * 1999-07-19 2001-02-06 Agency Of Ind Science & Technol Mesoporous titanium oxide form and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350121A (en) * 1989-05-10 1991-03-04 Rhone Poulenc Chim Porous zirconia and preparation thereof
JPH05178617A (en) * 1991-12-28 1993-07-20 Naigai Ceramics Kk Production of spherical particulate made of titanate and spherical particulate obtained by the same
JPH0748527A (en) * 1993-08-06 1995-02-21 Sumitomo Osaka Cement Co Ltd Optical meterial having antireflection layer and production thereof
JPH0948602A (en) * 1994-08-03 1997-02-18 Showa Denko Kk Production of powdery complex metal oxide
JPH0978008A (en) * 1995-09-18 1997-03-25 Mitsubishi Materials Corp Transparent electroconductive film of low reflection
JPH1179743A (en) * 1997-08-29 1999-03-23 Natl Inst For Res In Inorg Mater Mesoporous body having hollandite type crystal structure and its production
JPH11326601A (en) * 1998-05-12 1999-11-26 Fuji Photo Film Co Ltd Antireflection film and image display device using the same
JP2000196287A (en) * 1998-12-28 2000-07-14 Catalysts & Chem Ind Co Ltd Coating liquid for forming transparent conductive film, base with the transparent conductive film, and indicator
JP2001031422A (en) * 1999-07-19 2001-02-06 Agency Of Ind Science & Technol Mesoporous titanium oxide form and its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068964A (en) * 2004-08-31 2006-03-16 Nbc Inc Member for cutting off near infrared rays
JP4524158B2 (en) * 2004-08-31 2010-08-11 株式会社Nbcメッシュテック Near infrared blocking material
JP2006124655A (en) * 2004-10-01 2006-05-18 Dainippon Printing Co Ltd Composition for antistatic layer
JP2006225256A (en) * 2005-01-19 2006-08-31 Mitsubishi Materials Corp Indium tin oxide precursor, indium tin oxide film, and method for production thereof
JP2006306670A (en) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd Indium oxide powder
JP4707449B2 (en) * 2005-04-28 2011-06-22 三井金属鉱業株式会社 Indium oxide powder
JP2009242225A (en) * 2008-03-11 2009-10-22 Mitsui Mining & Smelting Co Ltd Tin-doped indium oxide particles and their manufacturing method
JP2018521939A (en) * 2015-05-19 2018-08-09 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Tungsten oxide colloidal suspension doped with tungsten and method for preparing the same

Also Published As

Publication number Publication date
JP4519343B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4031624B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP4183924B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
US8029898B2 (en) Inorganic compound particle
JP3973330B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP5096666B2 (en) Method for producing chain conductive oxide fine particles, chain conductive oxide fine particles, transparent conductive film-forming coating material, and substrate with transparent conductive film
JP5580153B2 (en) Metal fine particle dispersion, metal fine particle, production method of metal fine particle dispersion, etc.
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4519343B2 (en) Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP4372301B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP2002197996A (en) Cathode ray tube
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term