JPH1179743A - Mesoporous body having hollandite type crystal structure and its production - Google Patents

Mesoporous body having hollandite type crystal structure and its production

Info

Publication number
JPH1179743A
JPH1179743A JP24983697A JP24983697A JPH1179743A JP H1179743 A JPH1179743 A JP H1179743A JP 24983697 A JP24983697 A JP 24983697A JP 24983697 A JP24983697 A JP 24983697A JP H1179743 A JPH1179743 A JP H1179743A
Authority
JP
Japan
Prior art keywords
crystal structure
pore
hollandite
pore diameter
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24983697A
Other languages
Japanese (ja)
Other versions
JP3239163B2 (en
Inventor
Jun Watanabe
遵 渡辺
Kenjiro Fujimoto
憲次郎 藤本
Toshiyuki Mori
利之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP24983697A priority Critical patent/JP3239163B2/en
Publication of JPH1179743A publication Critical patent/JPH1179743A/en
Application granted granted Critical
Publication of JP3239163B2 publication Critical patent/JP3239163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a mesoporous body of a hollandite type compd. having a large specific surface area and excellent in monodispersity of pore diameter distribution. SOLUTION: The mesoporous body has a chemical compsn. represented by the chemical formula Ax My N8 -y O16 (where A is an alkali metallic or alkaline earth metallic element, M is a di- or trivalent metallic element, N is a tetravalent metallic element, 0.8<x <=2 and 0.8<y <=2), a hollandite type crystal structure, >=10m<2> /g BET specific surface area calculated from the adsorption- desorption isotherm of nitrogen and a pore diameter distribution curve excellent in monodispersity and having about 2 nm half-width of a peak in the pore diameter range of 3-30 nm and about >=20 mm<3> .g peak height of pore area by the Dollimore-Heal method analysis method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化学式Axy
8-y16(ここでAはアルカリまたはアルカリ土類金属
元素、Mは2価または3価の金属元素、Nは4価の金属
元素、0.8<x≦2、0.8<y≦2)で表される化
学組成を有するホーランダイト型結晶構造の多孔体化合
物に関する。
BACKGROUND OF THE INVENTION The present invention has the formula A x M y N
8-y O 16 (where A is an alkali or alkaline earth metal element, M is a divalent or trivalent metal element, N is a tetravalent metal element, 0.8 <x ≦ 2, 0.8 <y ≦ 2) The present invention relates to a porous compound having a hollandite-type crystal structure having a chemical composition represented by ≦ 2).

【0002】[0002]

【従来技術】多孔体には、その孔の孔径の大きさによる
分類法がある。即ち、IUPACの定義では孔径が2n
m以下の細孔はミクロポア、2〜50nmの範囲の細孔
はメソポア、50nm以上の細孔はマクロポアと呼ばれ
る。トンネル構造(孔径約0.35nm以下)を有する
ホーランダイト型物質では、トンネル構造中のアルカリ
金属イオン等を抽出することによって結晶構造をミクロ
ポア細孔化した例が知られているが、結晶子の大きさや
形状の制御等によりミクロポア細孔化、メソポア細孔
化、マクロポア細孔化した例は報告されていない。メソ
ポア領域に細孔を有する無機系の従来材料はシリカゲ
ル、活性アルミナ、粘土メソポア多孔体、多孔質ガラス
である。これらの材料は多孔体特性を発現させるため、
シリカゲルや多孔質ガラスは非晶質体で利用し、また活
性アルミナと粘土メソポア多孔体は非晶質ないしは粗悪
な結晶質として利用する。
2. Description of the Related Art There is a classification method for porous bodies according to the size of the pore diameter. That is, according to the IUPAC definition, the pore size is 2n.
Micropores of m or less are called micropores, pores in the range of 2 to 50 nm are called mesopores, and pores of 50 nm or more are called macropores. In a hollandite-type substance having a tunnel structure (pore diameter of about 0.35 nm or less), an example is known in which a crystal structure is micropore-pored by extracting an alkali metal ion or the like in the tunnel structure. No examples have been reported in which micropores, mesopores, or macropores were formed by controlling the size or shape. Conventional inorganic materials having pores in the mesopore region are silica gel, activated alumina, clay mesopore porous material, and porous glass. Since these materials exhibit the properties of a porous body,
Silica gel and porous glass are used as amorphous materials, and activated alumina and clay mesopore materials are used as amorphous or poorly crystalline.

【0003】即ち、従来のメソポア多孔体は非晶質状態
や粗悪な結晶状態を利用して多孔性を発現させているた
め、得られた多孔体の細孔内構造や化学組成は結晶構造
で規定されるような明確な均質性をもたず、細孔間でば
らつきを生じる欠点があった。例えば、アルミナ系はメ
ソポア多孔体化できる500℃程度の温度領域では低温
相であるγ−アルミナが生成されるため結晶性が悪い。
また、粘土メソポア多孔体は粘土の層状構造の層間に他
成分である微細なシリカ等の粒子を導入し架橋して多孔
体化するため、粘土物質そのものと層間導入物質の構造
及び化学組成の不均一が細孔にも反映される。シリカゲ
ルや多孔質ガラスのメソポア多孔体は骨格自身が非晶質
できており、細孔内の表面構造や化学組成は均質を欠
く。このように、従来のメソポア多孔体の非晶質状態で
は原子配列は何らの周期性も持たず、細孔の内壁を形成
する原子面は細孔ごとにまちまちである。このため、従
来型メソポア多孔性材料は形状効果に基づく選択性はあ
るものの細孔表面の化学的機能を活用した反応選択性の
精度に問題があり、特に触媒作用のように細孔表面の化
学的機能に由来する特性は均質性を欠く分布をもつこと
になる。
[0003] That is, since the conventional mesopore porous body expresses porosity using an amorphous state or a poorly crystalline state, the structure in the pores and the chemical composition of the obtained porous body have a crystalline structure. It has the disadvantage that it does not have a defined homogeneity as defined and it varies between pores. For example, in a temperature range of about 500 ° C. where the mesopore porous body can be formed, alumina-based γ-alumina, which is a low-temperature phase, is formed, and thus has poor crystallinity.
In addition, since the clay mesopore porous body is formed by introducing fine particles of silica or the like as another component between the layers of the clay layer structure and crosslinking to form a porous body, the structure and chemical composition of the clay substance itself and the interlayer-introduced substance are not affected. Uniformity is also reflected in the pores. The mesopore porous body of silica gel or porous glass has an amorphous skeleton itself, and the surface structure and chemical composition in the pores lack homogeneity. As described above, in the conventional amorphous state of the mesopore porous body, the atomic arrangement does not have any periodicity, and the atomic planes forming the inner walls of the pores are different for each pore. For this reason, conventional mesoporous materials have selectivity based on the shape effect, but have a problem in the accuracy of reaction selectivity utilizing the chemical function of the pore surface. Properties derived from the functional function will have a distribution lacking homogeneity.

【0004】更に、従来、化学式Axy8-y16(こ
こでAはアルカリまたはアルカリ土類金属元素、Mは2
価または3価の金属元素、Nは4価の金属元素、0.8
<x≦2、0.8<y≦2)で表されるホーランダイト
型化合物の合成は、その構成金属元素の酸化物(例えば
23など)や炭酸塩(A2CO3など)の粉末状原料を
混合して反応させるため、通常1200℃以上の高温で
焼成する必要がある。しかし、この手法は、粉末粒子の
成長を顕著に促進し、生成物の粒成長が数μm以上に達
し、比表面積は1m2/g程度以下にしかならない。こ
のため、多孔体特性は発現しないか、あるいはマクロ孔
領域の単分散性の悪い細孔分布を呈し、高比表面積かつ
多孔性粉末の合成には適さない。
[0004] Further, conventionally, the formula A x M y N 8-y O 16 ( where A is an alkali or alkaline earth metal element, M is 2
A trivalent or trivalent metal element, N is a tetravalent metal element, 0.8
The synthesis of the hollandite type compound represented by <x ≦ 2, 0.8 <y ≦ 2) is performed by using an oxide (eg, M 2 O 3 ) or a carbonate (A 2 CO 3 ) of the constituent metal element. In order to mix and react the above powdery raw materials, it is usually necessary to fire at a high temperature of 1200 ° C. or higher. However, this method remarkably promotes the growth of powder particles, the grain growth of the product reaches several μm or more, and the specific surface area is only about 1 m 2 / g or less. For this reason, the porous material does not exhibit properties or exhibits a pore distribution having poor monodispersibility in the macropore region, and is not suitable for synthesizing a porous powder having a high specific surface area.

【0005】一部のホーランダイト型化合物、とりわけ
xGaxSn8-x16は、一酸化窒素(以下NOと記載
する)に対する吸着能力が大きいことが明らかにされて
おり、その特性を活用し、炭化水素を還元剤に用いてN
Oを選択的に還元するための触媒材料として期待がもた
れており、その触媒機能をさらに向上させるため、高比
表面積かつ多孔性粉末の合成が望まれている。しかし、
化学組成が化学式Axy8-y16(ここでAはアルカ
リまたはアルカリ土類金属元素、Mは2価または3価の
金属元素、Nは4価の金属元素、0.8<x≦2、0.
8<y≦2)で表され、ホーランダイト型構造を有する
物質に関して、高比表面積かつ細孔径分布の単分散性に
優れた多孔体が実現された材料及びその製造法に関する
報告はない。
[0005] Some hollandite-type compounds, especially K x Ga x Sn 8 -x O 16 , have been shown to have a large adsorption capacity for nitric oxide (hereinafter referred to as NO), and their characteristics have been demonstrated. Utilizing hydrocarbons as reducing agents
It is expected to be a catalyst material for selectively reducing O, and in order to further improve its catalytic function, it is desired to synthesize a porous powder having a high specific surface area. But,
Chemical composition formula A x M y N 8-y O 16 ( where A is an alkali or alkaline earth metal element, M is a divalent or trivalent metal element, N is the tetravalent metal elements, 0.8 < x ≦ 2, 0.
8 <y ≦ 2), there is no report on a material having a hollandite-type structure, a material having a high specific surface area and a porous body having excellent pore size distribution and excellent monodispersity, and a method for producing the same.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者は上
記のホーランダイト型化合物について、高比表面積かつ
細孔径分布の単分散性に優れたメソポア多孔体を実現す
べく種々検討した結果、高温安定相で優れた結晶性を有
するホーランダイト型化合物が、従来よりも700℃以
上も低温で結晶化温度を有することを見出し、その特性
を活かすため結晶化プロセスを精密に制御し、高結晶性
を低温で実現するとともに粒形状と粒サイズの均一化を
図ることに成功し、本発明を完成したもので、本発明は
化学的及び構造的均質性に優れた高比表面積かつ細孔分
布特性の単分散性に優れたホーランダイト型化合物のメ
ソポア多孔体材料及びその製造法を提供することを目的
とする。
The present inventors have conducted various studies on the above-mentioned hollandite-type compound in order to realize a mesopore porous body having a high specific surface area and excellent monodispersion of pore diameter distribution. The hollandite-type compound, which has excellent crystallinity in the stable phase, has a crystallization temperature of 700 ° C or more lower than before, and precisely controls the crystallization process to take advantage of its characteristics to achieve high crystallinity. The present invention was completed by realizing a low temperature and making the grain shape and grain size uniform, and the present invention has a high specific surface area and pore distribution characteristics with excellent chemical and structural homogeneity. It is an object of the present invention to provide a hollandite-type compound mesoporous material having excellent monodispersibility and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、化学組
成が化学式Axy8-y16(ここでAはアルカリまた
はアルカリ土類金属元素、Mは2価または3価の金属元
素、Nは4価の金属元素、0.8<x≦2、0.8<y
≦2)で表され、ホーランダイト型結晶構造を有し、窒
素の吸脱着等温線から算出されたBET比表面積が10
2/g以上を有し、ドリモア・ヒール解析法により3〜
30nmの細孔径範囲に2nm程度のピーク半値幅と2
0mm3/nm・g程度以上の細孔面積ピーク高さ値を
呈して単分散性に優れる細孔径分布曲線を与えることを
特徴とするメソポア多孔体であり、その製造方法とし
て、上記化学式中のA,M,N各金属元素のアルコキシ
ドを式中のx、yの目的値になるように秤量し、それら
を2−メトキシエタノール等の有機溶媒に溶かして混合
し、ゾル溶液を作製し、このゾル溶液に、含有全金属ア
ルコキシドの加水分解に必要な計算量ないしはその2倍
量程度の水をアルコールで希釈した溶液を撹拌しながら
滴下し、湿潤ゲルとし、この湿潤ゲルを真空引きまたは
100℃程度の温度に加熱して、有機溶媒及び残留水分
等を除去し、得られた乾燥ゲルを大気中またはそれに準
ずる酸素含有雰囲気中で毎時180〜420℃程度の速
度で650〜800℃に昇温し、30分程度以上保持し
た後、冷却することによって本発明にかかるメソポア多
孔体を製造する。
Means for Solving the Problems The gist of the present invention, the chemical composition formula A x M y N 8-y O 16 ( where A is an alkali or alkaline earth metal element, M is a divalent or trivalent A metal element, N is a tetravalent metal element, 0.8 <x ≦ 2, 0.8 <y
≦ 2), having a hollandite-type crystal structure, and having a BET specific surface area of 10 calculated from a nitrogen adsorption / desorption isotherm.
m 2 / g or more, and 3 to 3
The peak half-value width of about 2 nm and 2 in the pore diameter range of 30 nm
A mesopore porous body characterized in that it exhibits a pore area peak height value of about 0 mm 3 / nm · g or more and gives a pore size distribution curve excellent in monodispersity. The alkoxides of the metal elements A, M, and N are weighed so as to obtain the target values of x and y in the formula, and they are dissolved and mixed in an organic solvent such as 2-methoxyethanol to prepare a sol solution. To the sol solution, a solution obtained by diluting the amount of water required for hydrolysis of all the metal alkoxides contained therein or about twice the amount of water with alcohol is added dropwise with stirring to form a wet gel, and the wet gel is evacuated or heated to 100 ° C. To a temperature of about 350 ° C. to remove the organic solvent and residual moisture, etc., and to dry the obtained dry gel at a rate of about 650 to 800 ° C./hour in an atmosphere or an equivalent oxygen-containing atmosphere at an hourly rate of about 180 to 420 ° C. The temperature was raised, was maintained above about 30 minutes, to produce the mesoporous material according to the present invention by cooling to.

【0008】[0008]

【発明の実施の形態】先ず、本発明の製造方法について
述べると、本発明では粒成長を抑制する観点から低温で
の結晶化を図るため、金属アルコキシドを原料に用い
て、ゾル・ゲル法に基づく合成プロセスの構築を図っ
た。金属元素の原料は必ずしも金属アルコキシドである
必要はなく、必要な金属成分を水や有機溶媒を用いて均
一に混合できる原料であれば、別種の化学的形態でも構
わない。金属アルコキシドを溶解する溶媒は、できるだ
け安価で健康安全性が高いものを選択することが好まし
いが、主成分金属元素が3種以上あるため、成分金属ゾ
ル溶液の混合までの工程を単純化するため、同一の溶媒
あるいは相互に可溶な溶媒種を採用することが好まし
い。また、主成分にアルカリ金属を含むので加水分解工
程でアルカリ成分が溶出し、最終生成物がホーランダイ
ト型化合物以外の相を含むことを避けるため、当該工程
で混合ゾル溶液に加える水分量は加水分解に必要な最小
限量〜2倍に止める必要がある。最小限量より多い水量
を加えた場合には、アルカリ成分が過剰の水分へ溶出
し、系外へ去ることを防ぐため、加水分解生成物のアル
コールと余分な水分を濾過しないで、蒸発乾固し、その
後乾燥ゲルを十分に粉砕混合することが必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the production method of the present invention will be described. In the present invention, in order to achieve crystallization at a low temperature from the viewpoint of suppressing grain growth, a metal alkoxide is used as a raw material, and a sol-gel method is used. Based on this, a synthetic process was constructed. The raw material of the metal element does not necessarily need to be a metal alkoxide, and any other chemical form may be used as long as the required metal component can be uniformly mixed using water or an organic solvent. As the solvent for dissolving the metal alkoxide, it is preferable to select a solvent that is as inexpensive and has high health and safety as possible. However, since there are three or more main component metal elements, the process up to mixing the component metal sol solution is simplified. It is preferable to employ the same solvent or mutually soluble solvent species. In addition, since the main component contains an alkali metal, the alkali component is eluted in the hydrolysis step, and the amount of water added to the mixed sol solution in the step is reduced in order to avoid that the final product contains a phase other than the hollandite-type compound. The minimum amount required for decomposition needs to be reduced to twice. If more than the minimum amount of water is added, to prevent the alkaline components from eluting into the excess water and leaving the system, evaporate to dryness without filtering the alcohol and excess water from the hydrolysis product. It is then necessary to thoroughly mill and mix the dried gel.

【0009】次に混合ゾル溶液から得られるゲルの焼成
過程の精密な制御が不可欠であり、ゲルの量と焼成過程
の昇温速度及び酸素の供給量のバランスが重要である。
例えば、通常の大気中でゲルを焼成する場合には、十分
に粉砕されたゲルであれば、ゲル5g程度をそれと化学
反応しない容量30cc程度の坩堝に入れて180〜4
20℃の速度で昇温し、熱重量・示差熱分析で発熱ピー
ク(結晶化)が確認された650〜730℃以上ないし
800℃程度以下の温度で30分以上保持することによ
り優れた特性のメソポア多孔体を得ることができる。保
持温度は好ましくは680〜750℃程度の範囲が適当
である。多少の比表面積の減少及び細孔分布の単分散性
の低下を覚悟するのであれば、多孔体の機械的強度など
を増すため850〜900℃程度までの加熱も可能であ
る。
Next, precise control of the firing process of the gel obtained from the mixed sol solution is indispensable, and the balance between the amount of the gel, the rate of temperature rise during the firing process, and the supply amount of oxygen is important.
For example, when firing the gel in the normal atmosphere, if the gel is sufficiently pulverized, about 5 g of the gel is placed in a crucible having a capacity of about 30 cc which does not chemically react with the gel, and 180 to 4 g.
By heating at a rate of 20 ° C. and maintaining at a temperature of 650-730 ° C. or more and 800 ° C. or less at which an exothermic peak (crystallization) was confirmed by thermogravimetry / differential thermal analysis for 30 minutes or more, excellent characteristics were obtained. A mesopore porous body can be obtained. The holding temperature is preferably in the range of about 680 to 750 ° C. If a slight decrease in the specific surface area and a decrease in the monodispersibility of the pore distribution are to be expected, heating to about 850 to 900 ° C. is also possible in order to increase the mechanical strength of the porous body.

【0010】毎時180〜420℃の昇温速度で650
〜800℃に昇温する。昇温温度が速すぎると、有機物
の燃焼が急激に起こり、局所的に高温となるため結晶化
は上記発熱ピークより下の温度でも起こるが、この場合
には生成物は顕著にコーキングするとともに細孔分布の
単分散性を失い、目的機能を損なう。また、昇温速度が
上記の範囲に留められても、処理するゲル量が多い場合
には、酸素の供給量が追いつかず、やはり細孔径分布の
単分散性の喪失やコーキングにつながるため、酸素の供
給量を増やしたり、あるいはゲルの充填の仕方を工夫
し、充填されたゲルの各部に酸素が均等にかつ十分に供
給されるようにすることが重要である。昇温が遅すぎる
場合にも優れた特性のメソポア多孔体は得られない。こ
の場合には、コーキングは起きないものの、結晶粒子の
成長の不均一性が起こり、細孔分布の単分散性が損なわ
れる。以上、本発明にかかるホ−ランダイト型結晶構造
を有するメソポア多孔体の一例について述べたが本発明
にかかるメソポア多孔体の製造方法はこれに限るもので
はない。
At a heating rate of 180 to 420 ° C./hour, 650
Raise the temperature to 800800 ° C. If the heating temperature is too high, the combustion of the organic matter occurs rapidly and the temperature becomes locally high, so that crystallization occurs even at a temperature lower than the above exothermic peak. Loses the monodispersity of the pore distribution and impairs its intended function. Further, even when the heating rate is kept within the above range, if the amount of gel to be treated is large, the supply amount of oxygen cannot keep up, which also leads to loss of monodispersibility of pore size distribution and coking, It is important to increase the supply amount of oxygen or to devise the way of filling the gel so that oxygen is uniformly and sufficiently supplied to each part of the filled gel. Even when the temperature rise is too slow, a mesopore porous body having excellent characteristics cannot be obtained. In this case, although coking does not occur, non-uniform growth of crystal grains occurs and monodispersity of pore distribution is impaired. As described above, an example of the mesopore porous body having a hollandite-type crystal structure according to the present invention has been described, but the method for producing the mesoporous body according to the present invention is not limited thereto.

【0011】次に本発明のホ−ランダイト型結晶構造を
有するメソポア多孔体について述べる。本発明のホ−ラ
ンダイト型結晶構造を有するメソポア多孔体は、窒素の
吸脱着等温線から算出されたBET比表面積が10m2/
g以上を有し、ドリモア・ヒール解析法により3〜30
nmの細孔径範囲に2nm程度のピーク半値幅と20m
3/nm・g程度以上の細孔面積ピーク高さ値を呈し
て単分散性に優れる細孔径分布曲線を与える。即ち、本
発明による材料はメソポア領域に単分散性の優れた細孔
径分布曲線を呈することから吸着材、分子篩材、分離
材、触媒材料あるいは触媒担体などとしての用途が期待
できる。特に、本材料は従来材料に比べて顕著に優れた
結晶性をもつ。この点について本発明のX線粉末回析図
を図1に示す。本発明にかかる材料が優れた結晶性をも
つため、細孔内の化学組成や局所構造に関して細孔間の
ばらつきが小さい。このため、従来材料に比べて吸着、
分子篩、分離などの各種機能の均質性に優れており、高
い選択性を要求される生体活性物質等の高性能分離材、
高速クロマトグラフの充填材、極性分子等の高選択性吸
着材などとしての利用が期待できる。
Next, the mesopore porous body having a hollandite type crystal structure of the present invention will be described. The mesopore porous body having a hollandite-type crystal structure of the present invention has a BET specific surface area of 10 m 2 / calculated from a nitrogen adsorption / desorption isotherm.
g or more and 3 to 30 by the Drillmore-Heel analysis method.
The peak half width of about 2 nm and 20 m
It exhibits a pore area peak height value of about m 3 / nm · g or more and gives a pore diameter distribution curve excellent in monodispersity. That is, since the material according to the present invention exhibits a pore size distribution curve excellent in monodispersity in the mesopore region, it can be expected to be used as an adsorbent, a molecular sieve, a separating material, a catalyst material or a catalyst carrier. In particular, the present material has remarkably excellent crystallinity as compared with the conventional material. FIG. 1 shows an X-ray powder diffraction diagram of the present invention in this regard. Since the material according to the present invention has excellent crystallinity, variation between pores in the chemical composition and local structure in the pores is small. For this reason, adsorption,
Excellent in homogeneity of various functions such as molecular sieve and separation, and high performance separation material for bioactive substances etc.
It can be expected to be used as a filler for high-speed chromatography and a highly selective adsorbent for polar molecules.

【0012】さらに、本発明による材料は、従来の多孔
性材料とは明確に異なる化学組成や結晶構造を有するた
め、それらに基づく新たな化学的性質が付加される。例
えば、一部のホーランダイト型化合物ではNOの吸着性
が非常に優れており、その特性を活かしてNOxの選択
還元用触媒材料の用途が明らかにされている(文献
1)。(文献1:T.Mori,et al.,Applied Catalysis A:
General,129,L1-L7(1995)) 従って、本発明に基づく高比表面積かつ多孔体化によ
り、NOx選択還元用の触媒機能に関してさらに高性能
化されることが期待される。
Furthermore, since the material according to the present invention has a distinctly different chemical composition and crystal structure from conventional porous materials, new chemical properties based on them are added. For example, some hollandite-type compounds have extremely excellent NO adsorption properties, and the use of the catalyst material for selective reduction of NOx has been clarified by utilizing the characteristics (Reference 1). (Reference 1: T. Mori, et al., Applied Catalysis A:
General, 129, L1-L7 (1995)) Accordingly, it is expected that the high specific surface area and the porous body based on the present invention will further improve the catalytic function for NOx selective reduction.

【0013】[0013]

【実施例及び比較例】次に本発明の実施例及び比較例を
示す。本発明による合成プロセスでは、金属アルコキシ
ドやそれらを溶かす溶媒の選択、とりわけ加水分解時の
水量、乾燥ゲルの熱処理時の昇温速度などが重要な要素
であり、それらが不適当である場合に引き起こされる結
果を比較例を用いて示した。 実施例1 化学式KxGaxSn8-x16においてx≒2になるよう
に1.754gのK(n−OC37)、5.163gの
Ga(n−OC493及び22.033gのSn(t
−OC494をアルゴン雰囲気のグローブボックス中
で秤量し、それぞれ20mlの脱水2−メトキシエタノ
ール(モレキュラーシーブ3Aで脱水)に溶解した後、
それらを混合し、室温で5時間程度撹拌し、混合ゾル溶
液を作製した。グローブボックスから取り出した混合ゾ
ル溶液に、撹拌しながら、加水分解に必要な理論当量よ
り僅かに多い水のエタノール希釈溶液(H2O/C25
OH=5.2ml/120ml)を毎分約15mlの速
度で滴下し、加水分解を行った。全量滴下後、ゲルを含
む溶液を撹拌しながら30分間放置した。その後約11
0℃に加熱し、蒸発乾固して乾燥ゲルを得た。乾燥ゲル
は乳鉢中にて粉砕し、再度110℃で熱処理した。この
乾燥ゲル約50mgを用いて、室温〜1000℃の範囲
において毎分5℃の昇温速度で熱重量・示差熱分析を行
い、約650〜730℃で起こる発熱に連携して結晶化
が起こることを確認した。測定結果を図3に示す。そこ
で、乾燥ゲルを毎時300℃の昇温速度で700℃まで
加熱し、3時間保持した後、電源を断にして室温まで放
冷した。室温に戻した試料の一部を用い、X線粉末回折
測定を行い、ホーランダイト型結晶構造を有することを
確認した(図1)。真空(10-3Torr)下、150
℃で5時間保持したホーランダイト型結晶構造の粉末、
約1gを用いて全自動窒素吸着測定装置(日本ベル社
製、BELSORP28-SA)により窒素の吸脱着等温線を測定
し、BET理論により、比表面積22m2/gを得た。
また、ドリモア・ヒール解析により、10.67nmに
半値幅約2nm程度のピークを呈し、100nmの細孔
径範囲で優れた単分散性の細孔径分布曲線を与えること
を確認した(図2)。得られた材料粉末の走査型電子顕
微鏡写真を図4の写真に示す。
Examples and Comparative Examples Next, examples and comparative examples of the present invention will be described. In the synthesis process according to the present invention, the selection of metal alkoxides and the solvent in which they are dissolved, especially the amount of water during hydrolysis, the rate of temperature rise during heat treatment of the dried gel, and the like are important factors, which are caused when they are inappropriate. The results obtained are shown using a comparative example. Example 1 1.754 g of K (n-OC 3 H 7 ) and 5.163 g of Ga (n-OC 4 H 9 ) 3 so that x ≒ 2 in the chemical formula K x Ga x Sn 8-x O 16 . And 22.03 g of Sn (t
-OC 4 H 9 ) 4 was weighed in a glove box in an argon atmosphere, and dissolved in 20 ml of dehydrated 2-methoxyethanol (dehydrated with molecular sieve 3A).
They were mixed and stirred at room temperature for about 5 hours to prepare a mixed sol solution. To the mixed sol solution taken out of the glove box is added, with stirring, an ethanol diluted solution of water (H 2 O / C 2 H 5) slightly more than the theoretical equivalent required for hydrolysis.
(OH = 5.2 ml / 120 ml) was added dropwise at a rate of about 15 ml / min to effect hydrolysis. After the entire amount was dropped, the solution containing the gel was left for 30 minutes while stirring. Then about 11
Heat to 0 ° C. and evaporate to dryness to obtain a dry gel. The dried gel was crushed in a mortar and heat treated again at 110 ° C. Using about 50 mg of this dried gel, thermogravimetric / differential thermal analysis is performed at a rate of 5 ° C./min in the range of room temperature to 1000 ° C., and crystallization occurs in conjunction with the exotherm occurring at about 650 to 730 ° C. It was confirmed. FIG. 3 shows the measurement results. Thus, the dried gel was heated to 700 ° C. at a rate of 300 ° C./hour, held for 3 hours, then turned off and allowed to cool to room temperature. An X-ray powder diffraction measurement was performed on a part of the sample that had been returned to room temperature, and it was confirmed that the sample had a hollandite-type crystal structure (FIG. 1). 150 under vacuum (10 -3 Torr)
Hollandite-type crystal structure powder held at 5 ° C. for 5 hours,
Using about 1 g, a nitrogen adsorption / desorption isotherm was measured by a fully automatic nitrogen adsorption measuring apparatus (BELSORP28-SA, manufactured by Bell Japan Co., Ltd.), and a specific surface area of 22 m 2 / g was obtained by BET theory.
In addition, it was confirmed by a Drillmore-Heel analysis that a peak having a half-value width of about 2 nm was observed at 10.67 nm and an excellent monodisperse pore diameter distribution curve was obtained in a pore diameter range of 100 nm (FIG. 2). FIG. 4 shows a scanning electron micrograph of the obtained material powder.

【0014】実施例2 化学式KxAlxTi8-x16においてx≒1.7になる
ように0.796gのK(n−OC37)、0.974
gのAl(OCH33及び9.151gのTi(n−O
494をアルゴン雰囲気のグローブボックス中で秤
量し、KとTiのアルコキシドはそれぞれ20mlの脱
水2−メトキシエタノール(モレキュラーシーブ3Aで
脱水)に溶解し、Alのアルコキシドは60mlの同溶
媒に溶かした後、それらを混合し、室温で5時間程度撹
拌し、混合ゾル溶液を作製した。グローブボックスから
取り出した混合ゾル溶液に、撹拌しながら、加水分解に
必要な理論当量より僅かに多い水のエタノール希釈溶液
(H2O/C25OH=2.8ml/200ml)を毎
分約15mlの速度で滴下した。全量滴下後、溶液を撹
拌しながら加熱した。約35℃で薄く白濁化し、55〜
60℃で完全にゲル化させたのち、65℃で30分間放
置した。その後約110℃で1時間加熱し、蒸発乾固し
て乾燥ゲルを得た。乾燥ゲルは乳鉢中にて粉砕し、再度
110℃で1時間熱処理した。この乾燥ゲル約50mg
を用いて、室温〜1000℃の範囲において毎分5℃の
昇温速度で熱重量・示差熱分析を行い、約650〜73
0℃で起こる発熱に連携して結晶化が起こることを確認
した。そこで、乾燥ゲルを毎時200℃の昇温速度で7
00℃まで加熱し、3時間保持した後、電源を断にして
室温まで放冷した。室温に戻した試料の一部を用い、X
線粉末回折測定を行い、ホーランダイト型結晶構造を有
することを確認した。真空(10-3Torr)下、15
0℃で5時間保持したホーランダイト型結晶構造の粉
末、約1.5gを用いて、窒素の吸脱着等温線の測定を
行い、実施例1と同様に解析して比表面積18m2
g、13.4nmに半値幅約2nm程度及び細孔面積2
4mm3/nm・gのピークを単分散的に呈する細孔径
分布曲線を有することを確認した。
Example 2 0.796 g of K (n-OC 3 H 7 ), 0.974 so that x ≒ 1.7 in the chemical formula K x Al x Ti 8-x O 16
g of Al (OCH 3) 3 and 9.151g of Ti (n-O
C 4 H 9 ) 4 was weighed in a glove box under an argon atmosphere, the alkoxides of K and Ti were dissolved in 20 ml of dehydrated 2-methoxyethanol (dehydrated with molecular sieve 3A), and the alkoxide of Al was 60 ml with the same solvent. Then, they were mixed and stirred at room temperature for about 5 hours to prepare a mixed sol solution. To the mixed sol solution taken out of the glove box, while stirring, an ethanol diluted solution of water (H 2 O / C 2 H 5 OH = 2.8 ml / 200 ml) slightly more than the theoretical equivalent required for hydrolysis was added per minute. It was added dropwise at a rate of about 15 ml. After the entire amount was dropped, the solution was heated with stirring. It becomes slightly cloudy at about 35 ° C.
After completely gelling at 60 ° C., it was left at 65 ° C. for 30 minutes. Thereafter, the mixture was heated at about 110 ° C. for 1 hour and evaporated to dryness to obtain a dried gel. The dried gel was crushed in a mortar and heat treated again at 110 ° C. for 1 hour. About 50mg of this dried gel
, A thermogravimetric / differential thermal analysis was performed at a temperature rising rate of 5 ° C./min.
It was confirmed that crystallization occurred in association with the heat generated at 0 ° C. Therefore, the dried gel is heated at a rate of 200 ° C./hour for 7 hours.
After heating to 00 ° C. and holding for 3 hours, the power was turned off and allowed to cool to room temperature. Using a part of the sample returned to room temperature, X
A line powder diffraction measurement was performed, and it was confirmed that the powder had a hollandite-type crystal structure. 15 under vacuum (10 -3 Torr)
Using about 1.5 g of a powder having a hollandite-type crystal structure held at 0 ° C. for 5 hours, a nitrogen adsorption / desorption isotherm was measured and analyzed in the same manner as in Example 1 to obtain a specific surface area of 18 m 2 /
g, a half width of about 2 nm and a pore area of 2 at 13.4 nm.
It was confirmed to have a pore diameter distribution curve showing a peak of 4 mm 3 / nm · g in a monodisperse manner.

【0015】比較例1 実施例1に倣い、K(n−OC37)、Ga(n−OC
493及びSn(t−OC494を原料に用いて、化
学式KxGaxSn8-x16のxがほぼ2になるように混
合ゾル溶液を作製した。その混合ゾル溶液に、実施例1
とは異なり加水分解に必要な理論当量の3倍量の水をエ
タノールに希釈した溶液(H2O/C25OH=15.
6ml/120ml)を毎分約15mlの速度で滴下
し、加水分解を行った。その後は実施例1と同様の手続
きに戻し、乾燥ゲルを得た。乾燥ゲルは乳鉢中にて粉砕
し、再度110℃で熱処理した。実施例1と同様に、乾
燥ゲルを毎時300℃の昇温速度で700℃まで加熱
し、3時間保持した後、電源を断にして室温まで放冷し
た。室温に戻した試料の一部を用いてX線粉末回折測定
を行った結果、図5に示すごとくホーランダイト型結晶
構造を有する粉末以外にルチル型結晶構造を有する酸化
スズの明瞭な回折図形が含まれることを明らかにした。
この原因は、加水分解時の水量が2倍程度以上である
と、ゲル中のカリウム成分の分布が均一性を欠き、カリ
ウム分の不足するところで安定性の高い酸化スズが結晶
化するためと考えられる。
Comparative Example 1 Following Example 1, K (n-OC 3 H 7 ), Ga (n-OC
Using 4 H 9 ) 3 and Sn (t-OC 4 H 9 ) 4 as raw materials, a mixed sol solution was prepared such that x in the chemical formula K x Ga x Sn 8 -xO 16 was almost 2. Example 1 was added to the mixed sol solution.
Unlike this, a solution in which three times the theoretical equivalent amount of water necessary for hydrolysis is diluted with ethanol (H 2 O / C 2 H 5 OH = 15.
6 ml / 120 ml) was added dropwise at a rate of about 15 ml per minute to effect hydrolysis. Thereafter, the procedure was returned to the same procedure as in Example 1 to obtain a dried gel. The dried gel was crushed in a mortar and heat treated again at 110 ° C. In the same manner as in Example 1, the dried gel was heated to 700 ° C. at a rate of 300 ° C./hour, held for 3 hours, then turned off and allowed to cool to room temperature. As a result of performing X-ray powder diffraction measurement using a part of the sample returned to room temperature, as shown in FIG. 5, a clear diffraction pattern of tin oxide having a rutile-type crystal structure other than powder having a hollandite-type crystal structure was obtained. Clarified to be included.
The reason is considered that when the amount of water at the time of hydrolysis is about twice or more, the distribution of the potassium component in the gel lacks uniformity, and tin oxide having high stability is crystallized where the amount of potassium is insufficient. Can be

【0016】比較例2 実施例1に倣い、K(n−OC37)、Ga(n−OC
93及びSn(t−OC494を原料に用いて、化
学式KxGaxSn8-x16のxがほぼ2になるように混
合ゾル溶液を作製し、ゾルの加水分解を経て乾燥ゲルを
得た。この乾燥ゲルの一部を取り、実施例1とは異なる
熱処理を行った。一つは、700℃に設定した炉中に直
接、試料を挿入し、3時間保持した後、電源を断にして
室温まで放冷した。他は、毎時100℃で700℃まで
昇温し、3時間保持したのち、電源を断にして室温まで
放冷した。これらの結果、前者では顕著なコーキングが
起き、比表面積が10m2/g以下に減少するとともに
細孔分布特性も図6に示すように顕著に悪化し、単分散
性に優れた多孔体材料としての特徴を失った。後者で
は、コーキングは起きないが、細孔分布特性は前者と同
様に顕著に悪化し、単分散性に優れた多孔体材料として
の特徴を失った。この原因は粒子サイズがしきい値を越
えた一部粒子の異常成長による粒径の不均一化によると
思われる。
Comparative Example 2 Following Example 1, K (n-OC 3 H 7 ) and Ga (n-OC
Using H 9 ) 3 and Sn (t-OC 4 H 9 ) 4 as raw materials, a mixed sol solution was prepared such that x of the chemical formula K x Ga x Sn 8 -xO 16 was almost 2, and A dried gel was obtained through hydrolysis. A part of the dried gel was taken and subjected to a heat treatment different from that in Example 1. One was to insert the sample directly into a furnace set at 700 ° C., hold it for 3 hours, then turn off the power and let it cool down to room temperature. Otherwise, the temperature was raised to 700 ° C. at 100 ° C./hour and maintained for 3 hours, then the power was turned off and the temperature was allowed to cool to room temperature. As a result, in the former, remarkable coking occurs, the specific surface area decreases to 10 m 2 / g or less, and the pore distribution characteristics are remarkably deteriorated as shown in FIG. Lost the features. In the latter, caulking does not occur, but the pore distribution characteristics are remarkably deteriorated similarly to the former, and the characteristics as a porous material excellent in monodispersibility have been lost. This is considered to be due to the non-uniform grain size due to abnormal growth of some grains whose grain size exceeds the threshold.

【0017】[0017]

【発明の効果】このようにして得られた本発明によるメ
ソポア多孔体は細孔径分布の単分散性に優れていること
及びコーキング等による汚れのなく、吸着材、分子篩
材、分離材、触媒材料などとしての用途が期待できる。
The mesopore porous body according to the present invention thus obtained has excellent monodispersion of the pore size distribution and is free from contamination due to caulking, etc., and has an adsorbent, a molecular sieve, a separating material, and a catalyst material. It can be expected to be used as such.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ホーランダイト型結晶構造を有する多孔体材料
xGaxSn8-x1 6(x≒2)のX線粉末回折図を示
す。
1 shows a X-ray powder diffraction diagram of the porous material K x Ga x Sn 8-x O 1 6 (x ≒ 2) having a hollandite-type crystal structure.

【図2】ホーランダイト型結晶構造を有する多孔体材料
xGaxSn8-x1 6(x≒2)の細孔径分布曲線を示
す。
Figure 2 shows the pore size distribution curve of the porous material K x Ga x Sn 8-x O 1 6 having a hollandite-type crystal structure (x ≒ 2).

【図3】KxGaxSn8-x16(x≒2)の化学組成を
有する乾燥ゲルの熱重量・示差分析曲線を示す。
FIG. 3 shows a thermogravimetric / differential analysis curve of a dried gel having a chemical composition of K x Ga x Sn 8-x O 16 (x ≒ 2).

【図4】ホーランダイト型結晶構造を有する多孔体材料
xGaxSn8-x1 6(x≒2)の走査型電子顕微鏡像
を示す。
Figure 4 shows a porous material K x Ga x Sn 8-x O 1 6 (x ≒ 2) scanning electron microscope image of having a hollandite-type crystal structure.

【図5】加水分解時の添加水量が不適当であるために、
生成物中に不純物が生じたことを示すX線粉末回折図で
ある。
FIG. 5: The amount of water added during hydrolysis is inappropriate.
FIG. 4 is an X-ray powder diffraction diagram showing that impurities were generated in a product.

【図6】乾燥ゲルの熱処理時の昇温速度が不適切である
ために、生成物の細孔分布の単分散性が顕著に悪化する
とともに細孔面積が顕著に減少したことを示す細孔分布
曲線図である。
FIG. 6 shows pores indicating that the monodispersibility of the pore distribution of the product was significantly deteriorated and the pore area was significantly reduced due to the inappropriate rate of temperature rise during the heat treatment of the dried gel. It is a distribution curve figure.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が化学式Axy8-y16(こ
こでAはアルカリまたはアルカリ土類金属元素、Mは2
価または3価の金属元素、Nは4価の金属元素、0.8
<x≦2、0.8<y≦2)で表され、ホーランダイト
型結晶構造を有し、窒素の吸脱着等温線から算出された
BET比表面積が10m2/g以上を有し、ドリモア・ヒ
ール解析法により3〜30nmの細孔径範囲に2nm程
度のピーク半値幅と20mm3/nm・g程度以上の細
孔面積ピーク高さ値を呈して単分散性に優れる細孔径分
布曲線を与えることを特徴とするメソポア多孔体。
1. A chemical composition formula A x M y N 8-y O 16 ( where A is an alkali or alkaline earth metal element, M is 2
A trivalent or trivalent metal element, N is a tetravalent metal element, 0.8
<X ≦ 2, 0.8 <y ≦ 2), has a hollandite crystal structure, has a BET specific surface area of 10 m 2 / g or more calculated from a nitrogen adsorption / desorption isotherm, A heel analysis method provides a peak half width of about 2 nm and a pore area peak height of about 20 mm 3 / nm · g or more in a pore diameter range of 3 to 30 nm to give a pore diameter distribution curve excellent in monodispersity. A porous mesopore body, characterized in that:
【請求項2】 上記化学式中のA,M,N各金属元素の
アルコキシドを式中のx、yの目的値になるように秤量
し、それらを2−メトキシエタノール等の有機溶媒に溶
かして混合し、ゾル溶液を作製し、このゾル溶液に、含
有全金属アルコキシドの加水分解に必要な計算量ないし
はその2倍量程度の水をアルコールで希釈した溶液を撹
拌しながら滴下して湿潤ゲルとし、この湿潤ゲルを真空
引きまたは100℃程度の温度に加熱して、有機溶媒及
び残留水分等を除去し、得られた乾燥ゲルを大気中また
はそれに準ずる酸素含有雰囲気中で毎時180〜420
℃程度の速度で650〜800℃に昇温し、30分程度
以上保持した後、冷却することを特徴とする請求項1に
記載のメソポア多孔体を製造する方法。
2. An alkoxide of each of the metal elements A, M, and N in the above chemical formula is weighed so as to obtain a target value of x and y in the formula, and they are dissolved in an organic solvent such as 2-methoxyethanol and mixed. Then, a sol solution is prepared, and a solution obtained by diluting water in a calculated amount necessary for hydrolysis of all contained metal alkoxides or about twice the amount thereof with alcohol to the sol solution is added dropwise with stirring to form a wet gel, The wet gel is evacuated or heated to a temperature of about 100 ° C. to remove the organic solvent, residual moisture and the like, and the obtained dry gel is dried at 180 to 420 hours / hour in the air or an oxygen-containing atmosphere equivalent thereto.
The method for producing a mesopore porous body according to claim 1, wherein the temperature is raised to 650 to 800 ° C at a rate of about ° C, held for about 30 minutes or more, and then cooled.
JP24983697A 1997-08-29 1997-08-29 Mesopore porous body having hollandite-type crystal structure and method for producing the same Expired - Lifetime JP3239163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24983697A JP3239163B2 (en) 1997-08-29 1997-08-29 Mesopore porous body having hollandite-type crystal structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24983697A JP3239163B2 (en) 1997-08-29 1997-08-29 Mesopore porous body having hollandite-type crystal structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1179743A true JPH1179743A (en) 1999-03-23
JP3239163B2 JP3239163B2 (en) 2001-12-17

Family

ID=17198915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24983697A Expired - Lifetime JP3239163B2 (en) 1997-08-29 1997-08-29 Mesopore porous body having hollandite-type crystal structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP3239163B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463769A2 (en) * 1990-06-21 1992-01-02 COOKSON GROUP plc Binder system based on thermally depolymerisable polycarbonate
WO2001096242A1 (en) * 2000-06-12 2001-12-20 Japan Science And Technology Corporation Meso-porous transition metal oxide having crystallized pore wall and method for preparing the same
JP2002279917A (en) * 2001-03-19 2002-09-27 Catalysts & Chem Ind Co Ltd Crystalline conductive particulate, manufacturing method of the particulate, coating solution for transparent conductive film formation, base material with the transparent conductive film, and display device
JP2011115782A (en) * 2009-10-27 2011-06-16 Toyota Central R&D Labs Inc Low temperature nox absorbent, method of manufacturing the same, method of purifying exhaust gas using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463769A2 (en) * 1990-06-21 1992-01-02 COOKSON GROUP plc Binder system based on thermally depolymerisable polycarbonate
EP0463769A3 (en) * 1990-06-21 1993-09-22 Cookson Group Plc Binder system based on thermally depolymerisable polycarbonate
WO2001096242A1 (en) * 2000-06-12 2001-12-20 Japan Science And Technology Corporation Meso-porous transition metal oxide having crystallized pore wall and method for preparing the same
JP2002279917A (en) * 2001-03-19 2002-09-27 Catalysts & Chem Ind Co Ltd Crystalline conductive particulate, manufacturing method of the particulate, coating solution for transparent conductive film formation, base material with the transparent conductive film, and display device
JP4519343B2 (en) * 2001-03-19 2010-08-04 日揮触媒化成株式会社 Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP2011115782A (en) * 2009-10-27 2011-06-16 Toyota Central R&D Labs Inc Low temperature nox absorbent, method of manufacturing the same, method of purifying exhaust gas using the same

Also Published As

Publication number Publication date
JP3239163B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
RU2743207C2 (en) Zirconium acid hydroxide
EP2837596B1 (en) Beta zeolite and method for producing same
Cattaneo et al. Water based scale-up of CPO-27 synthesis for nitric oxide delivery
Sun et al. From metal–organic framework to carbon: toward controlled hierarchical pore structures via a double-template approach
EP1394113B1 (en) Crystalline inorganic porous material
Zhang et al. Facile and template-free solvothermal synthesis of mesoporous/macroporous metal–organic framework nanosheets
TW201325710A (en) Vacuum insulation including getter having high specific surface area
CN109476495A (en) Cerium oxide particle and its production method
RU2651150C2 (en) Method for producing boron-containing zeolite material containing framework mww
CA3104376C (en) Large crystal tunable adsorbents
JP3239163B2 (en) Mesopore porous body having hollandite-type crystal structure and method for producing the same
Wang et al. Mesoporous Co3O4 for low temperature CO oxidation: effect of calcination temperatures on their catalytic performance
Sadakane et al. Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO4, CaCO3, and SrCO3, and photonic stop band properties of 3DOM CaCO3
US20120039782A1 (en) Densified fumed metal oxides and methods for producing the same
JP3066850B2 (en) Binderless X-type zeolite molding and method for producing the same
CN110267739B (en) Adjustable adsorbent
Uzunok et al. Lyotropic Liquid Crystalline Mesophases Made of Salt‐Acid‐Surfactant Systems for the Synthesis of Novel Mesoporous Lithium Metal Phosphates
US10125023B2 (en) Manufacturing method of mesoporous inorganic oxide and mesoporous inorganic oxide made by the same
JP7141980B2 (en) Connected mesoporous silica particles and method for producing the same
Li et al. Synthesis and characterization of MCM-41 decorated with CuO particles
KR100896054B1 (en) Ion-exchange type lithium adsorbent using ceramic filter and method for preparing the same
JP2015116532A (en) Raw material composition for producing carbon dioxide separation/recovery composition, and carbon dioxide separation/recovery composition produced from the raw material composition
JP3772412B2 (en) Low-abrasion zeolite bead molded body and method for producing the same
CN117101713B (en) MnO (MnO) 2 -ZrO 2 /OH - -H beta metal solid acid catalyst, preparation method and application thereof
JP2018030767A (en) Carbon porous body and manufacturing method therefor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term