JP2002273626A - Manufacturing method of die for forming honeycomb structure - Google Patents

Manufacturing method of die for forming honeycomb structure

Info

Publication number
JP2002273626A
JP2002273626A JP2001078522A JP2001078522A JP2002273626A JP 2002273626 A JP2002273626 A JP 2002273626A JP 2001078522 A JP2001078522 A JP 2001078522A JP 2001078522 A JP2001078522 A JP 2001078522A JP 2002273626 A JP2002273626 A JP 2002273626A
Authority
JP
Japan
Prior art keywords
electric discharge
discharge machining
machining
groove
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001078522A
Other languages
Japanese (ja)
Inventor
Takeshi Fukushima
武 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001078522A priority Critical patent/JP2002273626A/en
Publication of JP2002273626A publication Critical patent/JP2002273626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a die for forming a honeycomb structure capable of performing efficient electric discharge machining of slit grooves in the die for forming the honeycomb structure. SOLUTION: In the manufacturing method of the die for forming the honeycomb structure having feed holes 81 and the slit grooves 82, after forming the feed holes 81 in a hole opening surface 84 of a die stock 80, a plurality of prepared holes 83 are made so that a part at the position for making the slid grooves is communicated with the feed holes 81. Electric discharge machining is performed while sucking working fluid 7 from a groove forming surface 85 side to the hole opening surface 84 side through the prepared holes 3. Then, the electric discharge machining is stopped, the slit grooves 81 are opened, and back flow is performed in which the working fluid 7 is ejected from the hole opening surface 84 side to the groove forming surface 85 side via the prepared holes 83. Then, the electric discharge machining and the back flow are alternately repeated to form the slit grooves 81.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,セラミックハニカム構造体を成
形するためのハニカム構造体成形用金型を製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a honeycomb structure forming die for forming a ceramic honeycomb structure.

【0002】[0002]

【従来技術】セラミック製のハニカム構造体を押出成形
するためのハニカム構造体成形用金型は,材料供給用の
複数の供給穴と,供給穴に連通して材料をハニカム形状
に成形するスリット溝とを有する。このハニカム構造体
成形用金型を製造する際に,上記スリット溝を形成する
方法としては,放電加工を行う方法がある。
2. Description of the Related Art A honeycomb structure forming die for extruding a ceramic honeycomb structure includes a plurality of supply holes for supplying a material, and a slit groove which communicates with the supply hole and forms the material into a honeycomb shape. And When manufacturing the honeycomb structure forming die, there is a method of performing electric discharge machining as a method of forming the slit groove.

【0003】放電加工方法においては,放電加工により
発生したスラッジ(電極あるいは金型素材から分離した
粒子)が多くなることにより,放電状態を乱し,スリッ
ト溝の幅寸法を所望寸法以上に大きくさせたり,加工速
度を低下させるという不具合が発生する。
In the electric discharge machining method, the discharge state is disturbed by increasing sludge (particles separated from an electrode or a mold material) generated by the electric discharge machining, and the width of the slit groove is made larger than a desired size. Or lower the processing speed.

【0004】これに対し,特開2000−723号公報
においては,放電加工中のスラッジの排出性を高めるた
め,貫通穴から加工液を吸引あるいは圧力をかけて注入
しながら放電加工を行う方法が示されている。この方法
によれば,加工液を単に供給する場合よりも良好な放電
加工を行うことができる。
On the other hand, Japanese Patent Application Laid-Open No. 2000-723 discloses a method in which electric discharge machining is performed while suctioning or injecting a machining fluid from a through-hole with suction or pressure in order to enhance sludge discharge during electric discharge machining. It is shown. According to this method, better electric discharge machining can be performed than in the case where the machining fluid is simply supplied.

【0005】[0005]

【解決しようとする課題】しかしながら,ハニカム構造
体成形用金型を製造する場合には,上記従来の放電加工
方法では未だ不十分である。すなわち,ハニカム構造体
成形用金型におけるスリット溝は,近年のハニカム構造
体の薄肉化及びセルの小型化の要求によって,溝幅が狭
く,かつ溝の形成密度が高い。また,スリット溝の深さ
は,幅寸法に比べて非常に深く,また,最終的に上記供
給穴に連通せずに底部を有する部分も多い。そのため,
スリット溝加工の場合には,比較的単純な加工を行う通
常の放電加工の場合と比べ,加工液の流動性を高めるこ
とが困難である。それ故,放電加工中に発生する大量の
スラッジは,単に加工液の吸引又は圧力をかけた注入を
行っても,十分には排出されない。したがって,ハニカ
ム構造体成形用金型のスリット溝を放電加工により形成
する場合には,発生するスラッジの影響によって加工効
率及び加工精度があまり向上できないという問題があっ
た。
However, when manufacturing a die for forming a honeycomb structure, the above-mentioned conventional electric discharge machining method is still insufficient. In other words, the slit grooves in the honeycomb structure forming mold have a narrow groove width and a high groove formation density due to recent demands for a thinner honeycomb structure and a smaller cell. Further, the depth of the slit groove is very deep compared to the width dimension, and there are many portions having a bottom portion without finally communicating with the supply hole. for that reason,
In the case of slit groove machining, it is more difficult to increase the fluidity of the machining liquid than in the case of ordinary electric discharge machining in which relatively simple machining is performed. Therefore, a large amount of sludge generated during electric discharge machining is not sufficiently discharged simply by suctioning or injecting the machining fluid. Therefore, when the slit grooves of the honeycomb structure forming mold are formed by electric discharge machining, there is a problem that machining efficiency and machining accuracy cannot be significantly improved due to the influence of generated sludge.

【0006】本発明はかかる従来の問題点に鑑みてなさ
れたもので,ハニカム構造体成形用金型のスリット溝を
精度よく効率的に放電加工することができるハニカム構
造体成形用金型の製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is intended to manufacture a honeycomb structure forming mold capable of accurately and efficiently performing electric discharge machining of slit grooves of the honeycomb structure forming mold. It seeks to provide a way.

【0007】[0007]

【課題の解決手段】本発明は,少なくとも,材料供給用
の複数の供給穴と,該供給穴に連通して材料をハニカム
形状に成形するスリット溝とを有するハニカム構造体成
形用金型を製造する方法において,金型素材の穴形成面
に上記供給穴を形成した後,該穴形成面の反対面である
溝形成面における上記スリット溝形成予定位置の一部と
上記供給穴とが貫通するように下穴を複数設け,上記溝
形成面に放電加工用電極を対面させると共に上記溝形成
面に加工液を供給しながら,かつ,上記下穴を通して上
記溝形成面側から上記穴形成面側へ上記加工液を吸引し
ながら上記放電加工用電極を前進させて放電加工を進
め,次いで,放電加工を止めて上記放電加工用電極を後
退させて加工途中の上記スリット溝を開放し,上記下穴
を介して上記穴形成面側から上記溝形成面側へ抜けるよ
うに上記加工液を噴流させる逆流処理を行い,その後,
上記放電加工と上記逆流処理とを交互に繰り返して上記
スリット溝を形成することを特徴とするハニカム構造体
成形用金型の製造方法にある(請求項1)。
According to the present invention, there is provided a honeycomb structure forming mold having at least a plurality of supply holes for supplying a material and a slit groove communicating with the supply hole to form a material into a honeycomb shape. In the method, after the supply hole is formed in the hole forming surface of the mold material, a part of the slit groove planned position on the groove forming surface opposite to the hole forming surface and the supply hole penetrate. A plurality of pilot holes are provided so as to face the electric discharge machining electrode to the groove forming surface, while supplying a machining liquid to the groove forming surface, and through the pilot hole from the groove forming surface side to the hole forming surface side. The electric discharge machining electrode is advanced while aspirating the machining fluid to advance the electric discharge machining, and then the electric discharge machining is stopped, the electric discharge machining electrode is retracted, and the slit groove in the middle of the machining is opened. The above hole formation through the hole Performs a reverse flow process which jet the machining fluid to exit from the side into the groove forming surface side, then,
A method for manufacturing a die for forming a honeycomb structure, wherein the slit groove is formed by alternately repeating the electric discharge machining and the backflow treatment (claim 1).

【0008】本発明においては,上記スリット溝形成予
定位置と上記供給穴とが貫通するように上記下穴を複数
設ける。そして,この下穴を利用して,上記放電加工と
上記逆流処理とを交互に繰り返す。まず,放電加工時に
おいては,上記下穴を通して上記溝形成面側から穴形成
面側へ吸引する加工液の流れに伴って,放電加工によっ
て生じたスラッジを排出し,新鮮な加工液を放電加工部
分に効率よく供給することができる。
In the present invention, a plurality of pilot holes are provided so as to penetrate the slit groove planned position and the supply hole. Then, using the prepared hole, the electric discharge machining and the backflow treatment are alternately repeated. First, at the time of electric discharge machining, the sludge generated by electric discharge machining is discharged along with the flow of the machining liquid sucked from the groove forming surface side to the hole forming surface side through the pilot hole, and fresh machining liquid is discharged. The parts can be efficiently supplied.

【0009】しかしながら,上記下穴を介してスラッジ
の排出を完全に行うことは困難であり,加工中のスリッ
ト溝内に残留したスラッジの量が徐々に増加してくる。
そのため,スラッジによる放電加工への悪影響が生じ易
い状況となってくる。ここで,本発明においては,上記
逆流処理を行う。すなわち,上記のごとく,一旦放電加
工を停止し,放電加工用電極を後退させ,加工途中のス
リット溝を開放する。そして,加工液の流れを逆転さ
せ,上記下穴を介して上記穴形成面側から溝形成面側へ
抜けるように加工液を噴流させる。これにより,加工途
中のスリット溝内に残留していたスラッジは外部へ排出
される。それ故,放電加工を再開した際には,残留スラ
ッジの少ない良好な条件での放電加工を再開することが
できる。
[0009] However, it is difficult to completely discharge sludge through the pilot hole, and the amount of sludge remaining in the slit groove during machining gradually increases.
For this reason, the situation is likely to occur in which the sludge adversely affects the electric discharge machining. Here, in the present invention, the backflow process is performed. That is, as described above, the electric discharge machining is temporarily stopped, the electrode for electric discharge machining is retracted, and the slit groove in the middle of the machining is opened. Then, the flow of the machining fluid is reversed, and the machining fluid is jetted from the hole forming surface side to the groove forming surface side via the pilot hole. As a result, sludge remaining in the slit groove during processing is discharged to the outside. Therefore, when electric discharge machining is resumed, electric discharge machining can be resumed under favorable conditions with little residual sludge.

【0010】そして,再び残留スラッジが増加してきた
際には,再び上記逆流処理を行って,スラッジの除去を
行う。その後は,上記放電加工と逆流処理を交互に繰り
返すことにより,放電加工を進め,所望深さのスリット
溝を完成させることができる。このように,本発明で
は,上記スリット溝を加工するに当たり,上記放電加工
を連続して行うのではなく,途中で停止して,上記逆流
処理を行ってから再開する。これによって,常に良好な
条件で放電加工を行うことができ,上記逆流処理を行わ
ずに連続して放電加工を行うよりも高精度かつ効率的に
加工を進めることができる。
When the residual sludge increases again, the above-mentioned backflow treatment is performed again to remove sludge. Thereafter, the electric discharge machining is advanced by alternately repeating the electric discharge machining and the backflow treatment, so that a slit groove having a desired depth can be completed. As described above, according to the present invention, when machining the slit groove, the electric discharge machining is not performed continuously, but is stopped halfway, and the flow is resumed after the backflow process. Thus, the electric discharge machining can always be performed under favorable conditions, and the machining can be performed with higher precision and efficiency than when the electric discharge machining is continuously performed without performing the backflow treatment.

【0011】それ故,本発明によれば,ハニカム構造体
成形用金型のスリット溝を精度よく効率的に放電加工す
ることができるハニカム構造体成形用金型の製造方法を
提供することができる。
Therefore, according to the present invention, it is possible to provide a method for manufacturing a honeycomb structure forming die capable of accurately and efficiently subjecting a slit groove of the honeycomb structure forming die to electrical discharge machining. .

【0012】[0012]

【発明の実施の形態】上記スリット溝の形状は,成形す
るハニカム構造体の形状に合わせ,三角形格子状,四角
形格子状,六角形格子状,その他種々の格子形状を採用
することができる。そして,上記供給穴は,スリット溝
における格子交差部のすべてあるいは一部に連通するよ
うに設ける。また,上記下穴は,上記複数の供給穴の少
なくとも一部に対応して設ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The shape of the above-mentioned slit groove can be selected from a triangular lattice, a square lattice, a hexagonal lattice, and various other lattice shapes in accordance with the shape of the honeycomb structure to be formed. The supply hole is provided so as to communicate with all or a part of the grid intersection in the slit groove. The pilot hole is provided corresponding to at least a part of the plurality of supply holes.

【0013】特に,上記下穴は,すべての上記供給穴に
貫通するように設けることが好ましい(請求項2)。こ
の場合には,すべての供給穴を加工液の流路に利用する
ことができ,上記放電加工時における加工液の吸引によ
るスラッジの排出効果,及び,上記逆流処理におけるス
ラッジの排出効果をさらに高めることができる。
In particular, it is preferable that the pilot hole is provided so as to penetrate all the supply holes. In this case, all the supply holes can be used for the flow path of the machining fluid, and the effect of discharging the sludge by suction of the machining fluid during the electric discharge machining and the effect of discharging the sludge in the backflow treatment are further enhanced. be able to.

【0014】また,上記スリット溝は,六角形格子状で
あることが好ましい(請求項3)。スリット溝が六角形
格子状の場合には,例えば四角形格子の場合に比べて,
溝に沿った加工液の流動が行われにくく,特にスラッジ
が溜まりやすい。そのため,上記放電加工と逆流処理と
の交互処理が非常に有効である。また,六角形格子の場
合には,現在のところ放電加工以外にスリット溝を加工
する方法がないので,上記の放電加工精度の向上及び加
工効率の向上が直接的にハニカム構造体成形用金型の製
造コスト及び品質に影響を与える。
Further, it is preferable that the slit grooves have a hexagonal lattice shape. When the slit grooves are in the form of a hexagonal lattice, for example, compared to the case of a square lattice,
It is difficult for the working fluid to flow along the grooves, and sludge tends to accumulate. Therefore, the alternating processing of the electric discharge machining and the backflow treatment is very effective. In addition, in the case of a hexagonal lattice, there is currently no method of machining a slit groove other than the electric discharge machining. Affects the manufacturing cost and quality of the product.

【0015】また,上記スリット溝の幅寸法は110μ
m以下とすることができる(請求項4)。この場合に
は,特に上記作用効果を有効に発揮させることができ
る。すなわち,スリット溝の幅寸法が110μm以下と
いう極細スリット溝の場合には,スラッジの排出効果を
高めることが困難である。この場合,上記放電加工と逆
流処理の交互処理を行うことによって,放電加工精度及
び効率を向上させることができる。
The width of the slit groove is 110 μm.
m or less (claim 4). In this case, in particular, the above-mentioned effects can be effectively exhibited. That is, when the width of the slit groove is 110 μm or less, it is difficult to enhance the sludge discharge effect. In this case, by performing the electric discharge machining and the backflow treatment alternately, the electric discharge machining accuracy and efficiency can be improved.

【0016】また,上記スリット溝の深さ寸法は,その
幅寸法の10倍以上とすることができる(請求項5)。
この場合にも,上記作用効果を有効に発揮させることが
できる。すなわち,深さ寸法がその幅寸法の10倍以上
である幅狭深溝構造のスリット溝の場合には,スラッジ
の排出効果を高めることが困難である。この場合にも,
上記放電加工と逆流処理の交互処理を行うことによっ
て,放電加工精度及び効率を向上させることができる
Further, the depth dimension of the slit groove can be ten times or more the width dimension thereof.
Also in this case, the above-described effects can be effectively exerted. That is, in the case of a slit groove having a narrow deep groove structure whose depth dimension is 10 times or more the width dimension, it is difficult to enhance the sludge discharge effect. Also in this case,
By performing the electric discharge machining and the backflow treatment alternately, electric discharge machining accuracy and efficiency can be improved.

【0017】[0017]

【実施例】(実施例1)本発明の実施例につき,図1〜
図6を用いて説明する。本例では,図1,図2に示すご
とく,材料供給用の複数の供給穴81と,該供給穴81
に連通して材料を六角格子状のハニカム形状に成形する
スリット溝82とを有するハニカム構造体成形用金型8
を製造する。本例では,図3に示すごとく,金型素材8
0の穴形成面84に供給穴81を形成した後,穴形成面
84の反対面である溝形成面85におけるスリット溝形
成予定位置の一部と供給穴81とが貫通するように下穴
83(図4)を複数設ける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIGS.
This will be described with reference to FIG. In this example, as shown in FIGS. 1 and 2, a plurality of supply holes 81 for supplying a material,
8 for forming a honeycomb structure having a slit groove 82 for forming a material into a hexagonal lattice honeycomb shape in communication with the honeycomb structure.
To manufacture. In this example, as shown in FIG.
After the supply hole 81 is formed in the hole forming surface 84 of the zero, the pilot hole 83 is formed so that the supply hole 81 penetrates a part of the slit forming surface 85 on the groove forming surface 85 opposite to the hole forming surface 84. (FIG. 4) are provided in plurality.

【0018】その後,上記溝形成面85に放電加工用電
極1を対面させると共に溝形成面85に加工液7を供給
しながら,かつ,下穴83を通して溝形成面85側から
穴形成面84側へ加工液7を吸引しながら放電加工用電
極1を前進させて放電加工を進める。次いで,放電加工
を止めて放電加工用電極1を後退させて加工途中のスリ
ット溝82を開放し,下穴83を介して穴形成面84側
から溝形成面85側へ抜けるように加工液7を噴流させ
る逆流処理を行う。その後,上記放電加工と上記逆流処
理とを交互に繰り返してスリット溝82を形成する。
Thereafter, the electric discharge machining electrode 1 faces the groove forming surface 85, the machining liquid 7 is supplied to the groove forming surface 85, and the groove forming surface 85 side to the hole forming surface 84 side through the pilot hole 83. The electric discharge machining electrode 1 is advanced while sucking the machining fluid 7 to perform electric discharge machining. Next, the electric discharge machining is stopped and the electric discharge machining electrode 1 is retracted to open the slit groove 82 in the middle of the machining, and the machining fluid 7 is drawn through the pilot hole 83 from the hole forming surface 84 side to the groove forming surface 85 side. Backflow processing for jetting is performed. Thereafter, the electric discharge machining and the backflow treatment are alternately repeated to form the slit grooves 82.

【0019】以下,これを詳説する。本例において製造
するハニカム構造体成形用金型8を製造するに当たって
は,まず,図3(a)に示すごとく,溝形成面85と穴
形成面84とを表裏に有する金型素材80を準備する。
次いで,図3(b)に示すごとく,金型素材80の穴形
成面84にドリル加工により多数の供給穴81を設け
る。本例では,直径0.9mmφの供給穴81を設け
た。
Hereinafter, this will be described in detail. In manufacturing a honeycomb structure forming die 8 to produce in this example, first, as shown in FIG. 3 (a), prepared mold material 80 having a groove-forming surface 85 and the hole formation surface 84 on the front and back I do.
Next, as shown in FIG. 3B, a large number of supply holes 81 are provided in the hole forming surface 84 of the die material 80 by drilling. In this example, a supply hole 81 having a diameter of 0.9 mm was provided.

【0020】次いで,図3(c),図4に示すごとく,
穴形成面84の反対面である溝形成面85におけるスリ
ット溝形成予定位置820と供給穴81とが貫通するよ
うに,レーザ加工装置6から発射されるレーザ光60を
用いて下穴83を設けた。また本例では,すべての供給
穴81に貫通するように,スリット溝の六角形格子の6
つの角部のうち3つの角部に下穴83を設けた。本例の
下穴83(図4)は,直径140μmとした。
Next, as shown in FIGS. 3 (c) and 4,
The pilot hole 83 is provided by using the laser beam 60 emitted from the laser processing device 6 so that the slit groove formation position 820 on the groove forming surface 85 opposite to the hole forming surface 84 and the supply hole 81 penetrate. Was. Further, in this example, the hexagonal lattice of the slit grooves is formed so as to penetrate all the supply holes 81.
Prepared holes 83 were provided in three of the three corners. The pilot hole 83 (FIG. 4) in this example had a diameter of 140 μm.

【0021】その後,図1,図2,図3(d)に示すご
とく,六角形格子状のスリット溝82を放電加工により
形成する。これにより,周囲部88よりも突出した溝形
成面85に多数の六角格子状のスリット溝82を有する
ハニカム構造体成形用金型8が得られる。なお,本例で
は,図2(a)に示すごとく,スリット溝82の幅寸法
Wは100μm,深さ寸法Dは2.5mmとした。
Then, as shown in FIGS. 1, 2 and 3D, hexagonal lattice-shaped slit grooves 82 are formed by electric discharge machining. As a result, a honeycomb structure forming die 8 having a large number of hexagonal lattice-shaped slit grooves 82 on a groove forming surface 85 protruding from the peripheral portion 88 is obtained. In this example, as shown in FIG. 2A, the width dimension W of the slit groove 82 was 100 μm, and the depth dimension D was 2.5 mm.

【0022】ここで,本例では,上記スリット溝82を
形成するに当たって,放電加工と逆流処理を交互に繰り
返して行った。まず,放電加工は,図5に示すごとく,
放電加工装置5を用いて行った。この放電加工装置5
は,タンク50内に配置されたベース部51とこれに内
蔵された吸引装置52とを有し,吸引装置52の上面に
金型素材80をセットするよう構成されている。また,
金型素材80の上方には,図示しないヘッドに放電加工
用電極1を固定し,これを上下,左右に移動可能に支持
している。この放電加工用電極1の電極15は,得よう
とするスリット溝の形状に合わせて,六角形格子状に設
けられている。
Here, in this embodiment, in forming the slit groove 82, the electric discharge machining and the backflow treatment are alternately repeated. First, as shown in FIG.
This was performed using the electric discharge machine 5. This electric discharge machine 5
Has a base portion 51 disposed in a tank 50 and a suction device 52 incorporated therein, and is configured to set a mold material 80 on the upper surface of the suction device 52. Also,
Above the mold material 80, an electric discharge machining electrode 1 is fixed to a head (not shown) and supported so as to be movable up and down, left and right. The electrodes 15 of this electrode 1 for electric discharge machining are provided in a hexagonal lattice shape according to the shape of the slit groove to be obtained.

【0023】また,放電加工用電極1と金型素材80と
の間には,電源55によって電圧が付与されるようにな
っている。また,上記放電加工用電極1よりも下方が十
分に浸かるように加工液7がタンク50内に満たされて
いる。上記タンク50の外部には,2つの外部タンクを
設けてある。清浄な加工液7を蓄えたクリーンタンク5
51と,スラッジを含んだ使用済み加工液7を蓄えるダ
ークタンク552である。これらには,配管561〜5
64を介して上記放電加工用電極1および吸引装置52
が接続されている。
A voltage is applied between the electric discharge machining electrode 1 and the mold blank 80 by a power supply 55. Further, the machining liquid 7 is filled in the tank 50 so that the portion below the electrode 1 for electric discharge machining is sufficiently immersed. Outside the tank 50, two external tanks are provided. Clean tank 5 storing clean working fluid 7
51 and a dark tank 552 for storing the used working fluid 7 containing sludge. These include pipes 561-5
64, the electrode 1 for electric discharge machining and the suction device 52
Is connected.

【0024】具体的には,上記放電加工用電極1は,配
管561を介してクリーンタンク551に接続されてい
る。そして,配管561の途中に設けられたポンプ57
1によって,新鮮な加工液7をクリーンタンク551か
ら放電加工用電極1へ供給できるよう構成されている。
Specifically, the electric discharge machining electrode 1 is connected to a clean tank 551 via a pipe 561. A pump 57 provided in the middle of the pipe 561
1 is configured so that a fresh machining liquid 7 can be supplied from the clean tank 551 to the electric discharge machining electrode 1.

【0025】また,吸引装置52に接続された配管56
2は,三方弁565を介して2つの配管563,564
に分岐され,それぞれダークタンク552及びクリーン
タンク551に接続されている。また,配管562の途
中には,ポンプ572が配設されている。そして,上記
三方弁565の切り替え及びポンプ572の送り方向の
変更によって,加工液7の流れ方向を,吸引装置52か
らダークタンク552という方向と,クリーンタンク5
51から吸引装置52という方向へ変更できるよう構成
されている。
A pipe 56 connected to the suction device 52
2 is connected to two pipes 563 and 564 through a three-way valve 565.
And are connected to a dark tank 552 and a clean tank 551, respectively. A pump 572 is provided in the middle of the pipe 562. By switching the three-way valve 565 and changing the feed direction of the pump 572, the flow direction of the working fluid 7 is changed from the suction device 52 to the dark tank 552 and the clean tank 5
It is configured so that it can be changed from 51 to a suction device 52.

【0026】上記構成の放電加工装置5を用いて放電加
工を行うに当たっては,図5に示すごとく,放電加工用
電極1を金型素材80に対面させ,両者の間に電圧を付
与すると共に,放電加工用電極1側から新鮮な加工液7
を溝形成面85に供給しながら徐々に放電加工用電極1
を前進させる。さらに,このとき,吸引装置52によっ
て上記下穴83を通して溝形成面85側から穴形成面8
4側へ加工液7を吸引する。これにより,溝形成面85
においては徐々にスリット溝82が形成されていくと共
に,発生したスラッジの大半は吸引された加工液7と共
にダークタンク552に排出される。
In performing the electric discharge machining using the electric discharge machining apparatus 5 having the above configuration, as shown in FIG. 5, the electric discharge machining electrode 1 faces the mold material 80, and a voltage is applied between the two. Fresh machining fluid 7 from the EDM electrode 1 side
Machining electrode 1 while gradually supplying
To move forward. Further, at this time, the hole forming surface 8 is moved from the groove forming surface 85 side through the pilot hole 83 by the suction device 52.
The working fluid 7 is sucked to the side 4. Thereby, the groove forming surface 85
In, the slit groove 82 is gradually formed, and most of the generated sludge is discharged to the dark tank 552 together with the sucked processing liquid 7.

【0027】そして,本例では,スリット溝82が完成
するまで連続的に放電加工を続けるのでなく,途中で一
旦放電加工を止め,加工液の供給及び吸引も止める。こ
の放電加工を停止するタイミングは,加工途中のスリッ
ト溝82内に残留したスラッジの量が増加し,これが放
電加工に悪影響を及ぼし始める前とする。具体的なタイ
ミングは例えば実験的に求めることができる。
In this embodiment, the electric discharge machining is not continuously performed until the slit groove 82 is completed, but the electric discharge machining is temporarily stopped, and the supply and suction of the machining fluid are stopped. The timing of stopping the electric discharge machining is before the amount of sludge remaining in the slit groove 82 during machining increases and starts to have a bad influence on the electric discharge machining. The specific timing can be obtained experimentally, for example.

【0028】次いで,図6に示すごとく上記放電加工用
電極1を上方へ後退させて加工途中のスリット溝2を開
放する。そして,三方弁565の切り替え及びポンプ5
72の逆転を開始し,クリーンタンク551から新鮮な
加工液7を吸引装置52に圧送する。これにより,下穴
83を介して穴形成面84側から溝形成面85側へ抜け
るように加工液7を噴流させる逆流処理を行うことがで
きる。これにより,加工中のスリット溝82内に残留し
ていたスラッジは,新鮮な加工液7の逆流で上方へ除去
される。そのため,放電加工を再開した際には,残留ス
ラッジの少ない良好な条件での放電加工を再開すること
ができる。
Next, as shown in FIG. 6, the electric discharge machining electrode 1 is retracted upward to open the slit groove 2 which is being processed. Then, switching of the three-way valve 565 and the pump 5
The reverse rotation of 72 is started, and the fresh processing liquid 7 is sent from the clean tank 551 to the suction device 52 by pressure. Thereby, the backflow process of jetting the working fluid 7 from the hole forming surface 84 to the groove forming surface 85 through the pilot hole 83 can be performed. As a result, sludge remaining in the slit groove 82 during processing is removed upward by the reverse flow of the fresh processing liquid 7. Therefore, when electric discharge machining is restarted, electric discharge machining can be restarted under favorable conditions with little residual sludge.

【0029】また本例では,上記放電加工を1時間実施
した後,逆流処理を5秒間実施するというサイクルを交
互に繰り返した。これにより,上記幅寸法及び深さ寸法
を有する六角形格子状のスリット溝82が形成された。
このように,本例では,スリット溝82を加工するに当
たり,放電加工を連続して行うのではなく,途中で停止
して,逆流処理を行ってから再開する。これによって,
常に精度よい放電加工を行うことができると共に,逆流
処理を行わずに連続して放電加工を行うよりもむしろ効
率的に加工を進めることができる。
In this embodiment, the cycle of performing the electric discharge machining for 1 hour and then performing the backflow treatment for 5 seconds was alternately repeated. As a result, a hexagonal lattice-shaped slit groove 82 having the above width and depth dimensions was formed.
As described above, in this example, when machining the slit groove 82, the electric discharge machining is not performed continuously, but is stopped halfway, and the flow is restarted after performing the backflow process. by this,
Accurate electric discharge machining can always be performed, and machining can be efficiently performed rather than performing electric discharge machining continuously without performing backflow processing.

【0030】(実施例2)本例では,実施例1の優れた
効果を定量的に評価するため,比較のための2種類の放
電加工方法(比較例1,2)を実施し,上記実施例1の
場合と加工時間を比べた。比較例1は,実施例1の方法
において逆流処理を省略し,連続的に放電加工を行った
例である。比較例2は,実施例1における金型素材80
に対して下穴を設けずに,かつ,加工液の吸引及び逆流
処理を行わずに連続的に放電加工を行った例である。
(Embodiment 2) In this embodiment, in order to quantitatively evaluate the excellent effects of Embodiment 1, two types of EDM methods (Comparative Examples 1 and 2) for comparison were carried out. The processing time was compared with the case of Example 1. Comparative Example 1 is an example in which backflow treatment was omitted in the method of Example 1 and electric discharge machining was continuously performed. Comparative Example 2 is a mold material 80 according to Example 1.
This is an example in which electric discharge machining is continuously performed without providing a pilot hole and without performing suction and backflow treatment of a machining fluid.

【0031】これらの処理結果を図7に示す。同図は,
横軸に時間,縦軸にスリット溝の深さをとったものであ
る。同図では,実施例1の結果をE1,比較例1の結果
をC1,比較例2の結果をC2として示した。同図より
知られるごとく,加工開始直後の段階においては,比較
例1が最も効率よく加工が進み,2番目は比較例2であ
った。そして,実施例1は加工開始直後の段階において
は,最も加工速度が遅い状態であった。しかしながら,
実施例1は,初期の段階において比較例2と逆転して加
工効率が向上し,その後さらに比較例1と逆転して加工
効率が向上し,最終的に最も高効率でスリット溝の加工
を進めることができた。
FIG. 7 shows the results of these processes. The figure shows
The horizontal axis represents time, and the vertical axis represents the depth of the slit groove. In the figure, the result of Example 1 is shown as E1, the result of Comparative Example 1 is shown as C1, and the result of Comparative Example 2 is shown as C2. As can be seen from the figure, at the stage immediately after the start of processing, Comparative Example 1 was most efficiently processed, and Comparative Example 2 was the second. In Example 1, the processing speed was the lowest at the stage immediately after the start of processing. However,
In the first embodiment, the processing efficiency is improved by reversing the comparative example 2 in the initial stage, and thereafter, the processing efficiency is further improved by reversing the comparative example 1, and finally the processing of the slit groove is advanced with the highest efficiency. I was able to.

【0032】このことは,次のように考えられる。すな
わち,加工開始直後においては,放電加工により発生す
るスラッジの残留量の増加がまだあまり進んでいないの
で,上記逆流処理を行わない比較例1,2の方が効率よ
く放電加工を進めることができる。
This is considered as follows. In other words, immediately after the start of machining, the increase in the residual amount of sludge generated by electric discharge machining has not yet progressed so much, so that the comparative examples 1 and 2 in which the above-mentioned backflow treatment is not performed can proceed electric discharge machining more efficiently. .

【0033】しかしながら,徐々に残留スラッジ量が増
加してくると,比較例1,2の方は,加工効率が低下し
てくる。特に,上記下穴を有していない比較例2は放電
加工中の吸引もできないので,その影響が大きい。一
方,実施例1の場合には,上記逆流処理を行うことによ
って,常に効率よく放電加工を行うことができ,その効
率は低下しない。むしろ,加工が進んで下穴83の距離
が低下して吸引効率が高まり,加工効率も高くなる傾向
もある。そのため,上記のごとく,実施例1(E1)と
比較例1(C1)及び比較例2(C2)とは,加工が進
んだ段階で総合的な加工効率が逆転する。
However, when the residual sludge amount gradually increases, the working efficiency of Comparative Examples 1 and 2 decreases. In particular, Comparative Example 2, which does not have the above-mentioned pilot hole, has a large influence because suction during electric discharge machining cannot be performed. On the other hand, in the case of the first embodiment, by performing the above-mentioned backflow treatment, the electric discharge machining can always be efficiently performed, and the efficiency does not decrease. Rather, as processing proceeds, the distance between the pilot holes 83 decreases, suction efficiency increases, and processing efficiency also tends to increase. Therefore, as described above, the overall processing efficiency of the embodiment 1 (E1) and the comparative example 1 (C1) and the comparative example 2 (C2) is reversed at the stage where the processing is advanced.

【0034】以上の結果から,実施例1のように放電加
工と逆流処理とを繰り返すことが,ハニカム構造体成形
用金型8のスリット溝82を加工する場合に非常に有効
であることがわかる。なお,本例では,加工精度の定量
的な評価は割愛したが,比較例1,2に比べて実施例1
の方が高い加工精度でスリット溝を加工することができ
た。
From the above results, it can be seen that repeating the electric discharge machining and the backflow treatment as in the first embodiment is very effective when machining the slit grooves 82 of the honeycomb structure forming die 8. . In this example, the quantitative evaluation of the processing accuracy was omitted.
Was able to process slit grooves with higher processing accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1におけるハニカム構造体成形用金型
の,(a)全体形状,(b)スリット溝形成状態,を示
す説明図。
FIG. 1 is an explanatory view showing (a) an overall shape and (b) a state in which a slit groove is formed in a mold for forming a honeycomb structure in Example 1.

【図2】実施例1におけるハニカム構造体成形用金型の
溝形成面と供給穴との関係を示す,(a)一部切欠き断
面斜視図,(b)正面から見た説明図。
FIG. 2A is a partially cutaway perspective view showing the relationship between a groove forming surface of a mold for forming a honeycomb structure and a supply hole in Example 1, and FIG.

【図3】実施例1における,ハニカム構造体成形用金型
の製造工程を示す説明図。
FIG. 3 is an explanatory view showing a manufacturing process of a honeycomb structure forming mold in Example 1.

【図4】実施例1における,下穴の形成位置を示す説明
図。
FIG. 4 is an explanatory diagram showing a formation position of a pilot hole in the first embodiment.

【図5】実施例1における,放電加工を行っている状態
を示す説明図。
FIG. 5 is an explanatory diagram showing a state in which electric discharge machining is performed in the first embodiment.

【図6】実施例1における,逆流処理を行っている状態
を示す説明図。
FIG. 6 is an explanatory diagram illustrating a state in which a backflow process is performed in the first embodiment.

【図7】実施例2における,加工時間と溝深さの関係を
示す説明図。
FIG. 7 is an explanatory diagram showing a relationship between a processing time and a groove depth in the second embodiment.

【符号の説明】[Explanation of symbols]

1...放電加工用電極, 15...電極, 5...放電加工装置, 7...加工液, 8...ハニカム構造体成形用金型, 80...金型素材, 81...供給穴, 82...スリット溝, 83...下穴, 84...穴形成面, 85...溝形成面, 1. . . 14. electrode for electric discharge machining, . . Electrodes, 5. . . 6. electric discharge machine, . . Processing fluid, 8. . . Honeycomb structure forming die, 80. . . Mold material, 81. . . Supply hole, 82. . . Slit groove, 83. . . Pilot hole, 84. . . Hole forming surface, 85. . . Groove forming surface,

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも,材料供給用の複数の供給穴
と,該供給穴に連通して材料をハニカム形状に成形する
スリット溝とを有するハニカム構造体成形用金型を製造
する方法において,金型素材の穴形成面に上記供給穴を
形成した後,該穴形成面の反対面である溝形成面におけ
る上記スリット溝形成予定位置の一部と上記供給穴とが
貫通するように下穴を複数設け,上記溝形成面に放電加
工用電極を対面させると共に上記溝形成面に加工液を供
給しながら,かつ,上記下穴を通して上記溝形成面側か
ら上記穴形成面側へ上記加工液を吸引しながら上記放電
加工用電極を前進させて放電加工を進め,次いで,放電
加工を止めて上記放電加工用電極を後退させて加工途中
の上記スリット溝を開放し,上記下穴を介して上記穴形
成面側から上記溝形成面側へ抜けるように上記加工液を
噴流させる逆流処理を行い,その後,上記放電加工と上
記逆流処理とを交互に繰り返して上記スリット溝を形成
することを特徴とするハニカム構造体成形用金型の製造
方法。
1. A method for manufacturing a honeycomb structure forming mold having at least a plurality of material supply holes and a slit groove communicating with the supply holes to form a material into a honeycomb shape. After the supply hole is formed in the hole forming surface of the mold material, the pilot hole is formed so that a part of the slit groove planned position on the groove forming surface opposite to the hole forming surface and the supply hole penetrate. A plurality of the machining fluids are provided to face the EDM electrode to the groove forming surface, while supplying the machining fluid to the groove forming surface, and by passing the machining fluid from the groove forming surface side to the hole forming surface side through the pilot hole. The electric discharge machining electrode is advanced by suction while the electric discharge machining is advanced, then the electric discharge machining is stopped, and the electric discharge machining electrode is retracted to open the slit groove in the middle of the machining, and the above-mentioned through the pilot hole. The above groove shape from the hole forming side Back-molding processing for jetting the machining fluid so as to flow out to the surface side, and thereafter, the electric discharge machining and the back-flow treatment are alternately repeated to form the slit grooves, thereby forming a honeycomb structure forming metal. Mold manufacturing method.
【請求項2】 請求項1において,上記下穴は,すべて
の上記供給穴に貫通するように設けることを特徴とする
ハニカム構造体成形用金型の製造方法。
2. The method according to claim 1, wherein the pilot hole is provided so as to penetrate all the supply holes.
【請求項3】 請求項1又は2において,上記スリット
溝は,六角形格子状であることを特徴とするハニカム構
造体成形用金型の製造方法。
3. The method according to claim 1, wherein the slit groove has a hexagonal lattice shape.
【請求項4】 請求項1〜3のいずれか1項において,
上記スリット溝の幅寸法は110μm以下であることを
特徴とするハニカム構造体成形用金型の製造方法。
4. The method according to claim 1, wherein:
A method for manufacturing a die for forming a honeycomb structure, wherein a width dimension of the slit groove is 110 μm or less.
【請求項5】 請求項1〜4のいずれか1項において,
上記スリット溝の深さ寸法は,その幅寸法の10倍以上
であることを特徴とするハニカム構造体成形用金型の製
造方法。
5. The method according to claim 1, wherein:
A method for manufacturing a die for forming a honeycomb structure, wherein a depth dimension of the slit groove is at least 10 times a width dimension thereof.
JP2001078522A 2001-03-19 2001-03-19 Manufacturing method of die for forming honeycomb structure Pending JP2002273626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078522A JP2002273626A (en) 2001-03-19 2001-03-19 Manufacturing method of die for forming honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078522A JP2002273626A (en) 2001-03-19 2001-03-19 Manufacturing method of die for forming honeycomb structure

Publications (1)

Publication Number Publication Date
JP2002273626A true JP2002273626A (en) 2002-09-25

Family

ID=18935128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078522A Pending JP2002273626A (en) 2001-03-19 2001-03-19 Manufacturing method of die for forming honeycomb structure

Country Status (1)

Country Link
JP (1) JP2002273626A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1016832A3 (en) * 2004-03-09 2007-08-07 Ngk Insulators Ltd PROCESS FOR PRODUCING A USAGEABLE DIE FOR FORMING AN ALVEOLED STRUCTURE
JP2009241165A (en) * 2008-03-28 2009-10-22 Hitachi Metals Ltd Apparatus and method for processing ceramic honeycomb structure forming die
JP2010522642A (en) * 2006-12-22 2010-07-08 コーニング インコーポレイテッド Step-down plunge electric discharge machining
EP2368682A2 (en) 2010-03-23 2011-09-28 NGK Insulators, Ltd. Method for manufacturing honeycomb structure forming die
EP2368681A2 (en) 2010-03-23 2011-09-28 NGK Insulators, Ltd. Method for manufacturing honeycomb structure forming die
JP2012125882A (en) * 2010-12-15 2012-07-05 Ngk Insulators Ltd Electrode for mouthpiece for forming honeycomb structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1016832A3 (en) * 2004-03-09 2007-08-07 Ngk Insulators Ltd PROCESS FOR PRODUCING A USAGEABLE DIE FOR FORMING AN ALVEOLED STRUCTURE
US7335848B2 (en) 2004-03-09 2008-02-26 Ngk Insulators, Ltd. Process for production of die usable for formation of honeycomb structure
JP2010522642A (en) * 2006-12-22 2010-07-08 コーニング インコーポレイテッド Step-down plunge electric discharge machining
JP2009241165A (en) * 2008-03-28 2009-10-22 Hitachi Metals Ltd Apparatus and method for processing ceramic honeycomb structure forming die
EP2368682A2 (en) 2010-03-23 2011-09-28 NGK Insulators, Ltd. Method for manufacturing honeycomb structure forming die
EP2368681A2 (en) 2010-03-23 2011-09-28 NGK Insulators, Ltd. Method for manufacturing honeycomb structure forming die
EP2368682A3 (en) * 2010-03-23 2014-01-15 NGK Insulators, Ltd. Method for manufacturing honeycomb structure forming die
EP2368681A3 (en) * 2010-03-23 2014-01-15 NGK Insulators, Ltd. Method for manufacturing honeycomb structure forming die
US8779332B2 (en) 2010-03-23 2014-07-15 Ngk Insulators, Ltd. Method for manufacturing honeycomb structure forming die
US8822873B2 (en) 2010-03-23 2014-09-02 Ngk Insulators, Ltd. Method for manufacturing honeycomb structure forming die
JP2012125882A (en) * 2010-12-15 2012-07-05 Ngk Insulators Ltd Electrode for mouthpiece for forming honeycomb structure
US9120168B2 (en) 2010-12-15 2015-09-01 Ngk Insulators, Ltd. Electrode for honeycomb structure forming die

Similar Documents

Publication Publication Date Title
CN108890053B (en) Double-channel tube electrode and electrolytic cutting method thereof
US7335848B2 (en) Process for production of die usable for formation of honeycomb structure
CN108746894B (en) Micro-tube electrode pulse dynamic electrolytic cutting method
JP2005349470A (en) Micro-machining method and system
KR100449882B1 (en) Honeycomb Extrusion Dies and Manufacturing Method
JP2002273626A (en) Manufacturing method of die for forming honeycomb structure
JP3478730B2 (en) Wire electric discharge machine, wire electric discharge method, and extrusion mold
US9764403B2 (en) Method and electrode for electrochemically processing a workpiece
US4403131A (en) Electrical discharge machining utilizing a counter slot
JP2000024923A (en) Fine hole.groove machining method
US20220410297A1 (en) Method and device for electrochemically treating components
US4497101A (en) Method and apparatus for the manufacture of a three-dimensional, shaped graphite electrode utilizing a three-dimensional, shaped file
CN207615817U (en) A kind of work tank of spark-erosion machine tool
CN113369608A (en) Method for synchronously preparing microtexture and micro-textured micro-pits on metal surface
CN109590524A (en) It is a kind of to go out sound cylinder switching groove processing method for mobile terminal
JPH1177189A (en) Manufacture of die
JP4019542B2 (en) Manufacturing method and manufacturing apparatus for mold for forming honeycomb structure
JP2005111444A (en) Washing method
CN113510364B (en) Forming method of three-dimensional cavity structure based on laser-assisted dissolution
JP2004058206A (en) Grooving method by water jet and manufacturing method for honeycomb structure molding metal die
CN108284259A (en) A kind of half immersion wire electrochemical micro-machining fixture and radial fliud flushing method
CN114892257B (en) Metal material surface shaping device and shaping method
JP2013170500A (en) Method of manufacturing impeller of centrifugal rotary machine
JP2009012286A (en) Method of manufacturing mold having groove part, and method of manufacturing mold having molding groove part for molding honeycomb structure
JP2000024840A (en) Manufacture of honeycomb structure body molding die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804