JP2000024923A - Fine hole.groove machining method - Google Patents

Fine hole.groove machining method

Info

Publication number
JP2000024923A
JP2000024923A JP10208526A JP20852698A JP2000024923A JP 2000024923 A JP2000024923 A JP 2000024923A JP 10208526 A JP10208526 A JP 10208526A JP 20852698 A JP20852698 A JP 20852698A JP 2000024923 A JP2000024923 A JP 2000024923A
Authority
JP
Japan
Prior art keywords
hole
processing
workpiece
machining
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10208526A
Other languages
Japanese (ja)
Inventor
Kazunari Umetsu
一成 梅津
Tadayoshi Ikehara
忠好 池原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10208526A priority Critical patent/JP2000024923A/en
Publication of JP2000024923A publication Critical patent/JP2000024923A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To form the fine hole and groove on a work piece with high accuracy or to finely cut the work piece by forming a prepared machining hole smaller than a diameter of a through hole or a width of a groove on a predetermined position in advance, and forming the through hole or the groove on the basis of the prepared machining hole. SOLUTION: The laser beam is irradiated to a surface of a work piece 21 to form a prepared through hole 23. The prepared machining through hole 23 is formed on a position corresponding to a central position of a fine hole 24 to be formed in a state that a spot diameter of the laser beam is adjusted so that a diameter of the prework through hole 23 is smaller than a diameter of the fine hole. Then the fine hole 24 is formed by the blasting process. A nozzle 25 is arranged on an upper part of the work piece 21 corresponding to a position of the fine hole 24 to be formed, and the solid and liquid two- layered jet 27 including the fine abrasive grain 26 is injected toward a surface of the work piece 21. Whereby a hole 28 is formed on the work piece 21 by removing a material by the collision of the abrasive grain 26, and the desired through hole 24 can be finally formed with high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料、ガラス
・セラミックス・シリコン・プラスチック等の非金属材
料、及び複合材料等の様々な材料からなる被加工物に微
細な貫通穴や溝を形成し又は被加工物を切断する加工方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming fine through-holes and grooves in a workpiece made of various materials such as a metal material, a non-metal material such as glass, ceramics, silicon, and plastic, and a composite material. Alternatively, the present invention relates to a processing method for cutting a workpiece.

【0002】[0002]

【従来の技術】従来より、上述した様々な材料の被加工
物に穴あけ・溝加工又は切断等の除去加工を行うため
に、一般にブラスト加工、放電加工、レーザ加工又は超
音波加工等の技術が採用されている。
2. Description of the Related Art Conventionally, techniques such as blasting, electric discharge machining, laser machining, and ultrasonic machining have been generally used to perform machining such as drilling, grooving, or cutting on workpieces of various materials described above. Has been adopted.

【0003】ブラスト加工は、図5Aに例示するよう
に、ノズル1から高速で被加工物2表面に固体粒子即ち
砥粒3を、圧縮空気等の気体や水等の液体を利用して噴
射することにより、材料を除去して穴あけや溝加工を行
う。使用する砥粒の粒径を変えることにより、微細な穴
・溝の形成及び微細切断が可能であり、特開平4−26
1774号公報には、このような微細砥粒を含む固気2
層噴流をマスクの上から噴射することにより、被加工物
にマイクロスルーホールを形成するための装置が開示さ
れている。
In blasting, as shown in FIG. 5A, solid particles, that is, abrasive grains 3 are jetted from a nozzle 1 onto a surface of a workpiece 2 at a high speed using a gas such as compressed air or a liquid such as water. In this way, drilling and grooving are performed by removing the material. By changing the particle size of the abrasive grains used, formation of fine holes and grooves and fine cutting can be performed.
No. 1774 discloses solid-air 2 containing such fine abrasive grains.
An apparatus for forming a micro through hole in a workpiece by injecting a laminar jet from above a mask is disclosed.

【0004】放電加工は、一般に絶縁性の加工液中で加
工電極と被加工物間の狭いギャップにアーク放電を発生
させることにより、被加工物の対向面から材料を除去し
て電極形状を転写し、所望の形状を加工する。最近で
は、図6Aに示すようにパイプ電極4を用い、その底面
部からの放電により被加工物2をその表面から層状に所
定の深さまで加工する所謂創成放電加工法が開発されて
いる。この加工方法によれば、パイプ電極の直径を小さ
くすることにより、最小穴径5μm程度までの微細な穴
や溝を加工し得ることが報告されている。
In electric discharge machining, generally, an arc discharge is generated in a narrow gap between a machining electrode and a workpiece in an insulating machining fluid, thereby removing material from a facing surface of the workpiece and transferring an electrode shape. Then, a desired shape is processed. Recently, as shown in FIG. 6A, a so-called creation electric discharge machining method has been developed in which the workpiece 2 is machined in a layered manner from the surface thereof to a predetermined depth by using electric discharge from the bottom surface portion of the pipe electrode 4. According to this processing method, it is reported that a fine hole or groove having a minimum hole diameter of about 5 μm can be processed by reducing the diameter of the pipe electrode.

【0005】また、レーザ加工は、一般にYAG(イッ
トリウム・アルミニウム・ガーネット)レーザやCO2
(炭酸ガス)レーザを用いて、レーザ光を被加工物表面
に集光照射し、材料を溶融除去することに穴あけ、溝加
工、切断等を行う。レーザ加工は被加工物に外力が直接
作用しないために、特にセラミックス等の硬脆材料の加
工に有利であり、またレーザ光を数μm程度の微小スポ
ット径に集束させることにより、微細な穴・溝の形成又
は切断が可能である。
[0005] Laser processing is generally performed using a YAG (yttrium aluminum garnet) laser or CO 2
Using a (carbon dioxide) laser, laser light is condensed and radiated onto the surface of the workpiece, and drilling, grooving, cutting, and the like are performed for melting and removing the material. Laser processing is particularly advantageous for processing hard and brittle materials such as ceramics because external force does not directly act on the workpiece. In addition, by focusing laser light to a small spot diameter of about several μm, A groove can be formed or cut.

【0006】レーザ加工の場合、レーザ光の照射により
形成される被加工物の溶融部が蒸発又は噴出して穴を成
長させるが、この穴から飛散した溶融物が前記穴の開口
付近に再付着・固化して穴の形状や見栄えを汚くすると
いう問題がある。かかる問題を解消するために、図7A
に示すように、例えば特開昭63−115761号公報
に記載されるように水や加工液等の液体5中に被加工物
2を配置し、加工窓6を通して外側からレーザ光7を照
射する液中レーザ加工方法が知られている。
In the case of laser processing, a molten portion of a workpiece formed by irradiation with laser light evaporates or blows out to grow a hole, and the melt scattered from the hole is reattached to the vicinity of the opening of the hole. -There is a problem that the hole is solidified to make the shape and appearance of the hole dirty. To solve this problem, FIG.
As shown in, for example, as described in Japanese Patent Application Laid-Open No. 63-115761, the workpiece 2 is arranged in a liquid 5 such as water or a processing liquid, and a laser beam 7 is irradiated from the outside through a processing window 6. A submerged laser processing method is known.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
微細穴・溝加工又は微細切断では、上述したような1つ
の加工方法で加工開始から加工完了までの全工程を行う
ため、次のような問題があった。
However, in the conventional micro-hole / groove machining or micro-cutting, since the entire process from the start of machining to the completion of machining is performed by one machining method as described above, the following problems occur. was there.

【0008】即ちブラスト加工では、図5A及びBにお
いて、ノズル1から噴射された砥粒3が、加工中の穴8
の内面に衝突して跳ね返り、これに後から噴射される砥
粒が衝突する虞があり、そのために砥粒の被加工物表面
への衝突が妨害されて、加工速度が遅くなるという問題
がある。更に、砥粒の加速媒体である気体9が加工中の
穴8内に滞留するために砥粒が十分に加速されず、加工
能率が低下する虞がある。特に深い穴又は溝を加工する
場合に、これらの問題が顕著になる。これらの問題を解
消するために、搬送ガスの圧力を高くして砥粒の噴射速
度を上げると、加工部分及び/又はその周辺部分を必要
以上に損傷し、最終的に貫通穴10の加工径を所望の穴
10′より大きくしたり、面荒れなどが生じて品質を低
下させる等の問題が生じる。
That is, in the blasting process, in FIGS. 5A and 5B, the abrasive grains 3 ejected from the nozzle 1
There is a risk that the abrasive grains that are subsequently injected will collide with and bounce off of the inner surface of the workpiece, and this will hinder the abrasive grains from colliding with the surface of the workpiece, thereby reducing the processing speed. . Further, since the gas 9 as the medium for accelerating the abrasive grains stays in the hole 8 during machining, the abrasive grains are not sufficiently accelerated, and there is a possibility that machining efficiency is reduced. In particular, when deep holes or grooves are machined, these problems become remarkable. In order to solve these problems, when the pressure of the carrier gas is increased and the injection speed of the abrasive grains is increased, the processing part and / or its peripheral part is damaged more than necessary, and finally the processing diameter of the through hole 10 is reduced. Is larger than the desired hole 10 ', or the surface is roughened, thereby deteriorating the quality.

【0009】また放電加工の場合には、図6Aに示すよ
うに、加工屑11が加工中の穴12から排出されずに底
部に溜まり易く、そのために加工能率や品質の低下を招
く虞がある。そこで、図6Bに示すように、加工の過程
で定期的に電極4を上下させて穴12から出し入れする
ことにより、該穴から加工屑を強制的に排出させかつ加
工液13を循環させる必要が生じるが、そのために電極
の制御等が複雑かつ面倒で加工時間が長くなり、加工能
率を低下させるという問題がある。
In the case of electric discharge machining, as shown in FIG. 6A, machining dust 11 is not discharged from the hole 12 during machining and tends to accumulate at the bottom, which may cause a decrease in machining efficiency and quality. . Therefore, as shown in FIG. 6B, it is necessary to forcibly discharge the machining waste from the hole and circulate the machining fluid 13 by periodically raising and lowering the electrode 4 in and out of the hole 12 in the process of machining. However, there is a problem that the control of the electrodes is complicated and troublesome, the processing time is lengthened, and the processing efficiency is reduced.

【0010】また、液中レーザ加工では、図7Aに示す
ように、レーザ光6の照射により加工中の穴14内に気
泡15や加工屑16が発生し、これらがレーザ光を散乱
させ又は遮断して、加工精度の低下及び加工部分付近の
汚れを生じさせるという問題がある。特に深穴又は深溝
の加工では、レーザ光の散乱及び穴14の周囲への熱伝
導により、穴径方向の加工と穴深さ方向の加工とのバラ
ンスが悪くなり、最終的に得られる貫通穴17の形状
が、図6Bに示すような所望の穴17′に対して入口側
の加工径が大きいテーパ状や所謂樽型になったり途中が
くびれたりするなど、加工精度が低くなるという問題が
ある。
In the submerged laser processing, as shown in FIG. 7A, the irradiation of the laser beam 6 generates bubbles 15 and processing chips 16 in the hole 14 being processed, and these scatter or block the laser beam. As a result, there is a problem that the processing accuracy is reduced and dirt near the processed portion is generated. In particular, in the processing of a deep hole or a deep groove, the balance between the processing in the hole diameter direction and the processing in the hole depth direction is deteriorated due to scattering of laser light and heat conduction to the periphery of the hole 14, and the finally obtained through hole The shape of 17 has a problem in that the processing accuracy is low, such as a tapered shape having a large processing diameter on the inlet side with respect to a desired hole 17 ′ as shown in FIG. is there.

【0011】そこで、本発明は、上述した従来技術の問
題点を解消するためになされてものであり、その目的
は、被加工物に微細な穴や溝を高精度に加工し、又は被
加工物を微細切断することができ、品質を低下させるこ
となく加工速度を向上させて加工時間を短縮でき、かつ
コストを低減し得る高効率な加工方法を提供することに
ある。
Therefore, the present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to form a fine hole or groove in a workpiece with high precision or to process the workpiece. An object of the present invention is to provide a highly efficient processing method capable of finely cutting an object, increasing a processing speed without reducing quality, shortening a processing time, and reducing costs.

【0012】[0012]

【課題を解決するための手段】本発明によれば、被加工
物に微細な貫通穴又は溝を形成する際に、被加工物を貫
通しかつその直径が前記貫通穴の直径又は前記溝の幅よ
り小さい加工先穴を、予め被加工物に前記貫通穴又は溝
を形成しようとする位置に形成し、この加工先穴に整合
させて前記貫通穴又は溝を形成することを特徴とする微
細穴・溝加工方法が提供される。
According to the present invention, when a fine through hole or groove is formed in a workpiece, the workpiece penetrates the workpiece and has a diameter equal to the diameter of the through hole or the diameter of the groove. A fine processing hole having a width smaller than the width is previously formed at a position where the through hole or the groove is to be formed in the workpiece, and the through hole or the groove is formed in alignment with the processing hole. A hole / grooving method is provided.

【0013】これにより、目的とする貫通穴又は溝を形
成する際に発生する加工屑などが加工先穴を介して被加
工物の裏側から排出されるので、加工能率及び加工精度
が向上し、微細な穴・溝の形成及び切断加工が可能にな
る。
[0013] With this, machining chips and the like generated when forming the intended through hole or groove are discharged from the back side of the workpiece through the machining hole, thereby improving machining efficiency and machining accuracy. It is possible to form and cut fine holes and grooves.

【0014】前記加工先穴は、目的とする貫通穴又は溝
の形成に利用されて消滅するので、該貫通穴の寸法及び
位置の範囲内で被加工物を貫通していれば十分で、特に
高い品質、加工精度を必要としないから、公知の様々な
加工方法、例えばマイクロブラスト加工、ドリル加工、
砥石加工又は放電加工などで形成することができる。特
に、高出力かつ非接触加工で様々な加工材料に適用で
き、加工時の制御が容易なレーザ加工により形成すると
好都合である。
Since the hole to be machined disappears by being used for forming a target through hole or groove, it is sufficient if the hole penetrates the workpiece within the range of the size and position of the through hole. Because it does not require high quality and processing accuracy, various known processing methods such as micro blasting, drilling,
It can be formed by grinding or electric discharge machining. In particular, it is convenient to form by laser processing, which can be applied to various processing materials by high-power and non-contact processing and is easy to control during processing.

【0015】前記貫通穴又は溝は、使用する砥粒の粒径
を適当に選択することによりブラスト加工で形成するこ
とができ、その場合には、加工屑及び使用後の砥粒が搬
送ガスと共に加工先穴を介して反対側から排出されるの
で、従来のような砥粒同士の衝突、気体の滞留が解消さ
れ又は少なくとも大幅に減少し、搬送ガスの圧力を上げ
ることなく加工能率を向上させることができる。そのた
め、高精度の加工が可能になり、従来に比して加工部分
の形状性が大幅に向上する。
The through holes or grooves can be formed by blasting by appropriately selecting the particle size of the abrasive grains to be used. In this case, the processing chips and the used abrasive grains are transferred together with the carrier gas. Since it is discharged from the opposite side through the machining hole, the conventional collision between the abrasive grains, gas stagnation is eliminated or at least greatly reduced, and the machining efficiency is improved without increasing the pressure of the carrier gas. be able to. Therefore, high-precision processing becomes possible, and the shape of the processed part is greatly improved as compared with the conventional case.

【0016】別の実施例では、電極を適当に選択して放
電加工により前記貫通穴又は溝を形成することができ、
発生した加工屑が、電極を上下させなくても加工先穴を
介して反対側から容易に排出され、かつ新鮮な加工液が
加工部分に供給されるので、加工能率・品質が向上する
と共に、電極の操作・制御が容易になる。
In another embodiment, the through holes or grooves can be formed by electric discharge machining by appropriately selecting electrodes.
The generated machining waste is easily discharged from the opposite side through the machining hole without raising and lowering the electrode, and fresh machining fluid is supplied to the machining part, so that machining efficiency and quality are improved, The operation and control of the electrodes becomes easy.

【0017】更に別の実施例では、前記貫通穴又は溝は
レーザ加工により形成することができる。レーザ照射に
より発生する加工屑(溶融物)及び液中レーザ加工の場
合には気泡が、加工先穴を介して裏側へ排出されるの
で、レーザ光の散乱及び遮断を低減することができ、加
工能率・加工精度の向上を図ることができると共に、レ
ーザ出力を低減させることができる。
In still another embodiment, the through holes or grooves can be formed by laser processing. Processing dust (melt) generated by laser irradiation and bubbles in the case of submerged laser processing are discharged to the back side through the processing target hole, so that scattering and interruption of laser light can be reduced, and processing Efficiency and processing accuracy can be improved, and the laser output can be reduced.

【0018】また本発明によれば、前記貫通穴又は溝を
形成した後に、その加工面を例えば弗酸等で仕上げ加工
するエッチング過程を更に含むと、品質の向上が図ら
れ、より好都合である。その場合に、エッチングしない
面にはレジストなどで酸に対する耐食膜を設けると、更
に好都合である。
Further, according to the present invention, the quality can be improved if the etching step of finishing the processed surface with, for example, hydrofluoric acid after forming the through hole or groove is further included, which is more convenient. . In this case, it is more convenient to provide a corrosion resistant film against acid with a resist or the like on the surface that is not etched.

【0019】[0019]

【発明の実施の形態】以下に添付図面を参照しつつ、本
発明の実施例を用いて被加工物に微細穴を形成する穿孔
過程を詳細に説明する。本実施例では、先ず図1に示す
ように、被加工物21の表面にレーザ発振器(図示せ
ず)からレーザ光22を照射して、加工先穴23を貫通
させる。加工先穴23は、その直径が該微細穴の直径よ
り小さくなるようにレーザ光のスポット径を調整し、か
つ好適には形成しようとする微細穴24の中心位置に合
わせて形成する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a process of forming a fine hole in a workpiece according to an embodiment of the present invention; In this embodiment, first, as shown in FIG. 1, the surface of the workpiece 21 is irradiated with a laser beam 22 from a laser oscillator (not shown) to penetrate the hole to be machined 23. The machining destination hole 23 is formed by adjusting the spot diameter of the laser beam so that the diameter thereof is smaller than the diameter of the fine hole, and preferably matching the center position of the fine hole 24 to be formed.

【0020】本実施例では、レーザ照射にパルス発振で
高い出力が得られるYAGレーザを使用し、短時間で効
率良く加工先穴を形成した。後述するように、加工先穴
23は、形成しようとする微細穴24の寸法及び位置の
範囲内で被加工物21を貫通していれば良く、従って特
に高い加工精度・品質は必要としない。別の実施例で
は、被加工物の材質、加工寸法など加工条件により連続
発振、又は他の固体レーザ、CO2 レーザやエキシマレ
ーザなどの気体レーザを用いることができる。更に別の
実施例では、レーザ加工以外に、微細砥粒を用いたマイ
クロブラスト加工、ドリル加工、砥石加工、放電加工な
どの他の様々な材料除去加工方法を用いることができ
る。
In this embodiment, a YAG laser capable of obtaining a high output by pulse oscillation is used for laser irradiation, and a hole to be machined is formed efficiently in a short time. As will be described later, the machining hole 23 only needs to penetrate the workpiece 21 within the range of the size and position of the minute hole 24 to be formed, and therefore does not require particularly high machining accuracy and quality. In another embodiment, continuous oscillation or another solid-state laser, or a gas laser such as a CO 2 laser or an excimer laser can be used depending on the processing conditions such as the material of the workpiece and the processing dimensions. In still another embodiment, other than laser processing, various other material removal processing methods such as microblast processing using fine abrasive grains, drill processing, grinding stone processing, and electric discharge processing can be used.

【0021】次に、ブラスト加工により微細穴24を加
工する。図2の実施例では、空気、窒素、二酸化炭素等
の気体を加速媒体に用いたマイクロブラスト加工方式の
加工装置を使用する。図2Aに示すように、形成しよう
とする微細穴24の位置に合わせて、ノズル25を被加
工物21上方に配置し、微細砥粒26を含む固気2層噴
流27を被加工物21表面に向けて噴射する。
Next, the fine holes 24 are formed by blasting. In the embodiment of FIG. 2, a processing device of a microblasting system using a gas such as air, nitrogen, carbon dioxide or the like as an acceleration medium is used. As shown in FIG. 2A, a nozzle 25 is disposed above the workpiece 21 in accordance with the position of the microhole 24 to be formed, and a solid-gas two-layer jet 27 containing fine abrasive grains 26 is applied to the surface of the workpiece 21. Inject toward

【0022】一般に、ノズル25の先端と被加工物21
の表面とは離れているので、実際に加工される穴径はノ
ズル内径より大きく、その大きさはノズルと被加工物表
面との距離に依存する。他方、ノズル先端と被加工物表
面とが実質的に接している場合、加工される穴径はノズ
ル径と略同じになる。また、加工される穴の形状は、加
工時間即ち加工速度を調整することにより、入口側の穴
径が出口側の穴径より大きい順テーパ形状、双方の穴径
が略等しいストレート形状、又は入口側より出口側の穴
径が大きい逆テーパ形状に形成することができる。
Generally, the tip of the nozzle 25 and the workpiece 21
Is larger than the inner diameter of the nozzle, and the size depends on the distance between the nozzle and the surface of the workpiece. On the other hand, when the nozzle tip is substantially in contact with the surface of the workpiece, the diameter of the hole to be processed is substantially the same as the nozzle diameter. Further, the shape of the hole to be machined is adjusted by adjusting the machining time, that is, the machining speed, so that the hole diameter on the inlet side is a forward tapered shape larger than the hole diameter on the outlet side, the straight shape in which both hole diameters are substantially equal, or the inlet shape. It can be formed in a reverse tapered shape in which the hole diameter on the outlet side is larger than that on the side.

【0023】被加工物21には、砥粒26の衝突により
材料が除去されて穴28が形成される。このとき、除去
された材料即ち加工屑及び使用後の砥粒29は、前記噴
流に含まれる気体と共に、加工先穴23を通過してその
下端から外部に排出される。これにより、従来のような
砥粒同士の衝突、気体の滞留が解消され又は少なくとも
大幅に減少するので、搬送ガスの圧力を上げなくても加
工を効率良く進行させることができ、図2Bに示すよう
に、最終的に所望の貫通穴24が高精度に加工される。
The material is removed from the workpiece 21 by the collision of the abrasive grains 26 to form a hole 28. At this time, the removed material, that is, the processing waste and the used abrasive grains 29 are discharged to the outside from the lower end thereof through the processing destination hole 23 together with the gas contained in the jet flow. As a result, collision between abrasive grains and stagnation of gas as in the prior art are eliminated or at least greatly reduced, so that processing can proceed efficiently without increasing the pressure of the carrier gas, as shown in FIG. 2B. Thus, the desired through hole 24 is finally processed with high precision.

【0024】このように本発明によれば、従来に比して
加工部分の形状性が大幅に向上するが、更に被加工物2
1の表面及び裏面にのみレジストなどで耐食膜を形成し
て、貫通穴24を選択的に弗酸等で処理することによ
り、仕上げ加工することができる。
As described above, according to the present invention, although the shape of the processed portion is greatly improved as compared with the prior art,
Finishing can be performed by forming a corrosion-resistant film only on the front surface and the back surface of the substrate 1 with a resist or the like, and selectively treating the through-holes 24 with hydrofluoric acid or the like.

【0025】図3の第2実施例では、丸いパイプ電極3
0を用いて放電加工により微細穴を加工する。加工先穴
23を予め形成した被加工物21を容器31の絶縁性加
工液32中に固定する。被加工物21は、容器31内に
設けた水平な支持板33上にかつその中央開口34の範
囲内に加工しようとする微細穴24が位置するように配
置する。電極30を同様に加工液32中に、形成しよう
とする微細穴24の位置に合わせて被加工物21上方に
僅かなギャップをもって近接配置する。電極30及び被
加工物21を直流電源35に接続し、前記ギャップ間で
短時間のアーク放電を反復して発生させる。
In the second embodiment shown in FIG.
Micro holes are machined by electric discharge machining using 0. The workpiece 21 in which the machining hole 23 is formed in advance is fixed in the insulating working fluid 32 of the container 31. The workpiece 21 is arranged on a horizontal support plate 33 provided in the container 31 so that the fine hole 24 to be machined is located within the range of the central opening 34 thereof. Similarly, the electrode 30 is disposed in the working liquid 32 close to the workpiece 21 with a slight gap in accordance with the position of the fine hole 24 to be formed. The electrode 30 and the workpiece 21 are connected to a DC power supply 35, and a short-time arc discharge is repeatedly generated between the gaps.

【0026】この放電により材料が除去されて、被加工
物21には円形の穴36が形成される。穴36は、アー
ク放電を発生させながら電極30を徐々に降下させるこ
とにより、被加工物21表面から層状に成長する。材料
除去による加工屑37は、重力により穴36底部から加
工先穴23を通過し、その下端から容器31内に容易に
排出される。従って、従来のように加工屑37除去のた
めに電極30を上下させる必要が無くなり、電極の操作
・制御が従来に比して非常に容易になり、加工能率及び
品質が向上する。
The material is removed by this discharge, and a circular hole 36 is formed in the workpiece 21. The holes 36 grow in layers from the surface of the workpiece 21 by gradually lowering the electrode 30 while generating arc discharge. The processing waste 37 from the material removal passes through the processing destination hole 23 from the bottom of the hole 36 by gravity and is easily discharged into the container 31 from the lower end thereof. Therefore, there is no need to move the electrode 30 up and down to remove the processing waste 37 as in the related art, and the operation and control of the electrode are greatly facilitated as compared with the related art, and the machining efficiency and quality are improved.

【0027】本実施例では、ポンプ38からなる加工液
循環機構が容器31に設けられ、その吐出口39及び吸
込口40がそれぞれ被加工物21の上面側及び下面側に
開口している。穴36の加工と同時にポンプ38を作動
させて、加工液32を被加工物21の下面側から吸引し
かつ上面側に吐出させる。容器31内部が被加工物21
及び支持板33により上下に仕切られているので、被加
工物21の上面側と下面側とで圧力差が生じ、そのため
に穴34及びこれに連通する加工先穴23の中にその上
端開口から下端開口への加工液の流れが生じる。従っ
て、加工屑37の排出がよりスムーズにかつ確実に行わ
れ、しかも強制的に新鮮な加工液が加工部分に供給され
るので、加工能率が一層向上する。このようにして、最
終的に図2の実施例と同様に所望の貫通穴24が高精度
に加工される。またこの場合、前記支持板の中央開口3
4は、特に被加工物21が薄い板状の場合に前記圧力差
による撓みや変形を生じさせないように、微細穴24に
合わせてできる限り小さくすることが好ましい。
In this embodiment, a working fluid circulation mechanism including a pump 38 is provided in the container 31, and its discharge port 39 and suction port 40 are opened on the upper surface side and the lower surface side of the workpiece 21, respectively. At the same time as the processing of the hole 36, the pump 38 is operated to suck the processing liquid 32 from the lower surface side of the workpiece 21 and discharge it to the upper surface side. The inside of the container 31 is the workpiece 21
And the upper and lower surfaces of the workpiece 21 produce a pressure difference between the upper surface and the lower surface of the workpiece 21. A flow of the working fluid to the lower end opening occurs. Accordingly, the processing waste 37 is more smoothly and reliably discharged, and fresh processing liquid is forcibly supplied to the processing portion, thereby further improving the processing efficiency. In this way, the desired through hole 24 is finally machined with high precision, similarly to the embodiment of FIG. Also, in this case, the central opening 3 of the support plate
4 is preferably as small as possible in accordance with the fine holes 24 so as not to cause bending or deformation due to the pressure difference particularly when the workpiece 21 is a thin plate.

【0028】図4の第3実施例では、液中レーザ加工に
より微細穴を加工する。加工先穴23を予め形成した被
加工物21を、加工液41を入れた容器42内に、その
一方の側壁に設けた加工窓43を介して横方向からレー
ザ光44を照射するように配置する。被加工物21は、
容器42内に設けた垂直な支持板45にかつその中央開
口46の範囲内に加工しようとする微細穴24が位置す
るように、適当な取付手段(図示せず)を用いて固定す
る。加工液41には、純水以外に、レーザ光の熱作用に
化学作用を併用して加工をより進み易くするように、例
えばKOH溶液を用いることができる。
In the third embodiment shown in FIG. 4, fine holes are formed by submerged laser processing. The workpiece 21 in which the machining hole 23 is formed in advance is arranged in a container 42 containing a machining fluid 41 so as to irradiate a laser beam 44 from a lateral direction through a machining window 43 provided on one side wall thereof. I do. The workpiece 21 is
It is fixed to a vertical support plate 45 provided in the container 42 by using a suitable mounting means (not shown) so that the fine hole 24 to be machined is located within the range of the central opening 46 thereof. In addition to pure water, for example, a KOH solution can be used as the working liquid 41 so that the working can be further facilitated by using a chemical action in combination with the heat action of the laser beam.

【0029】図示しないレーザ発振器からレーザ光44
を被加工物21に、形成しようとする微細穴24の中心
位置に合わせて、即ち加工先穴23の位置に合わせて照
射する。本実施例では、加工先穴23の加工と同じレー
ザ発振器から出力したパルス発振のYAGレーザを使用
する。当然ながら、被加工物の材質、加工寸法などの条
件に応じて連続発振のレーザや、他の固体レーザ、CO
2 レーザやエキシマレーザなどの気体レーザを用いるこ
とができる。レーザ光44は、加工先穴23の加工時よ
り焦点位置を光軸方向に被加工物21から離隔させ、微
細穴24の寸法に合わせてスポット径を大きくする。
Laser light 44 from a laser oscillator (not shown)
Is irradiated onto the workpiece 21 in accordance with the center position of the micro hole 24 to be formed, that is, in accordance with the position of the processing destination hole 23. In this embodiment, a pulse oscillation YAG laser output from the same laser oscillator as used for processing the processing hole 23 is used. Naturally, continuous wave lasers, other solid-state lasers, CO2
A gas laser such as a two laser or an excimer laser can be used. The laser light 44 causes the focal position to be more distant from the workpiece 21 in the optical axis direction than when the processing destination hole 23 is processed, and increases the spot diameter in accordance with the size of the fine hole 24.

【0030】容器42には、同様にポンプ47からなる
加工液循環機構が設けられ、その吐出口48及び吸込口
49がそれぞれ被加工物21の表面側及び裏面側に開口
している。レーザ光の照射による穴50の形成と同時に
ポンプ47を作動させて、加工液41を被加工物21の
裏面側から吸引しかつ表面側に吐出させる。容器42内
部が被加工物21及び支持板45により仕切られている
ので、被加工物21の表面側が裏面側より高くなる圧力
差が発生し、穴50及びこれに連通する加工先穴23の
中にその表側開口から裏側開口への加工液の流れが生じ
る。
The container 42 is similarly provided with a working fluid circulation mechanism comprising a pump 47, and its discharge port 48 and suction port 49 are opened on the front side and the back side of the workpiece 21, respectively. The pump 47 is operated at the same time as the formation of the hole 50 by the irradiation of the laser beam, and the processing liquid 41 is sucked from the back side of the workpiece 21 and discharged to the front side. Since the inside of the container 42 is partitioned by the workpiece 21 and the support plate 45, a pressure difference occurs in which the front side of the workpiece 21 is higher than the back side, and the pressure difference between the hole 50 and the processing destination hole 23 communicating therewith is generated. The flow of the working liquid from the front opening to the rear opening occurs at the same time.

【0031】この加工液の流れによって、レーザ加工に
より発生した気泡51及び加工屑52は、穴50内から
加工先穴23を通過して裏側に排出される。また、前記
圧力差により穴50内の気泡51は圧縮されてその直径
が小さくなる。このように本実施例によれば、気泡及び
加工屑の裏側への排出と気泡の圧縮とにより、レーザ光
44の散乱及び遮断を低減できるので、加工能率が向上
し、従来に比して穴の形状や見栄えの良い微細穴を高精
度に加工することができる。また、加工効率の向上によ
ってレーザ出力を低減できるので、コストを低減させ、
面荒れを少なくして品質の向上が図られる。
Due to the flow of the processing liquid, the bubbles 51 and the chips 52 generated by the laser processing are discharged from the inside of the hole 50 to the back side through the processing destination hole 23. Further, the bubble 51 in the hole 50 is compressed by the pressure difference, and its diameter becomes smaller. As described above, according to the present embodiment, the scattering and blocking of the laser beam 44 can be reduced by discharging the bubbles and the processing dust to the back side and compressing the bubbles, so that the processing efficiency is improved, and the hole size is improved as compared with the related art. Fine holes with good shape and good appearance can be machined with high precision. In addition, since the laser output can be reduced by improving the processing efficiency, the cost can be reduced,
Quality is improved by reducing surface roughness.

【0032】また、本実施例は液中レーザ加工を用いた
が、当然ながらガス中(乾式)でのレーザ加工によって
も、同様の作用効果が得られる。その場合、レーザ照射
による気泡は発生しないので、加工先穴を垂直に配置し
て、加工屑(溶融物)が加工先穴から下側へ抜けるよう
にすると好都合である。
In this embodiment, laser processing in liquid is used, but the same effect can be obtained by laser processing in gas (dry type). In this case, no bubbles are generated due to the laser irradiation. Therefore, it is convenient to arrange the processing hole vertically so that the processing waste (melt) can pass downward from the processing hole.

【0033】上記いずれの実施例においても、加工先穴
23は、目的とする微細穴の加工により消滅するので、
形成しようとする微細穴の寸法及び位置の範囲内で被加
工物21を貫通していれば十分で、特に高い加工精度・
品質を必要とせず、短時間で効率良く加工できれば良い
ことが分かる。
In any of the above-mentioned embodiments, since the processing hole 23 disappears due to the processing of the target fine hole,
It suffices to penetrate the workpiece 21 within the range of the size and position of the fine hole to be formed.
It can be seen that it is only necessary to efficiently process in a short time without requiring quality.

【0034】上記実施例は、被加工物に貫通穴を形成す
る場合について説明したが、本発明によれば、同様に被
加工物に予め貫設した加工先穴を利用して、目的とする
微細な貫通溝の加工及び微細切断を行うことができる。
この場合、加工先穴の位置に合わせて溝の加工を開始
し、被加工物に対して上述したブラスト加工装置のノズ
ル、放電用電極、レーザ光を走査する。そして、加工溝
の始点と終点とを接続することにより、被加工物を切断
することができる。
In the above embodiment, a case where a through hole is formed in a workpiece has been described. However, according to the present invention, a target hole is similarly formed by using a processing tip hole previously penetrated in the workpiece. Processing and fine cutting of fine through grooves can be performed.
In this case, processing of the groove is started in accordance with the position of the processing destination hole, and the workpiece, the nozzle of the blast processing apparatus, the discharge electrode, and the laser beam are scanned. Then, the workpiece can be cut by connecting the start point and the end point of the processing groove.

【0035】更に本発明は、その技術的範囲内で上記実
施例に様々な変形・変更を加えて実施することができ
る。例えば、上記ブラスト加工や放電加工において、ノ
ズル先端の断面形状や電極形状を様々な形にしたり、ま
たブラスト加工及びレーザ加工では、被加工物の手前に
適当なマスク手段を配置することにより、それらの形を
転写して円形以外に三角形・矩形などの多角形、星形や
歯車状の凹凸形状など、必要に応じて所望の形状・寸法
の穴又は溝を加工することができる。
Further, the present invention can be implemented by adding various modifications and changes to the above embodiment within the technical scope thereof. For example, in the above-mentioned blasting and electric discharge machining, the cross-sectional shape and electrode shape of the nozzle tip are variously formed, and in the blasting and laser machining, by disposing an appropriate mask means in front of the workpiece, the The hole or groove having a desired shape and size, such as a polygon other than a circle, a polygon such as a triangle or a rectangle, a star or a gear-shaped uneven shape, etc., can be machined as required.

【0036】[0036]

【発明の効果】本発明は、以上のように構成されている
ので、以下に記載されるような効果を奏する。本発明の
微細穴・溝加工方法によれば、目的とする貫通穴・溝の
加工時に発生する加工屑などを加工先穴を介して被加工
物の裏側から排出させることにより、加工能率及び加工
精度・品質を向上させることができ、様々な形状の微細
な穴・溝の形成及び切断加工が可能になると共に、加工
時間の短縮及びコストの低減を実現することができる。
Since the present invention is configured as described above, it has the following effects. ADVANTAGE OF THE INVENTION According to the fine hole / groove processing method of the present invention, the processing efficiency and the processing are achieved by discharging processing waste generated at the time of processing the target through hole / groove from the back side of the workpiece through the processing destination hole. Accuracy and quality can be improved, and fine holes and grooves of various shapes can be formed and cut, and the processing time and cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例において被加工物に加工先穴を
形成する過程を概略的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a process of forming a machining hole in a workpiece in an embodiment of the present invention.

【図2】A図及びB図は、加工先穴を形成した被加工物
にブラスト加工を行う過程、及び加工完了後の貫通穴を
それぞれ示す概略断面図である。
FIGS. 2A and 2B are schematic cross-sectional views showing a process of performing blast processing on a workpiece having a processing destination hole formed therein, and a through hole after the processing is completed.

【図3】加工先穴を形成した被加工物に放電加工を行う
過程を示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing a process of performing electric discharge machining on a workpiece having a machining hole formed therein.

【図4】加工先穴を形成した被加工物に液体中でレーザ
加工を行う過程を示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing a process of performing laser processing in a liquid on a workpiece on which a processing destination hole is formed.

【図5】A図及びB図は、従来のブラスト加工による加
工の過程、及び加工完了後の貫通穴をそれぞれ示す概略
断面図である。
FIGS. 5A and 5B are schematic cross-sectional views respectively showing a process of a conventional blasting process and a through hole after the completion of the process.

【図6】A図及びB図は、従来の放電加工による加工の
過程、及び電極の引上げによる加工屑の排出をそれぞれ
示す概略断面図である。
FIGS. 6A and 6B are schematic cross-sectional views respectively showing a process of machining by a conventional electric discharge machining and discharge of machining chips by pulling up an electrode.

【図7】A図及びB図は、従来の液中レーザ加工による
加工の過程、及び加工完了後の貫通穴をそれぞれ示す概
略断面図である。
7A and 7B are schematic cross-sectional views respectively showing a process of processing by conventional laser processing in liquid and a through hole after processing is completed.

【符号の説明】[Explanation of symbols]

1 ノズル 2 被加工物 3 砥粒 4 電極 5 液体 6 加工窓 7 レーザ光 8 穴 9 気体 10 貫通穴 10′穴 11 加工屑 12 穴 13 加工液 14 穴 15 気泡 16 加工屑 17 貫通穴 17′ 穴 21 被加工物 22 レーザ光 23 加工先穴 24 微細穴 25 ノズル 26 微細砥粒 27 固液2層噴流 28 穴 29 砥粒 30 電極 31 容器 32 加工液 33 支持板 34 中央開口 35 直流電源 36 穴 37 加工屑 38 ポンプ 39 吐出口 40 吸込口 41 加工液 42 容器 43 加工窓 44 レーザ光 45 支持板 46 中央開口 47 ポンプ 48 吐出口 49 吸込口 50 穴 51 気泡 52 加工屑 DESCRIPTION OF SYMBOLS 1 Nozzle 2 Workpiece 3 Abrasive 4 Electrode 5 Liquid 6 Processing window 7 Laser beam 8 Hole 9 Gas 10 Through hole 10 'hole 11 Processing chips 12 Hole 13 Processing liquid 14 Hole 15 Bubbles 16 Processing chips 17 Through hole 17' Hole DESCRIPTION OF SYMBOLS 21 Workpiece 22 Laser beam 23 Processing tip hole 24 Microhole 25 Nozzle 26 Fine abrasive grain 27 Solid-liquid two-layer jet 28 Hole 29 Abrasive grain 30 Electrode 31 Container 32 Processing fluid 33 Support plate 34 Central opening 35 DC power supply 36 Hole 37 Processing waste 38 Pump 39 Discharge port 40 Suction port 41 Processing liquid 42 Container 43 Processing window 44 Laser beam 45 Support plate 46 Center opening 47 Pump 48 Discharge port 49 Suction port 50 hole 51 Bubbles 52 Processing debris

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被加工物に微細な貫通穴又は溝を形成す
る微細穴・溝加工方法において、 前記被加工物を貫通しかつその直径が前記貫通穴の直径
又は溝の幅より小さい加工先穴を、予め前記被加工物に
前記貫通穴又は溝を形成しようとする位置に形成し、 前記加工先穴に整合させて前記貫通穴又は溝を形成する
ことを特徴とする微細穴・溝加工方法。
1. A fine hole / groove processing method for forming a fine through hole or groove in a workpiece, wherein the processing target penetrates the workpiece and has a diameter smaller than the diameter of the through hole or the width of the groove. Forming a through hole or groove in the workpiece in advance at a position where the through hole or groove is to be formed, and forming the through hole or groove in alignment with the processing destination hole; Method.
【請求項2】 レーザ加工により前記加工先穴を形成す
ることを特徴とする請求項1記載の微細穴・溝加工方
法。
2. The method according to claim 1, wherein the processing hole is formed by laser processing.
【請求項3】 マイクロブラスト加工、ドリル加工、砥
石加工又は放電加工により前記加工先穴を形成すること
を特徴とする請求項1に記載の微細穴・溝加工方法
3. The method according to claim 1, wherein the machining hole is formed by microblasting, drilling, grinding, or electric discharge machining.
【請求項4】 ブラスト加工により前記貫通穴又は溝を
形成することを特徴とする請求項1乃至3のいずれかに
記載の微細穴・溝加工方法。
4. The method according to claim 1, wherein the through hole or the groove is formed by blasting.
【請求項5】 放電加工により前記貫通穴又は溝を形成
することを特徴とする請求項1乃至3のいずれかに記載
の微細穴・溝加工方法。
5. The method according to claim 1, wherein the through hole or the groove is formed by electric discharge machining.
【請求項6】 レーザ加工により前記貫通穴又は溝を形
成することを特徴とする請求項1乃至3のいずれかに記
載の微細穴・溝加工方法。
6. The method according to claim 1, wherein the through holes or grooves are formed by laser processing.
【請求項7】 前記貫通穴又は溝の内面を仕上げ加工す
る過程を更に含むことを特徴とする請求項1乃至6のい
ずれかに記載の微細穴・溝加工方法。
7. The method according to claim 1, further comprising the step of finishing the inner surface of the through hole or the groove.
JP10208526A 1998-07-09 1998-07-09 Fine hole.groove machining method Withdrawn JP2000024923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208526A JP2000024923A (en) 1998-07-09 1998-07-09 Fine hole.groove machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208526A JP2000024923A (en) 1998-07-09 1998-07-09 Fine hole.groove machining method

Publications (1)

Publication Number Publication Date
JP2000024923A true JP2000024923A (en) 2000-01-25

Family

ID=16557654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208526A Withdrawn JP2000024923A (en) 1998-07-09 1998-07-09 Fine hole.groove machining method

Country Status (1)

Country Link
JP (1) JP2000024923A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082666A1 (en) * 2000-04-20 2001-11-01 Hitachi, Ltd. Circuit board and production method therefor
WO2002100142A1 (en) * 2001-05-31 2002-12-12 Hitachi, Ltd. Wiring board and its production method
JP2008062383A (en) * 2002-04-11 2008-03-21 Elenix Inc Method for inserting electrode into electrode guide and device therefor
KR101244425B1 (en) 2011-11-18 2013-03-18 주식회사 에스엔디스플레이 Anisotropic wet etching method and apparatus
US8692874B2 (en) 2007-04-17 2014-04-08 Gyrus Acmi, Inc. Imaging systems and methods, particularly for use with medical instrument used in open surgery
CN104149036A (en) * 2014-07-29 2014-11-19 广东工业大学 Micro-pore polishing equipment and micro-pore polishing process for abrasive particle flow
JP2016056046A (en) * 2014-09-08 2016-04-21 旭硝子株式会社 Open hole formation method
CN110587777A (en) * 2019-09-19 2019-12-20 胡凌燕 Pre-buried hole device of pottery photo holder frame inside casing manufacturing
CN113681155A (en) * 2021-08-06 2021-11-23 江苏大学 Method and device for electrochemically processing hole quality under assistance of laser
CN114227546A (en) * 2021-08-30 2022-03-25 浙江工业大学 Polishing method and device for realizing surface fine structure
KR102578631B1 (en) * 2022-10-06 2023-09-15 주식회사 솔탑 Circular electrospray

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001082666A1 (en) * 2000-04-20 2001-11-01 Hitachi, Ltd. Circuit board and production method therefor
WO2002100142A1 (en) * 2001-05-31 2002-12-12 Hitachi, Ltd. Wiring board and its production method
JP2008062383A (en) * 2002-04-11 2008-03-21 Elenix Inc Method for inserting electrode into electrode guide and device therefor
JP4575419B2 (en) * 2002-04-11 2010-11-04 株式会社エレニックス Electrode insertion method and apparatus for electrode guide
US8692874B2 (en) 2007-04-17 2014-04-08 Gyrus Acmi, Inc. Imaging systems and methods, particularly for use with medical instrument used in open surgery
KR101244425B1 (en) 2011-11-18 2013-03-18 주식회사 에스엔디스플레이 Anisotropic wet etching method and apparatus
CN104149036A (en) * 2014-07-29 2014-11-19 广东工业大学 Micro-pore polishing equipment and micro-pore polishing process for abrasive particle flow
JP2016056046A (en) * 2014-09-08 2016-04-21 旭硝子株式会社 Open hole formation method
CN110587777A (en) * 2019-09-19 2019-12-20 胡凌燕 Pre-buried hole device of pottery photo holder frame inside casing manufacturing
CN110587777B (en) * 2019-09-19 2021-03-02 陈康利 Pre-buried hole device of pottery photo holder frame inside casing manufacturing
CN113681155A (en) * 2021-08-06 2021-11-23 江苏大学 Method and device for electrochemically processing hole quality under assistance of laser
CN113681155B (en) * 2021-08-06 2022-08-23 江苏大学 Method and device for electrochemically processing hole quality under assistance of laser
CN114227546A (en) * 2021-08-30 2022-03-25 浙江工业大学 Polishing method and device for realizing surface fine structure
KR102578631B1 (en) * 2022-10-06 2023-09-15 주식회사 솔탑 Circular electrospray

Similar Documents

Publication Publication Date Title
US8653410B2 (en) Method of forming substrate for fluid ejection device
JP2787990B2 (en) Method and apparatus for forming a recess in a workpiece using a laser beam
US20070000875A1 (en) Method and apparatus for assisting laser material processing
US20070193990A1 (en) Laser machining of a workpiece
JP2000024923A (en) Fine hole.groove machining method
JP2000042780A (en) Laser beam machining method and laser beam machine
JP4368312B2 (en) Laser processing method
EP1802421A2 (en) An apparatus for processing hard material
JP2008098216A (en) Wafer processing apparatus
JPH11267867A (en) Method and device for laser processing
JP2005088068A (en) Laser beam machining apparatus and laser beam machining method
WO2003028943A1 (en) Method and apparatus for fine liquid spray assisted laser material processing
JP2000302488A (en) Fine holing of glass
WO2008084206A1 (en) A process for laser cutting a non-metallic material
US6969822B2 (en) Laser micromachining systems
CN111940895A (en) Method and device for micromachining liquid plasma through laser induction based on flowing water layer
JPH0237985A (en) Method and device for laser beam processing
JPS59104289A (en) Method and device for cutting steel plate by laser beam
JP2002361468A (en) Method of removing material deposit produced in laser beam processing
JP3388650B2 (en) EDM method
JPH11786A (en) Underwater laser water jet composite cutting device
JPH0639571A (en) Laser beam cutting method and device therefor
JPH11123583A (en) Laser cutting device and method therefor
JPH04344887A (en) Laser beam machining method
JP2005118849A (en) Laser beam machining device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051206