JP2000302488A - Fine holing of glass - Google Patents

Fine holing of glass

Info

Publication number
JP2000302488A
JP2000302488A JP11116766A JP11676699A JP2000302488A JP 2000302488 A JP2000302488 A JP 2000302488A JP 11116766 A JP11116766 A JP 11116766A JP 11676699 A JP11676699 A JP 11676699A JP 2000302488 A JP2000302488 A JP 2000302488A
Authority
JP
Japan
Prior art keywords
hole
fine
processing
workpiece
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116766A
Other languages
Japanese (ja)
Inventor
Kazunari Umetsu
一成 梅津
Tadayoshi Ikehara
忠好 池原
Nobuo Shimizu
信雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11116766A priority Critical patent/JP2000302488A/en
Publication of JP2000302488A publication Critical patent/JP2000302488A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PROBLEM TO BE SOLVED: To hole a fine hole having a complicated crosssectional shape, a high quality and a high aspect ratio on a glass material. SOLUTION: A fine hole 3 is bored through a glass substrate 3 by laser processing or ultrasonic processing. Both sides of the glass substrate are ground in a state in which the fine hole is packed with a filler 6 such as a resin material or a hot-melt material. Then the filler is removed from the fine hole to form a fine through-hole. Further, at least one peripheral part of the through- hole is subjected to a microblast processing or etching processing to form a tapered part on the opening part or to process the opening part to a fixed crosssectional shape. A practical processing method capable of removing strain, crack, surface roughness, dross, etc., obtaining excellent shape accuracy and forming a fine hole having a complicated crosssectional shape, a high quality and a high aspect ratio is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般にガラス材料
に複雑な断面形状の微細穴を加工するための方法に関
し、特に、例えばガラス薄板に多数の微細穴を開設した
インクジェットプリンタ用のノズルプレートや、TFT
型液晶表示装置(LCD)の基板に使用するマイクロレ
ンズを形成するために用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a method for processing fine holes having a complicated cross-sectional shape in a glass material, and more particularly, to a nozzle plate for an ink-jet printer having a large number of fine holes formed in a thin glass plate, and the like. , TFT
It is used to form a micro lens used for a substrate of a liquid crystal display device (LCD).

【0002】[0002]

【従来の技術】従来より、ガラス材料に単に断面一定の
真直ぐな穴だけでなく、例えば穴の開口部にテーパを付
けたり、穴の中央部に絞りや拡大部を設けた複雑な断面
形状の微細穴を加工するために、回転砥石、ドリル、超
音波などを用いた加工方法又は砥粒を噴射するマイクロ
ブラスト法などの機械的加工方法や、溶液を用いるウェ
ットエッチングなどの化学的方法が一般に採用されてい
る。また最近では、電子ビームやイオンビーム、レーザ
光を照射するエネルギビーム加工が多く利用されてい
る。
2. Description of the Related Art Conventionally, not only a straight hole having a constant cross-section in a glass material but also a complicated cross-sectional shape in which, for example, an opening portion of the hole is tapered, or an aperture or an enlarged portion is provided in the center of the hole. In order to machine micro holes, there is generally a mechanical method such as a grinding method using a rotary grindstone, a drill, an ultrasonic wave or a micro blast method for injecting abrasive grains, and a chemical method such as a wet etching using a solution. Has been adopted. Recently, energy beam processing for irradiating an electron beam, an ion beam, or a laser beam has been widely used.

【0003】例えば、特願平9−101401号公報に
記載されるTFT型LCD用マイクロレンズの形成方法
では、ガラスに対する密着性が強くかつ物理的強度に優
れた単結晶シリコン膜をマスクとして等方性ウェットエ
ッチングを行うことにより、ガラス基板に略球面状のマ
イクロレンズ面を形成している。また、本願出願人によ
る特願平10−357245号明細書(発明の名称:
「半導体チップ及び半導体装置の製造方法」)には、
(100)方位面を有するシリコン単結晶基板にレーザ
加工で貫通穴を開けた後に異方性エッチングを行うと、
(111)面でエッチングが止まることにより貫通穴の
中央部分を拡大させた断面形状のスルーホールを形成で
きることが記載されている。
For example, in a method of forming a microlens for a TFT type LCD described in Japanese Patent Application No. 9-101401, a single crystal silicon film having strong adhesion to glass and excellent physical strength is used as a mask. By performing the wet etching, a substantially spherical microlens surface is formed on the glass substrate. Also, Japanese Patent Application No. 10-357245 (Title of Invention:
"Methods for manufacturing semiconductor chips and semiconductor devices") include:
When anisotropic etching is performed after a through hole is formed in a silicon single crystal substrate having a (100) orientation plane by laser processing,
It is described that by stopping the etching on the (111) plane, a through-hole having a cross-sectional shape in which the central portion of the through-hole is enlarged can be formed.

【0004】また、レーザ加工に関しては、池野順一ら
の論文「結晶化ガラスのクラックフリー・三次元レーザ
加工」(精密工学会誌、Vol.64、No.7、1998、第1062〜
1062頁)において、YAGレーザによる微細加工が困難
とされている結晶化ガラスに対し、その表面に顔料を塗
布してYAGレーザを照射し、加工穴を形成すると共
に、その先端の溶融層に照射方向を90度変えてYAG
レーザを照射し、その入射方向に加工穴を成長させるこ
とにより、クラックフリーで三次元穴開け加工を可能に
したことが報告されている。
Regarding laser processing, a paper by Junichi Ikeno et al., “Crack-free three-dimensional laser processing of crystallized glass” (Journal of the Japan Society of Precision Engineering, Vol. 64, No. 7, 1998, No. 1062-
On page 1062), a pigment is applied to the surface of crystallized glass, which is considered difficult to finely process with a YAG laser, and the surface is irradiated with a YAG laser to form a processing hole and irradiate the molten layer at the tip of the glass. Change the direction by 90 degrees and YAG
It has been reported that by irradiating a laser and growing a processing hole in the incident direction, a crack-free three-dimensional drilling processing has been enabled.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の加工方法には次のような問題がある。先ず、機
械的加工方法は、三次元的断面形状の穴を加工すること
は比較的容易であるが、加工穴の微細化に限度があり、
しかも加工穴の開口周辺にチッピング即ち微小な欠けや
クラックを生じ易いなど、品質上の問題を生じる虞があ
る。例えば、インクジェットプリンタ用のノズルプレー
トは、厚さ100μm程度のステンレス鋼板に工具で打
抜き加工を施すことにより、開口付近のテーパ部とそれ
より先のストレート部とからなるインク噴射孔を形成す
るが、工具が破損し易く、そのために作業効率の低下、
加工コストの増大という問題があるだけでなく、ガラス
薄板にこのような打抜き加工を行うことは実際上困難で
ある。
However, the above-mentioned conventional processing method has the following problems. First, the mechanical processing method is relatively easy to process a hole with a three-dimensional cross-sectional shape, but there is a limit to the miniaturization of the processed hole,
In addition, there is a concern that quality problems may occur such as chipping, that is, minute chipping or cracking is likely to occur around the opening of the machined hole. For example, a nozzle plate for an inkjet printer is formed by punching a stainless steel plate having a thickness of about 100 μm with a tool, thereby forming an ink ejection hole including a tapered portion near an opening and a straight portion ahead of the opening. Tools are easily damaged, which reduces work efficiency,
Not only is there a problem of increased processing cost, but it is practically difficult to perform such a punching process on a thin glass plate.

【0006】これに対し、ウェットエッチングは、チッ
ピングや欠けの虞が無く、高品質の穴を加工できるが、
その形状を高精度に制御するのが難しく、特に高アスペ
クト比の微細穴を加工することは困難である。また、電
子ビームやイオンビーム等の加工装置は一般に高額であ
り、加工速度が非常に遅い。
[0006] On the other hand, wet etching can process high quality holes without the risk of chipping or chipping.
It is difficult to control the shape with high precision, and it is particularly difficult to machine fine holes having a high aspect ratio. In addition, a processing device such as an electron beam or an ion beam is generally expensive and has a very low processing speed.

【0007】また、レーザ加工は、高アスペクト比の微
細穴を比較的高速で加工できるが、一般に任意の断面形
状を高精度に加工することが難しい。更にレーザ加工の
場合には、レーザの高熱によりガラス材料自体に熱歪
み、変質などのダメージを与えたり、噴出したドロスが
加工穴の開口周辺に付着したり、クラックが発生し易い
という問題がある。
[0007] In laser processing, fine holes having a high aspect ratio can be processed at a relatively high speed. However, it is generally difficult to process an arbitrary cross-sectional shape with high precision. Further, in the case of laser processing, there is a problem that the glass material itself is damaged due to high heat of the laser due to thermal distortion, alteration, or the like, or the ejected dross adheres to the vicinity of the opening of the processing hole, and cracks are easily generated. .

【0008】そこで、本発明の目的は、ガラス材料への
ダメージやクラック、チッピングが少なく、高品質で高
アスペクト比の微細穴を比較的高速で形成し得る実用的
なガラスの微細穴加工方法を提供することにある。
Accordingly, an object of the present invention is to provide a practical method for forming a fine hole in a glass, which is capable of forming a high-quality, high-aspect-ratio fine hole at a relatively high speed with little damage, cracks and chipping to a glass material. To provide.

【0009】更に本発明の目的は、ガラス材料に複雑な
断面形状を有する高品質で高アスペクト比の微細穴を加
工し得るガラスの微細穴加工方法を提供することにあ
る。
It is a further object of the present invention to provide a method for processing fine holes in a glass material capable of forming high-quality, high-aspect-ratio fine holes having a complicated cross-sectional shape in a glass material.

【0010】本発明の別の目的は、特にインクジェット
プリンタ用のノズルプレートに使用可能な、複雑な断面
形状の微細穴をガラス基板に加工し得る方法を提供する
ことにある。
Another object of the present invention is to provide a method for forming a fine hole having a complicated cross section in a glass substrate, which can be used particularly for a nozzle plate for an ink jet printer.

【0011】[0011]

【課題を解決するための手段】本発明のガラスの微細穴
加工方法は、上述した目的を達成するために、ガラスか
らなる被加工物に微細穴を形成する過程と、形成された
微細穴が開口する被加工物の表面を研磨する過程とから
なることを特徴とする。前記微細穴は、レーザ加工によ
り又は超音波加工により形成することができる。
According to the present invention, there is provided a method for forming a fine hole in a glass, comprising the steps of: forming a fine hole in a workpiece made of glass; Polishing the surface of the workpiece to be opened. The micro holes can be formed by laser processing or ultrasonic processing.

【0012】ガラス材料は、特に微細穴の開口及び先端
付近に加工時の機械的応力や熱応力による様々な歪みや
クラックが生じ易く、表面には材料の除去による荒れや
除去した材料の再付着が生じ易い。また、一般に穴の開
口部及び先端部は、形状が一定しない。本発明によれ
ば、被加工物の表面層を研磨して除去することにより、
これらの歪みやクラック、表面荒れ、ドロスなどを取り
除くことができると同時に、穴の開口において穴の内壁
面と被加工物表面とが直線的に交差する優れた形状精度
の真直ぐな微細穴を得ることができる。
The glass material is liable to cause various distortions and cracks due to mechanical stress and thermal stress during processing, particularly near the opening and the tip of the fine hole, and the surface is roughened by the removal of the material and the removed material is re-attached. Tends to occur. Generally, the shape of the opening and the tip of the hole is not constant. According to the present invention, by polishing and removing the surface layer of the workpiece,
These distortions, cracks, surface roughness, dross, etc. can be removed, and at the same time, straight fine holes with excellent shape accuracy where the inner wall surface of the hole and the surface of the workpiece are linearly crossed at the hole opening. be able to.

【0013】或る実施例では、前記微細穴を被加工物を
貫通するように形成する。この場合には、微細穴の両端
が開口する被加工物の両面を、又は場合によっては一方
の面のみを研磨することができる。別の実施例では、前
記微細穴を被加工物を貫通しないように形成することで
き、この場合には、穴の開口側だけでなく、その先端側
の被加工物表面を研磨することにより、閉じた穴の先端
を開放させて貫通穴を形成することができる。
In one embodiment, the fine hole is formed so as to penetrate a workpiece. In this case, it is possible to polish both surfaces of the workpiece in which both ends of the fine holes are opened, or only one surface in some cases. In another embodiment, the fine holes can be formed so as not to penetrate the workpiece. In this case, by polishing not only the opening side of the holes but also the surface of the workpiece on the tip side thereof, The through hole can be formed by opening the tip of the closed hole.

【0014】また、被加工物表面の研磨前に微細穴に、
樹脂材料又はホットメルト材などの充填物を詰める過程
と、被加工物表面の研磨後に充填物を微細穴から除去す
る過程とを更に含むと、研磨時に加工穴の開口周辺に生
じ易いチッピングを防止できるので、好都合である。前
記充填物が樹脂材料の場合には、ガラス材料に悪影響を
及ぼさないような薬液により、ホットメルト材の場合に
は、加熱又は溶剤により除去することができる。
Before polishing the surface of the workpiece,
Preventing chipping that is likely to occur around the opening of the processing hole during polishing, further including the step of filling the filling such as resin material or hot melt material and the step of removing the filling from the fine hole after polishing the workpiece surface This is convenient. When the filler is a resin material, it can be removed by a chemical that does not adversely affect the glass material, and when it is a hot melt material, it can be removed by heating or a solvent.

【0015】更に、本発明によれば、被加工物表面を研
磨した後に、被加工物を貫通する微細穴の少なくとも一
方の開口周縁部をマイクロブラスト加工することによ
り、その開口部にテーパを付けることができる。微細穴
の一方の開口部のみを加工すれば、テーパ部とストレー
ト部とからなる貫通穴が得られ、両方の開口部を加工す
れば、穴の中央部に絞りを設けることができる。
Further, according to the present invention, after the surface of the workpiece is polished, at least one peripheral edge of the opening of the fine hole penetrating the workpiece is subjected to microblasting to thereby taper the opening. be able to. If only one opening of the fine hole is machined, a through hole consisting of a tapered portion and a straight portion is obtained. If both openings are machined, a diaphragm can be provided at the center of the hole.

【0016】また、本発明によれば、被加工物表面を研
磨した後に、微細穴の開口周縁部をエッチング加工する
ことにより、その開口部を所望の形状に加工することが
できる。より具体的には、研磨加工した被加工物の表面
及び微細穴の内面を耐食被膜で被覆し、該耐食被膜の上
にフォトレジストを付着させ、微細穴の開口周縁部のフ
ォトレジスト及びその下側の耐食被膜を除去してウェッ
トエッチングすることにより、露出した微細穴開口周縁
部を中心にガラス材料が除去され、例えば等方性エッチ
ングの場合には、穴開口部が半円形断面に加工される。
Further, according to the present invention, after polishing the surface of the workpiece, the peripheral portion of the opening of the fine hole is etched, whereby the opening can be processed into a desired shape. More specifically, the surface of the polished workpiece and the inner surface of the fine hole are coated with a corrosion-resistant coating, a photoresist is adhered on the corrosion-resistant coating, and the photoresist at the opening peripheral portion of the fine hole and the lower portion thereof By removing the corrosion-resistant coating on the side and performing wet etching, the glass material is removed centering on the periphery of the exposed fine hole opening.For example, in the case of isotropic etching, the hole opening is processed into a semicircular cross section. You.

【0017】[0017]

【発明の実施の形態】以下に添付図面を参照しつつ、本
発明をその好適な実施例を用いて詳細に説明する。図1
は、本発明の第1実施例の方法によりガラス基板に微細
穴を形成する過程を工程順に示している。本実施例で
は、パルス幅が短く、熱影響が少ないQスイッチパルス
発振のYAGレーザを使用し、図1(a)に示すように
レーザ光Bを集光レンズ1で集光してガラス基板2に照
射することにより、図1(b)に示すように直径数十μ
mの微細な貫通穴3を形成する。ガラス基板2の表面
は、加工時に飛散した溶融物即ちドロス4、5が貫通穴
3の両端の開口周辺に再付着して固化し、またレーザの
高熱により表面荒れや歪みが生じている。また、貫通穴
3の入射側の開口部は、幾分フレア状に広がっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings using preferred embodiments. FIG.
3A to 3D show a process of forming fine holes in a glass substrate by the method of the first embodiment of the present invention in the order of steps. In this embodiment, a Q-switch pulse oscillation YAG laser having a short pulse width and a small thermal effect is used, and a laser beam B is condensed by a condensing lens 1 as shown in FIG. Irradiating with a diameter of several tens μm as shown in FIG.
A minute through hole 3 having a diameter of m is formed. On the surface of the glass substrate 2, the molten material scattered during processing, that is, the dross 4 and 5, reattach to the periphery of the openings at both ends of the through hole 3 and solidify, and the surface is roughened or distorted due to the high heat of the laser. In addition, the opening on the incident side of the through hole 3 is somewhat flared.

【0018】次に、図1(c)に示すように、貫通穴3
の内部をホットメルト材6で充填する。前記ホットメル
ト材としては、熱溶融性のプラスチック、ワックスなど
を用いることができる。この状態で、ガラス基板2の両
面をラッピング又はグラインディングなどの公知方法に
より、想像線7、8で示す所定の深さまで研磨する。こ
の研磨量D1 、D2 は、その深さにおける貫通穴3の直
径φ1 、φ2 の差Δφが実質的に0に又は使用条件等の
要求に対応して小さくなるように、かつドロス4、5が
付着したり表面荒れや歪みのあるガラス基板2の表面層
が取り除かれるように、最終的に得ようとするガラス基
板の板厚Tに基づいて設定する。
Next, as shown in FIG.
Is filled with a hot melt material 6. As the hot melt material, a hot-melt plastic, wax or the like can be used. In this state, both surfaces of the glass substrate 2 are polished to a predetermined depth indicated by imaginary lines 7 and 8 by a known method such as lapping or grinding. The polishing amounts D1 and D2 are set so that the difference Δφ between the diameters φ1 and φ2 of the through holes 3 at the depths thereof is substantially zero or small in accordance with the requirements such as use conditions, and the dross 4 and 5 are reduced. The thickness is set based on the thickness T of the glass substrate to be finally obtained so that the surface layer of the glass substrate 2 having the attached, roughened or distorted surface is removed.

【0019】このようにホットメルト材を充填すること
により、研磨加工によって貫通穴3の開口周辺に生じ易
いチッピングを防止することができる。別の実施例で
は、ホットメルト材の代わりに、所定の薬剤で溶解可能
な樹脂材料を同様に用いることができる。
By filling the hot melt material in this way, it is possible to prevent chipping which is likely to occur around the opening of the through hole 3 due to polishing. In another embodiment, instead of a hot melt material, a resin material that can be dissolved with a predetermined chemical agent can be used as well.

【0020】図1(d)に示す研磨加工後のガラス基板
2は、貫通穴3内部に残存するホットメルト材6を加熱
して除去する。これにより、最終的により高品質で高ア
スペクト比の、図1(e)に示すようにガラス基板表面
と穴内壁面とが直線的に交差する形状精度の優れた真直
ぐな貫通穴が得られる。当然ながら、上記ホットメルト
材の充填及び除去過程を省略して図1(b)のガラス基
板両面をそのまま研磨することができ、その場合にも、
研磨加工によるチッピングの問題は別として、同様に図
1(e)に示すような高品質かつ高アスペクト比の真直
ぐな貫通穴が得られる。
The hot-melt material 6 remaining in the through-hole 3 is removed by heating the glass substrate 2 after polishing shown in FIG. As a result, a straight through-hole having a higher quality and a higher aspect ratio, which is excellent in shape accuracy and in which the glass substrate surface and the inner wall surface of the hole intersect linearly as shown in FIG. Naturally, the steps of filling and removing the hot melt material can be omitted, and both surfaces of the glass substrate shown in FIG. 1 (b) can be polished as they are.
Apart from the problem of chipping due to polishing, a straight through hole of high quality and high aspect ratio as shown in FIG.

【0021】別の実施例では、Qスイッチパルス発振以
外のノーマルパルス発振又は連続発振のレーザ光や超音
波加工又は他の公知の様々な穴あけ加工方法を用いて、
図1(b)の場合と同様にガラス基板に貫通穴を形成す
ることができる。超音波加工による貫通穴は、その開口
周辺に表面荒れが発生するが、ガラス基板の被加工面を
上記実施例と同様に研磨加工することにより、高品質か
つ高アスペクト比の真直ぐな貫通穴を得ることができ
る。
In another embodiment, laser light of normal pulse oscillation or continuous oscillation other than Q switch pulse oscillation, ultrasonic machining, or various other known drilling methods is used.
As in the case of FIG. 1B, a through hole can be formed in the glass substrate. The through hole formed by ultrasonic processing causes surface roughness around the opening, but by polishing the surface to be processed of the glass substrate in the same manner as in the above embodiment, a straight through hole of high quality and a high aspect ratio is formed. Obtainable.

【0022】図2は、本発明の第2実施例の方法による
微細穴の形成過程を示している。第2実施例では、第1
実施例のガラス基板2よりも厚いガラス基板9に、同様
にパルス発振のYAGレーザ光Bを照射して微細穴を加
工する(図2(a))。そのため、加工された微細穴1
0は、図2(b)に示すようにガラス基板9を貫通せ
ず、その成長が途中で停止している。微細穴10の開口
はフレア状に広がり、かつその周辺には、第1実施例の
場合と同様にドロス11が付着し、レーザ照射による表
面荒れや歪みが発生している。微細穴10の先細の先端
部には、ガラスの溶融物12が固化して付着し、かつそ
の周辺部分はレーザの高熱で溶融層に変質している。
FIG. 2 shows a process of forming micro holes by the method according to the second embodiment of the present invention. In the second embodiment, the first
Similarly, a glass substrate 9 thicker than the glass substrate 2 of the embodiment is irradiated with a pulsed YAG laser beam B to form a fine hole (FIG. 2A). Therefore, the processed fine hole 1
No. 0 does not penetrate the glass substrate 9 as shown in FIG. 2B, and its growth is stopped halfway. The opening of the fine hole 10 spreads like a flare, and the dross 11 adheres to the periphery thereof as in the case of the first embodiment, causing surface roughness and distortion due to laser irradiation. A glass melt 12 solidifies and adheres to the tapered tip portion of the fine hole 10, and its peripheral portion is transformed into a molten layer by the high heat of the laser.

【0023】次に、本実施例においても、ガラス基板9
の両面を想像線13、14で示す所定の深さまで研磨し
て、その表面層を除去することにより、図2(c)に示
すような貫通穴15を形成する。研磨量D1 、D2 は、
第1実施例と同様に研磨後の貫通穴15の直径φ1 、φ
2 の差Δφが実質的に0に又は使用条件等の要求に対応
して小さくなるように、最終的なガラス基板の板厚Tに
基づいて設定する。特に微細穴10先端側の研磨量D2
は、少なくとも溶融物12や変質層が除去されて、良質
な内壁面が得られるように決める。これにより、同様に
高品質で高アスペクト比の真直ぐな貫通穴15が得られ
る。
Next, also in this embodiment, the glass substrate 9
Are polished to a predetermined depth indicated by imaginary lines 13 and 14, and the surface layer is removed to form a through hole 15 as shown in FIG. 2 (c). The polishing amounts D1 and D2 are
As in the first embodiment, the diameters φ1, φ1
2 is set based on the final thickness T of the glass substrate so that the difference Δφ becomes substantially zero or becomes smaller in accordance with requirements such as use conditions. Particularly, the polishing amount D2 at the tip side of the fine hole 10
Is determined so that at least the melt 12 and the deteriorated layer are removed and a good quality inner wall surface is obtained. As a result, a straight through hole 15 having a high quality and a high aspect ratio is obtained.

【0024】ガラス基板9の研磨加工は、上記第1実施
例と同様に、微細穴10の中にホットメルト材などの適
当な充填物を詰めた状態で行うことができ、それにより
貫通穴15の両端開口付近のチッピングを防止すること
ができる。また、微細穴10は、上記レーザ加工以外
に、Qスイッチパルス発振以外のノーマルパルス発振又
は連続発振のレーザ光や超音波加工又は他の様々な穴あ
け加工方法を用いて形成することができる。
The polishing of the glass substrate 9 can be performed in a state where an appropriate filler such as a hot-melt material is filled in the fine holes 10, as in the first embodiment. Can be prevented from being chipped in the vicinity of the openings at both ends. In addition to the laser processing, the fine holes 10 can be formed by using laser light of normal pulse oscillation or continuous oscillation other than the Q-switch pulse oscillation, ultrasonic processing, or various other drilling methods.

【0025】更に本発明によれば、上記第1実施例によ
り得られた貫通穴の開口周辺部分を材料除去することに
より、複雑な断面形状の微細穴を形成することができ
る。図3は、マイクロブラスト加工を用いて貫通穴の両
端開口にテーパを付ける過程を示している。本実施例で
は、空気、窒素、二酸化炭素等の気体を加速媒体に用い
て微細砥粒を吹き付けるマイクロブラスト加工方式を使
用する。
Further, according to the present invention, a fine hole having a complicated cross-sectional shape can be formed by removing the material around the opening of the through hole obtained in the first embodiment. FIG. 3 shows a process of tapering the openings at both ends of the through hole using microblasting. In this embodiment, a microblasting method in which fine abrasive grains are sprayed using a gas such as air, nitrogen, or carbon dioxide as an acceleration medium is used.

【0026】図3(a)に示すように、マイクロブラス
ト装置のノズル16を貫通穴3の開口位置に、その先端
がガラス基板2の表面に当接するように配置する。ノズ
ル16の内径は、形成しようとするテーパ部17の入口
径に合わせて選択する。この状態で、ノズル16から微
細砥粒18を含む固気2層噴流19をガラス基板2表面
に向けて噴射する。ノズル先端とガラス基板表面との間
には、噴射される砥粒の逃げが無いので、図3(b)に
示すように、貫通穴3には、その入口径がノズル16内
径と略同じ大きさのテーパ部17が形成される。これに
より、テーパ部とストレート部とからなる貫通穴20が
得られる。
As shown in FIG. 3A, the nozzle 16 of the microblasting device is arranged at the opening position of the through hole 3 so that the tip of the nozzle 16 contacts the surface of the glass substrate 2. The inner diameter of the nozzle 16 is selected according to the inlet diameter of the tapered portion 17 to be formed. In this state, a solid-gas two-layer jet 19 containing fine abrasive grains 18 is jetted from the nozzle 16 toward the surface of the glass substrate 2. Since there is no escape of the abrasive particles injected between the tip of the nozzle and the surface of the glass substrate, the diameter of the inlet of the through hole 3 is substantially the same as the inner diameter of the nozzle 16 as shown in FIG. The tapered portion 17 is formed. Thereby, the through hole 20 including the tapered portion and the straight portion is obtained.

【0027】更に本実施例では、図3(c)に示すよう
にガラス基板2を上下逆に配置し、貫通穴3の反対側の
開口にマイクロブラスト装置のノズル21を、同様にそ
の先端がガラス基板2の表面に当接するように配置し
て、微細砥粒18を含む固気2層噴流19を噴射する。
ノズル21の内径は、貫通穴3の反対側に形成しようと
するテーパ部22の入口径に合わせて選択し、必要に応
じて図3(a)のノズル16と同じであっても変更して
も良い。このようにして、両端開口にテーパを付けて中
央部分に絞りを設けた図3(d)の貫通穴23が得られ
る。
Further, in this embodiment, as shown in FIG. 3 (c), the glass substrate 2 is arranged upside down, and the nozzle 21 of the micro blast device is placed at the opening on the opposite side of the through hole 3, and the tip of the nozzle 21 A two-layer solid-gas jet 19 containing fine abrasive grains 18 is injected so as to be in contact with the surface of the glass substrate 2.
The inner diameter of the nozzle 21 is selected according to the inlet diameter of the tapered portion 22 to be formed on the opposite side of the through-hole 3, and is changed as necessary even if it is the same as the nozzle 16 in FIG. Is also good. In this way, a through hole 23 shown in FIG. 3D in which both ends are tapered and a stop is provided at the center is obtained.

【0028】除去された材料即ち加工屑24、25と使
用済みの砥粒18とは、前記噴流に含まれる搬送ガスと
共に、貫通穴を通過してその先端開口から排出されるの
で、テーパ部を効率的に加工できる。各テーパ部17、
22の深さや絞りの位置、形状精度は、砥粒の粒径や搬
送ガスの圧力などの加工条件を適当に設定することによ
り調整することができる。
The removed material, that is, the processing wastes 24 and 25 and the used abrasive grains 18 pass through the through-hole together with the carrier gas contained in the jet and are discharged from the opening at the tip thereof. It can be processed efficiently. Each taper portion 17,
The depth 22, the position of the iris, and the shape accuracy can be adjusted by appropriately setting the processing conditions such as the particle size of the abrasive grains and the pressure of the carrier gas.

【0029】図4は、フォトリソグラフィ技術とウェッ
トエッチングとを用いて、上記第1実施例により得られ
た貫通穴の開口を半円形断面に形成する過程を示してい
る。先ず、貫通穴3の内壁面及びガラス基板2の全表面
に、クロム、金などの耐フッ酸性の耐食被膜26を形成
する(図4(a))。次に図4(b)に示すように、耐
食被膜26の上にフォトレジスト27を概ね一定の厚さ
に塗布し、ガラス基板2の上方にマスク28を、その円
形パターンを貫通穴3と同心位置に配置して露光する。
マスク28の円形パターンの寸法は、貫通穴3の穴径よ
り僅かに、例えば数μm程度大きく設定する。これによ
りフォトレジスト27には、図4(c)に示すような円
環状の狭いギャップ29が、前記貫通穴の開口周縁に合
わせて形成される。
FIG. 4 shows the process of forming the opening of the through hole obtained by the first embodiment in a semicircular cross section by using photolithography and wet etching. First, a hydrofluoric acid-resistant corrosion-resistant film 26 such as chromium or gold is formed on the inner wall surface of the through hole 3 and the entire surface of the glass substrate 2 (FIG. 4A). Next, as shown in FIG. 4B, a photoresist 27 is applied on the corrosion-resistant coating 26 to a substantially constant thickness, a mask 28 is provided above the glass substrate 2, and the circular pattern is concentric with the through hole 3. Expose it by placing it at the position.
The size of the circular pattern of the mask 28 is set slightly larger than the hole diameter of the through hole 3, for example, about several μm. As a result, an annular narrow gap 29 as shown in FIG. 4C is formed in the photoresist 27 so as to match the peripheral edge of the opening of the through hole.

【0030】次に、ギャップ29に露出する耐食被膜2
6を、イオンミリングなどのドライエッチングその他の
適当な方法により除去し、貫通穴3開口周縁のガラス基
板を露出させる(図4(d))。このガラス基板2に、
フッ化水素(HF)、フッ化水素ほう素(BHF)など
の弗酸径エッチング液を作用させてウェットエッチング
を行う。これにより、ギャップ29を中心として等方性
エッチングが進行し、図4(e)に示すように半円形断
面の凹部30が貫通穴3開口に形成される。
Next, the corrosion-resistant coating 2 exposed in the gap 29
6 is removed by dry etching such as ion milling or any other suitable method to expose the glass substrate around the opening of the through hole 3 (FIG. 4D). On this glass substrate 2,
Wet etching is performed by using a hydrofluoric acid diameter etchant such as hydrogen fluoride (HF) or boron hydrogen fluoride (BHF). Thereby, isotropic etching proceeds with the gap 29 as a center, and a recess 30 having a semicircular cross section is formed in the opening of the through hole 3 as shown in FIG.

【0031】最後に、残存するフォトレジスト27及び
耐食被膜26を除去すると、半円形断面に加工された開
口部とストレート部とからなる図4(f)の貫通穴31
が得られる。このようなガラス基板は、例えばインクジ
ェットプリンタ用ヘッドのノズルプレートに用いること
ができる。
Finally, when the remaining photoresist 27 and corrosion-resistant coating 26 are removed, the through-hole 31 shown in FIG.
Is obtained. Such a glass substrate can be used, for example, for a nozzle plate of a head for an inkjet printer.

【0032】以上、本発明について好適な実施例を用い
て詳細に説明したが、本発明は、その技術的範囲内にお
いて上記実施例に様々な変形・変更を加えて実施するこ
とができる。
Although the present invention has been described in detail with reference to the preferred embodiments, the present invention can be implemented by adding various modifications and changes to the above embodiments within the technical scope thereof.

【0033】[0033]

【発明の効果】本発明は、以上のように構成されている
ので、以下に記載されるような効果を奏する。本発明の
ガラスの微細穴加工方法によれば、微細穴の形成後に被
加工物の表面層を研磨して除去することにより、微細穴
の形成時にその開口及び先端付近に生じた歪みやクラッ
ク、表面荒れ、ドロスなどを取り除くことができ、かつ
穴の内壁面と被加工物表面とが直線的に交差する優れた
形状精度が得られるので、高品質かつ高アスペクト比の
微細穴を高速で形成することができる。
Since the present invention is configured as described above, it has the following effects. According to the method for processing fine holes in glass of the present invention, by removing the surface layer of the workpiece by polishing after the formation of the fine holes, distortion and cracks generated near the opening and the tip thereof when forming the fine holes, High quality and high aspect ratio fine holes can be formed at high speed because surface roughness, dross, etc. can be removed, and excellent shape accuracy where the inner wall surface of the hole and the workpiece surface intersect linearly is obtained. can do.

【0034】更に、本発明によれば、微細穴の開口周縁
部をマイクロブラスト加工又はエッチング加工により除
去することにより、特にインクジェットプリンタ用のノ
ズルプレートなどの様々な実用的用途に使用できるよう
な、複雑な断面形状を有する高品質かつ高アスペクト比
の微細穴を加工することができる。
Further, according to the present invention, by removing the peripheral portion of the opening of the fine hole by micro blasting or etching, it can be used for various practical uses such as a nozzle plate for an ink jet printer. High-quality and high-aspect-ratio fine holes having a complicated cross-sectional shape can be processed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(e)図は、本発明の第1実施例の方
法によりガラス基板に微細穴を形成する過程を工程順に
示す概略断面図である。
FIGS. 1A to 1E are schematic cross-sectional views showing a process of forming fine holes in a glass substrate by a method according to a first embodiment of the present invention in the order of steps.

【図2】(a)〜(c)図は、本発明の第2実施例の方
法による微細穴の形成過程を図1と同様に示す概略断面
図である。
FIGS. 2A to 2C are schematic cross-sectional views showing a process of forming a fine hole by a method according to a second embodiment of the present invention, similarly to FIGS.

【図3】(a)〜(d)図は、本発明の第3実施例の方
法により微細穴の開口にテーパを付ける過程を示す概略
断面図である。
FIGS. 3A to 3D are schematic cross-sectional views showing a process of tapering an opening of a fine hole by a method according to a third embodiment of the present invention.

【図4】(a)〜(e)図は、本発明の第4実施例の方
法により微細穴の開口を半円形の断面に形成する過程を
示す概略断面図、(f)図は完成した微細穴の断面斜視
図である。
FIGS. 4A to 4E are schematic cross-sectional views showing a process of forming an opening of a fine hole into a semicircular cross-section by the method of the fourth embodiment of the present invention, and FIG. It is a sectional perspective view of a fine hole.

【符号の説明】[Explanation of symbols]

1 集光レンズ 2 ガラス基板 3 貫通穴 4、5 ドロス 6 ホットメルト材 7、8 想像線 9 ガラス基板 10 微細穴 11 ドロス 12 溶融物 13、14 想像線 15 貫通穴 16 ノズル 17 テーパ部 18 微細砥粒 19 固気2層噴流 20 貫通穴 21 ノズル 22 テーパ部 23 貫通穴 24、25加工屑 26 耐食被膜 27 フォトレジスト 28 マスク 29 ギャップ 30 凹部 31 貫通穴 DESCRIPTION OF SYMBOLS 1 Condensing lens 2 Glass substrate 3 Through hole 4, 5 dross 6 Hot melt material 7, 8 Imaginary line 9 Glass substrate 10 Micro hole 11 Dross 12 Melt 13, 14 Imaginary line 15 Through hole 16 Nozzle 17 Tapered portion 18 Fine grinding Particles 19 Solid-gas two-layer jet 20 Through hole 21 Nozzle 22 Tapered portion 23 Through hole 24, 25 Processing waste 26 Corrosion resistant coating 27 Photoresist 28 Mask 29 Gap 30 Concave portion 31 Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 信雄 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 Fターム(参考) 2C057 AF24 AF93 AG07 AP02 AP13 AP33 4E067 AA17 AB11 BA01 BF03 BH01 DA06 4E068 AA04 AF00 AF02 DA14 DB13 4G059 AA01 AA11 AB03 AC30  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Nobuo Shimizu 3-5-5 Yamato, Suwa City, Nagano Prefecture Seiko Epson Corporation F-term (reference) 2C057 AF24 AF93 AG07 AP02 AP13 AP33 4E067 AA17 AB11 BA01 BF03 BH01 DA06 4E068 AA04 AF00 AF02 DA14 DB13 4G059 AA01 AA11 AB03 AC30

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ガラスからなる被加工物に微細穴を形成
する過程と、前記微細穴が開口する前記被加工物の表面
を研磨する過程とからなることを特徴とするガラスの微
細穴加工方法。
1. A method for processing fine holes in glass, comprising the steps of forming fine holes in a glass workpiece and polishing the surface of the workpiece on which the fine holes are opened. .
【請求項2】 レーザ加工により前記微細穴を形成する
ことを特徴とする請求項1に記載のガラスの微細穴加工
方法。
2. The method according to claim 1, wherein the fine holes are formed by laser processing.
【請求項3】 超音波加工により前記微細穴を形成する
ことを特徴とする請求項1に記載のガラスの微細穴加工
方法。
3. The method according to claim 1, wherein the fine holes are formed by ultrasonic processing.
【請求項4】 前記被加工物を貫通するように前記微細
穴を形成することを特徴とする請求項1乃至3のいずれ
かに記載のガラスの微細穴加工方法。
4. The method according to claim 1, wherein the fine holes are formed so as to penetrate the workpiece.
【請求項5】 前記被加工物を貫通しないように前記微
細穴を形成し、前記微細穴の開口側だけでなく、その先
端側の前記被加工物表面をも研磨することにより、前記
被加工物に貫通穴を形成することを特徴とする請求項1
乃至3のいずれかに記載のガラスの微細穴加工方法。
5. The processing by forming the fine hole so as not to penetrate the workpiece and polishing not only the opening side of the fine hole but also the surface of the workpiece at the tip end side. 2. A through hole is formed in an object.
4. The method for processing a fine hole in glass according to any one of claims 1 to 3.
【請求項6】 前記被加工物表面の研磨前に、前記微細
穴に充填物を詰める過程と、前記被加工物表面の研磨後
に、前記充填物を前記微細穴から除去する過程とを更に
含むことを特徴とする請求項1乃至5のいずれかに記載
のガラスの微細穴加工方法。
6. The method according to claim 6, further comprising: filling the fine holes with the filler before polishing the surface of the workpiece; and removing the filler from the fine holes after polishing the surface of the workpiece. The method for processing a fine hole in a glass according to any one of claims 1 to 5, wherein:
【請求項7】 前記充填物が樹脂材料であることを特徴
とする請求項6に記載のガラスの微細穴加工方法。
7. The method according to claim 6, wherein the filler is a resin material.
【請求項8】 前記充填物がホットメルト材であること
を特徴とする請求項6に記載のガラスの微細穴加工方
法。
8. The method according to claim 6, wherein the filler is a hot melt material.
【請求項9】 前記被加工物表面を研磨した後に、前記
微細穴の少なくとも一方の開口周縁部をマイクロブラス
ト加工することを特徴とする請求項4又は5に記載のガ
ラスの微細穴加工方法。
9. The method according to claim 4, wherein, after polishing the surface of the workpiece, at least one peripheral edge of the opening of the fine hole is microblasted.
【請求項10】 前記被加工物表面を研磨した後に、前
記微細穴の開口周縁部をエッチング加工することを特徴
とする請求項1乃至8のいずれかに記載のガラスの微細
穴加工方法。
10. The method according to claim 1, further comprising, after polishing the surface of the workpiece, etching the periphery of the opening of the fine hole.
【請求項11】 研磨加工した前記被加工物の表面及び
前記微細穴の内面を耐食被膜で被覆し、前記耐食被膜の
上にフォトレジストを付着させ、前記微細穴の開口周縁
部の前記フォトレジスト及びその下側の前記耐食被膜を
除去し、それにより露出した前記微細穴の開口周縁部を
ウェットエッチングすることを特徴とする請求項10に
記載のガラスの微細穴加工方法。
11. The surface of the polished workpiece and the inner surface of the fine hole are coated with a corrosion-resistant film, and a photoresist is adhered on the corrosion-resistant film. 11. The method according to claim 10, wherein the corrosion-resistant coating on the lower side of the opening is removed, and the peripheral edge of the opening of the minute hole exposed thereby is wet-etched.
JP11116766A 1999-04-23 1999-04-23 Fine holing of glass Pending JP2000302488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116766A JP2000302488A (en) 1999-04-23 1999-04-23 Fine holing of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116766A JP2000302488A (en) 1999-04-23 1999-04-23 Fine holing of glass

Publications (1)

Publication Number Publication Date
JP2000302488A true JP2000302488A (en) 2000-10-31

Family

ID=14695212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116766A Pending JP2000302488A (en) 1999-04-23 1999-04-23 Fine holing of glass

Country Status (1)

Country Link
JP (1) JP2000302488A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034594A1 (en) * 2003-10-06 2005-04-14 Hoya Corporation Method of forming through hole in photosensitive glass substrate
JP2007136642A (en) * 2005-11-22 2007-06-07 Namiki Precision Jewel Co Ltd Material having microstructure and manufacturing method for the microstructure
JP2012019108A (en) * 2010-07-08 2012-01-26 Seiko Instruments Inc Method for manufacturing glass substrate and method for manufacturing electronic component
CN103096619A (en) * 2011-10-28 2013-05-08 精工爱普生株式会社 Circuit substrate, electronic device, electronic apparatus and method of manufacturing circuit substrate
CN103522031A (en) * 2013-09-30 2014-01-22 苏州德龙激光股份有限公司 Tempered glass punching method
WO2014154342A2 (en) 2013-03-26 2014-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for removing brittle-hard material by means of laser radiation
KR20180017117A (en) 2015-06-12 2018-02-20 도판 인사츠 가부시키가이샤 Wiring circuit board, semiconductor device, method of manufacturing wiring circuit board and manufacturing method of semiconductor device
US10077206B2 (en) * 2015-06-10 2018-09-18 Corning Incorporated Methods of etching glass substrates and glass substrates
WO2020241805A1 (en) * 2019-05-30 2020-12-03 日本板硝子株式会社 Microstructured glass substrate, electroconductive layer-equipped glass substrate, and microstructured glass substrate production method
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
JP2021142618A (en) * 2020-03-13 2021-09-24 本田技研工業株式会社 Drilling processing method
CN113510364A (en) * 2021-07-28 2021-10-19 广东工业大学 Laser-assisted dissolution-based three-dimensional cavity structure forming method
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005034594A1 (en) * 2003-10-06 2007-11-22 Hoya株式会社 Method for forming through hole in photosensitive glass substrate
JP4702794B2 (en) * 2003-10-06 2011-06-15 Hoya株式会社 Method for forming through hole in photosensitive glass substrate
WO2005034594A1 (en) * 2003-10-06 2005-04-14 Hoya Corporation Method of forming through hole in photosensitive glass substrate
JP2007136642A (en) * 2005-11-22 2007-06-07 Namiki Precision Jewel Co Ltd Material having microstructure and manufacturing method for the microstructure
JP2012019108A (en) * 2010-07-08 2012-01-26 Seiko Instruments Inc Method for manufacturing glass substrate and method for manufacturing electronic component
CN103096619A (en) * 2011-10-28 2013-05-08 精工爱普生株式会社 Circuit substrate, electronic device, electronic apparatus and method of manufacturing circuit substrate
JP2013098209A (en) * 2011-10-28 2013-05-20 Seiko Epson Corp Circuit board, electronic device, electronic equipment, and circuit board manufacturing method
WO2014154342A2 (en) 2013-03-26 2014-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for removing brittle-hard material by means of laser radiation
CN103522031A (en) * 2013-09-30 2014-01-22 苏州德龙激光股份有限公司 Tempered glass punching method
CN103522031B (en) * 2013-09-30 2016-06-29 苏州德龙激光股份有限公司 Strengthening glass punching method
US10077206B2 (en) * 2015-06-10 2018-09-18 Corning Incorporated Methods of etching glass substrates and glass substrates
US10790209B2 (en) 2015-06-12 2020-09-29 Toppan Printing Co., Ltd. Wiring circuit substrate, semiconductor device, method of producing the wiring circuit substrate, and method of producing the semiconductor device
KR20180017117A (en) 2015-06-12 2018-02-20 도판 인사츠 가부시키가이샤 Wiring circuit board, semiconductor device, method of manufacturing wiring circuit board and manufacturing method of semiconductor device
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
WO2020241805A1 (en) * 2019-05-30 2020-12-03 日本板硝子株式会社 Microstructured glass substrate, electroconductive layer-equipped glass substrate, and microstructured glass substrate production method
JP2021142618A (en) * 2020-03-13 2021-09-24 本田技研工業株式会社 Drilling processing method
JP7469917B2 (en) 2020-03-13 2024-04-17 本田技研工業株式会社 Hole Drilling Method
CN113510364A (en) * 2021-07-28 2021-10-19 广东工业大学 Laser-assisted dissolution-based three-dimensional cavity structure forming method
CN113510364B (en) * 2021-07-28 2022-11-25 广东工业大学 Forming method of three-dimensional cavity structure based on laser-assisted dissolution

Similar Documents

Publication Publication Date Title
JP2000302488A (en) Fine holing of glass
US8091234B2 (en) Manufacturing method for liquid discharge head substrate
US20060016073A1 (en) Slotted substrates and techniques for forming same
JP2008103736A (en) Method for reproducing substrate
JP2000077824A (en) Formation of through hole
JP2003226551A (en) Glass substrate having fine pore and production method therefor
US20130047738A1 (en) Platform with aspherical membrane bed, pressure sensor with such a platform and method for their manufacture
NO151611B (en) PROCEDURE FOR DRILLING A HOLE, SPORTS OR ANOTHER CANNEL BY LOCAL IMPACT OF AN ENERGY RAY
US10479084B2 (en) Method for manufacturing liquid ejection head
US5972234A (en) Debris-free wafer marking method
JP2005349592A (en) Process for producing nozzle plate
US5781994A (en) Process for the micromechanical fabrication of nozzles for liquid jets
JP2000024923A (en) Fine hole.groove machining method
JP2002361468A (en) Method of removing material deposit produced in laser beam processing
JPS6132761A (en) Jet head
JP3697861B2 (en) Ink jet head and manufacturing method thereof
JP2010005629A (en) LASER BEAM MACHINING METHOD OF Si SUBSTRATE
US20140024148A1 (en) Method of manufacturing substrate of liquid ejection head
JP3966329B2 (en) Inkjet head manufacturing method
JP2021100022A (en) Wafer processing method and substrate manufacturing method
JP6991760B2 (en) How to process a silicon substrate
JPS62218587A (en) Selective etching method utilizing laser
JPH08216003A (en) Grinding tool for drilling
US20210317558A1 (en) Method for coating a component and coated component
JP2021118275A (en) Processing method of print circuit board