JP2002260911A - Sintered magnetic oxide and high-frequency circuit part using the same - Google Patents

Sintered magnetic oxide and high-frequency circuit part using the same

Info

Publication number
JP2002260911A
JP2002260911A JP2001056152A JP2001056152A JP2002260911A JP 2002260911 A JP2002260911 A JP 2002260911A JP 2001056152 A JP2001056152 A JP 2001056152A JP 2001056152 A JP2001056152 A JP 2001056152A JP 2002260911 A JP2002260911 A JP 2002260911A
Authority
JP
Japan
Prior art keywords
mol
sintered body
oxide
magnetic
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001056152A
Other languages
Japanese (ja)
Other versions
JP4074437B2 (en
Inventor
Hidenobu Umeda
秀信 梅田
Migaku Murase
琢 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001056152A priority Critical patent/JP4074437B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to CNB018087744A priority patent/CN1232471C/en
Priority to PCT/JP2001/006691 priority patent/WO2002070432A1/en
Priority to EP01954432A priority patent/EP1364927B1/en
Priority to DE60136223T priority patent/DE60136223D1/en
Priority to US10/070,706 priority patent/US6660179B2/en
Priority to KR10-2001-7016331A priority patent/KR100423961B1/en
Priority to TW90119381A priority patent/TW572864B/en
Publication of JP2002260911A publication Critical patent/JP2002260911A/en
Application granted granted Critical
Publication of JP4074437B2 publication Critical patent/JP4074437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure

Abstract

PROBLEM TO BE SOLVED: To provide a sintered magnetic oxide which has excellent magnetic properties and is usable up to a high-frequency band of a few hundred MHz to GHz, contains no dissimilar phase other than Y-type hexagonal ferrite as much as possible, and can be baked at 1000 deg.C or below, especially around 900 deg.C, and to provide a high-frequency circuit part using the same. SOLUTION: This magnetic oxide sintered body contains Y-type hexagonal ferrite of 80% or above. The magnetic oxide sintered body contains 3 to 15 mol% cobalt oxide in terms of CoO, 5.5 to 17 mol% copper oxide in terms of CuO, 57 to 61 mol% iron oxide in terms of Fe2 O3 , and residual mol% AO (AO is either BaO or SrO) and 0.5 to 7 wt.% bismuth oxide(Bi2 O3 ) as an auxiliary component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波回路部品用
に使用される磁性酸化物焼結体およびそれを用いた高周
波回路部品に関する。
The present invention relates to a magnetic oxide sintered body used for high-frequency circuit components and a high-frequency circuit component using the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型化や高周波化に伴
い、高周波帯域において高いインダクタンス、インピー
ダンスを持つ電子部品の需要が高まっている。小型で高
いインダクタンス、インピーダンスを得るためには、い
わゆる印刷工法やシート工法によって磁性体中に導電体
を内蔵した積層構造のコイルを作製することが望まし
い。積層構造とすることでコイルの巻数を多くすること
ができ、構造も閉磁路となるため高いインダクタンス、
インピーダンスが得られる。
2. Description of the Related Art In recent years, demands for electronic components having high inductance and impedance in a high frequency band have been increasing along with miniaturization and higher frequency of electronic devices. In order to obtain a small size and high inductance and impedance, it is desirable to produce a coil having a laminated structure in which a conductor is built in a magnetic material by a so-called printing method or sheet method. The number of turns of the coil can be increased by adopting the laminated structure, and since the structure also becomes a closed magnetic circuit, high inductance,
The impedance is obtained.

【0003】焼結体に内蔵される導電体材料としては、
電気抵抗率、融点、コストなどの点を考慮して一般に銀
(Ag)が多く用いられている。銀の融点は1000℃
以下であるため,積層構造用の磁性体材料としては、従
来より一般に、900℃の焼成でも高い焼結密度が得ら
れるNiZn系フェライトが用いられてきた。
[0003] As a conductor material incorporated in the sintered body,
In general, silver (Ag) is widely used in consideration of electrical resistivity, melting point, cost, and the like. The melting point of silver is 1000 ° C
Because of the following, as a magnetic material for a laminated structure, generally, NiZn-based ferrite, which can obtain a high sintered density even at 900 ° C., has been used.

【0004】しかしながら、NiZn系フェライトは磁
気異方性が低いために数百MHzの周波数で自然共鳴を
起こしてしまい、GHzの周波数帯域で使用することが
できなかった。
[0004] However, NiZn-based ferrite has a low magnetic anisotropy, causing natural resonance at a frequency of several hundred MHz, and cannot be used in a frequency band of GHz.

【0005】高周波仕様として、非磁性体を用いた空心
コイルが用いられることもあるが、非磁性体を用いると
高いインダクタンスやインピーダンスを得ることが困難
になる。
[0005] An air-core coil using a non-magnetic material may be used as a high-frequency specification. However, if a non-magnetic material is used, it is difficult to obtain high inductance and impedance.

【0006】この一方で六方晶フェライトは、六角板状
結晶の面内方向とこの面に垂直な方向とでは磁気的異方
性が異なっているため、自然共鳴を起こしにくく、GH
zの周波数帯域まで高い透磁率を持つという特徴をもっ
ている。しかしながら、このものは、所望の焼結密度や
磁気特性を得るためには焼成温度を高くする必要があ
る。
On the other hand, the hexagonal ferrite has a different magnetic anisotropy between the in-plane direction of the hexagonal plate-like crystal and the direction perpendicular to this plane, so that natural resonance hardly occurs, and
It has the feature of having high magnetic permeability up to the frequency band of z. However, in this case, it is necessary to raise the firing temperature in order to obtain desired sintering density and magnetic properties.

【0007】これまで生成温度の高い六方晶フェライト
において、低融点酸化物を用いることでAgの融点以下
で焼成するという試みもなされているが、軟磁性相生成
率が低く、六方晶フェライトの磁気特性を十分に発揮す
ることは困難であった。
Attempts have been made in the past to use hexagonal ferrite, which has a high formation temperature, to burn it at a temperature lower than the melting point of Ag by using a low-melting oxide. However, the rate of formation of a soft magnetic phase is low, and the magnetic properties of hexagonal ferrite are low. It was difficult to exhibit the characteristics sufficiently.

【0008】本願に関連する類似の先行技術の一つに特
開平9−167703号公報がある。当該公報では、Z
型六方晶フェライト(Ba,Sr,Pb)3(Co1-x
x2Fe2442を中心に検討がなされ、低温焼成を試
みるためにV25,CuO,Bi23,MoO3,W
3,PbOの添加を行っている。
One of similar prior arts related to the present application is Japanese Patent Application Laid-Open No. Hei 9-167703. In this publication, Z
Type hexagonal ferrite (Ba, Sr, Pb) 3 (Co 1-x C
U x ) 2 Fe 24 O 42 has been mainly studied, and V 2 O 5 , CuO, Bi 2 O 3 , MoO 3 , W
O 3 and PbO are added.

【0009】また、当該公報においては主要相が、M
型、Y型、W型、X型、U型の六方晶フェライトの低温
焼成についても報告がなされている。特に、具体的な実
施例で開示されている主要相をY型とするもの、すなわ
ち(Ba)2(Co1-XCux2Fe1222については、
Y型六方晶フェライトの占有率の記載がなく、不明であ
るものの、仮焼温度が700℃と極めて低いために占有
率はたかだか50%程度、添加物を加えればその占有率
はさらに低下し、本願のごとく80%を超えるものでは
ないと言える。そのため、得られる磁気特性は決して満
足のいくものではない。すなわち、当該公報における組
成および物質の添加は、低温焼結を可能にするが、仮焼
き温度の検討が十分になされておらず、焼結後における
軟磁性相の生成率が低いために焼成後の磁気特性を十分
に発揮することができない。そのため、高いインダクタ
ンスやインピーダンスを得ることが困難であるという問
題があると言える。
In this publication, the main phase is M
Low-temperature sintering of type, Y, W, X and U hexagonal ferrites has also been reported. In particular, for those in which the main phase disclosed in the specific examples is Y-type, that is, (Ba) 2 (Co 1-x C x ) 2 Fe 12 O 22 ,
Although the occupancy of the Y-type hexagonal ferrite is not described and unknown, the occupancy is extremely low at 700 ° C., so the occupancy is at most about 50%. It can be said that it does not exceed 80% as in the present application. As a result, the magnetic properties obtained are never satisfactory. That is, the addition of the composition and the substance in the publication enables low-temperature sintering, but the calcination temperature has not been sufficiently studied, and the rate of formation of the soft magnetic phase after sintering is low. Cannot fully exhibit the magnetic properties of Therefore, it can be said that there is a problem that it is difficult to obtain high inductance and impedance.

【0010】また、当該公報におけるCuOの含有量も
本願と比べて少なく、添加物の効果を考慮したとしても
900℃程度の焼成でY型六方晶フェライトの生成率を
高めて、高い特性を得ることができないという問題があ
った。
Further, the content of CuO in this publication is smaller than that of the present invention, and even if the effects of additives are taken into consideration, the yield of Y-type hexagonal ferrite is increased by firing at about 900 ° C. to obtain high characteristics. There was a problem that it was not possible.

【0011】[0011]

【発明が解決しようとする課題】このような実状のもと
に本発明は創案されたものであり、その目的は、上記の
課題を解決し、数百MHz〜GHzといった高周波帯域
まで磁気特性が良好で使用可能であり、かつY型六方晶
フェライト以外の異相をできるだけ含まず1000℃以
下特に、900℃付近で焼成可能である磁性酸化物焼結
体およびこれを用いた高周波回路部品を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to solve the above-mentioned problems and to provide magnetic characteristics up to a high frequency band of several hundred MHz to GHz. Provided is a magnetic oxide sintered body which is favorable and can be used, contains as little foreign phase as possible other than Y-type hexagonal ferrite as much as possible, and can be fired at 1000 ° C. or less, particularly around 900 ° C., and a high-frequency circuit component using the same. It is in.

【0012】[0012]

【課題を解決するための手段】このような課題を解決す
るために、本発明は、Y型六方晶フェライトで80%以
上占有されてなる磁性酸化物焼結体であって、該磁性酸
化物焼結体は、主成分として酸化コバルトをCoO換算
で3〜15モル%、酸化銅をCuO換算で5.5〜17
モル%、酸化鉄をFe23換算で57〜61モル%、残
部をAO(AOは、BaOまたはSrOの少なくとも1
種)として含み、副成分として酸化ビスマス(Bi
23)を0.5〜7wt%を含有してなるように構成さ
れる。
In order to solve such problems, the present invention relates to a magnetic oxide sintered body occupied by 80% or more of Y-type hexagonal ferrite. The sintered body contains 3 to 15 mol% of cobalt oxide as a main component in terms of CoO, and 5.5 to 17 mol of copper oxide in terms of CuO.
Mol%, iron oxide is 57 to 61 mol% in terms of Fe 2 O 3 , and the remainder is AO (AO is at least 1% of BaO or SrO).
Bismuth oxide (Bi)
2 O 3 ) in an amount of 0.5 to 7 wt%.

【0013】また、本発明は、磁性酸化物焼結体中に導
電体が埋設された構造を備える高周波回路部品であっ
て、前記磁性酸化物焼結体は、Y型六方晶フェライトで
80%以上占有され、かつ、該磁性酸化物焼結体は、主
成分として酸化コバルトをCoO換算で3〜15モル
%、酸化銅をCuO換算で5.5〜17モル%、酸化鉄
をFe23換算で57〜61モル%、残部をAO(AO
は、BaOまたはSrOの少なくとも1種)として含
み、副成分として酸化ビスマス(Bi23)を0.5〜
7wt%を含有してなるように構成される。
The present invention also relates to a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, wherein the magnetic oxide sintered body is a Y-type hexagonal ferrite of 80%. The magnetic oxide sintered body is occupied as described above, and the main component of the magnetic oxide sintered body is 3 to 15 mol% of cobalt oxide in terms of CoO, 5.5 to 17 mol% of copper oxide in terms of CuO, and Fe 2 O as iron oxide. 57-61 mol% in 3 conversion, the remainder is AO (AO
Includes to at least one) of BaO or SrO, 0.5 to the bismuth oxide (Bi 2 O 3) as a sub-component
It is configured to contain 7 wt%.

【0014】また、本発明の好ましい態様として、前記
磁性酸化物焼結体の製造における仮焼温度は、850℃
〜1000℃として構成される。
In a preferred embodiment of the present invention, the calcination temperature in the production of the magnetic oxide sintered body is 850 ° C.
と し て 1000 ° C.

【0015】また、本発明の高周波回路部品の好ましい
態様として、前記導電体は、銀(Ag)を主成分として
なるように構成される。
In a preferred embodiment of the high-frequency circuit component according to the present invention, the conductor is constituted so that silver (Ag) is a main component.

【0016】[0016]

【発明の実施の形態】以下、本発明の磁性酸化物焼結体
について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be described in detail magnetic oxide sintered body of the present invention.

【0017】本発明の磁性酸化物焼結体はセラミック焼
結体であるために通常のセラミック作製プロセスで製造
することができる。
Since the magnetic oxide sintered body of the present invention is a ceramic sintered body, it can be manufactured by an ordinary ceramic manufacturing process.

【0018】本発明の磁性酸化物焼結体は、主成分とし
て酸化コバルトをCoO換算で3〜15モル%(好まし
くは、5〜10モル%)、酸化銅をCuO換算で5.5
〜17モル%(好ましくは、10〜15モル%)、酸化
鉄をFe23換算で57〜61モル%(好ましくは、5
9〜60モル%)、残部をAO(AOは、BaOまたは
SrOの少なくとも1種)として含んでいる。AOの形
態は、BaOあるいはSrOの単独形態、またはBaO
とSrOの混在形態である。
In the magnetic oxide sintered body of the present invention, as a main component, cobalt oxide is 3 to 15 mol% (preferably 5 to 10 mol%) in terms of CoO, and copper oxide is 5.5 in terms of CuO.
To 17 mol% (preferably 10 to 15 mol%), 57-61 mol% of iron oxide calculated as Fe 2 O 3 (preferably, 5
9 to 60 mol%), and the balance is AO (AO is at least one of BaO and SrO). AO forms, alone form of BaO or SrO, or BaO,
And SrO.

【0019】また、本発明の磁性酸化物焼結体は、副成
分として酸化ビスマスBi23を0.5〜7wt%(好
ましくは0.6〜5wt%)、含有している。
The magnetic oxide sintered body of the present invention contains bismuth oxide Bi 2 O 3 as an auxiliary component in an amount of 0.5 to 7 wt% (preferably 0.6 to 5 wt%).

【0020】このような酸化ビスマスBi23は、後述
する実施例からもわかるように添加時に当該酸化物の形
態で混入され、焼結後も一般に当該酸化物の形態で残存
する。上記主成分の含有割合において、CoOが3モル
%未満となると、例えば2GHzにおける透磁率が低下
する(例えば2.0未満)という不都合が生じる傾向に
あり、CoOが15モル%を超えると、例えば500M
Hzにおける透磁率が低下する(例えば2.0未満)と
いう不都合が生じる傾向にある。
Such bismuth oxide Bi 2 O 3 is mixed in the form of the oxide at the time of addition, and generally remains in the form of the oxide even after sintering, as can be seen from the examples described later. When the content of the main component is less than 3 mol%, there is a tendency that, for example, the permeability at 2 GHz decreases (for example, less than 2.0), and when the content of CoO exceeds 15 mol%, for example, 500M
There is a tendency that the inconvenience that the magnetic permeability at Hz decreases (for example, less than 2.0).

【0021】また、CuOが5.5モル%未満となる
と、仮焼き温度が1000℃を超えるという不都合が生
じる傾向にあり、CuOが17モル%を超えると、透磁
率が低下する(例えば2.0未満)という不都合が生じ
る傾向にある。
If CuO is less than 5.5 mol%, the calcination temperature tends to exceed 1000 ° C., and if CuO exceeds 17 mol%, the magnetic permeability decreases (for example, 2. (Less than 0) tends to occur.

【0022】また、Fe23が57モル%未満となった
り、Fe23が61モル%を超えたりすると透磁率が低
下するという不都合が生じる傾向にある。
If the content of Fe 2 O 3 is less than 57 mol%, or if the content of Fe 2 O 3 is more than 61 mol%, the magnetic permeability tends to be reduced.

【0023】上記の副成分の含有割合において、上記B
23の含有量が0.5wt%未満となると、1000
℃以下の焼成で理論密度の90%以上が得られなくなる
という不都合が生じる傾向にあり、上記Bi23の含有
量が7wt%を超えると、透磁率が低下するという不都
合が生じる傾向にある。
In the content ratio of the subcomponent, the above B
When the content of i 2 O 3 is less than 0.5 wt%, 1000
There is a tendency that the sintering at a temperature of not higher than 90 ° C. makes it impossible to obtain 90% or more of the theoretical density. When the content of Bi 2 O 3 exceeds 7% by weight, there is a tendency that the magnetic permeability decreases. .

【0024】このようなBi23副成分の添加は、特
に、上記のCuO量の含有と相俟って低温焼結を顕著に
実現させることができる。磁気特性向上の相乗効果もあ
る。焼成温度が低くなると、安価で電気抵抗の低いAg
のような低融点の電極材料を内蔵した形で同時焼成し、
電極一体型の閉磁路構成の素子を容易に製造できる。こ
のようにして製造された素子は、例えば、小型でかつ高
いQ値を持つインダクタ、あるいは小型で高周波帯の特
に特定周波数でのインピーダンスが大きいノイズフィル
ター等の高周波素子(高周波回路部品)として利用され
る。
The addition of the Bi 2 O 3 subcomponent in combination with the above-mentioned CuO content makes it possible to remarkably realize low-temperature sintering. There is also a synergistic effect of improving magnetic properties. When the firing temperature is lowered, Ag is inexpensive and has low electric resistance.
Simultaneous firing with a built-in low melting point electrode material such as
An element having an electrode-integrated closed magnetic circuit configuration can be easily manufactured. The element manufactured in this manner is used, for example, as a small-sized inductor having a high Q value or a small-sized high-frequency element (high-frequency circuit component) such as a noise filter having a large impedance in a high-frequency band, particularly at a specific frequency. You.

【0025】さらに本発明における磁性酸化物焼結体
は、その80%以上、特に好ましくは、90%以上がY
型六方晶フェライトで形成されている。ここに言う
「%」は、エックス線回折強度のメインピーク比から算
出したものである。
Further, in the magnetic oxide sintered body of the present invention, 80% or more, particularly preferably 90% or more, of the magnetic oxide sintered body is Y.
It is made of type hexagonal ferrite. Here, “%” is calculated from the main peak ratio of the X-ray diffraction intensity.

【0026】Y型六方晶フェライトの占有割合が80%
未満となると、高周波において高い透磁率を得ることが
できくなるという不都合が生じる。これにより、高いイ
ンダクタンスやインピーダンスを持つ高周波回路部品を
得ることが困難となる。
Y-type hexagonal ferrite occupies 80%
If it is less than the above value, a disadvantage arises in that a high magnetic permeability cannot be obtained at a high frequency. This makes it difficult to obtain a high-frequency circuit component having high inductance and impedance.

【0027】銀(Ag)のような低融点電極材料と同時
焼成する場合、本焼成温度が低くなるため、焼結後のY
型六方晶フェライトを80%以上とするためには、仮焼
時にY型六方晶フェライトを80%以上生成しておく必
要がある。組成によって異なるが、850℃付近からB
aFe1219およびBaFe24の分解が始まり、Y型
六方晶フェライトの生成が始まる。
When co-firing with a low-melting-point electrode material such as silver (Ag), the firing temperature becomes low, so that Y
In order to make the type hexagonal ferrite 80% or more, it is necessary to generate the Y type hexagonal ferrite 80% or more at the time of calcination. Depending on the composition, B
The decomposition of aFe 12 O 19 and BaFe 2 O 4 starts, and the formation of Y-type hexagonal ferrite starts.

【0028】しかしながら、BaFe1219およびBa
Fe24の分解が十分に進まなければY型六方晶フェラ
イトの生成が進まない。従って、Y型六方晶フェライト
を80%以上とするために、仮焼温度を850℃以上、
特に、850〜1000℃とする必要がある。さらに、
CuO量を5.5〜17モル%含有させることが必要と
なる。仮焼温度が850℃未満となったり、CuO量が
上記の範囲を外れると、80%を超えるY型六方晶フェ
ライトの生成が困難となる。また、仮焼き温度が100
0℃を超えて高くなり過ぎると、細かい粉砕粉が得られ
なくなってしまう。細かい粉砕粉の作製は、低温焼成に
は極めて重要な技術である。
However, BaFe 12 O 19 and Ba
If the decomposition of Fe 2 O 4 does not proceed sufficiently, the formation of Y-type hexagonal ferrite does not proceed. Therefore, in order to make the Y-type hexagonal ferrite 80% or more, the calcination temperature is 850 ° C. or more,
In particular, it is necessary to be 850-1000 ° C. further,
It is necessary to contain 5.5 to 17 mol% of CuO. If the calcination temperature is lower than 850 ° C. or the amount of CuO is out of the above range, it becomes difficult to generate Y-type hexagonal ferrite exceeding 80%. When the calcining temperature is 100
If the temperature exceeds 0 ° C. and becomes too high, fine pulverized powder cannot be obtained. Production of fine ground powder is a very important technique for low-temperature firing.

【0029】このような観点から、上述のごとく仮焼温
度を850〜1000℃において、Y型六方晶フェライ
トの生成率を高くするためには、主成分としての前記C
uO量を5.5〜17モル%含有させることが必要とな
る。
From such a viewpoint, in order to increase the yield of Y-type hexagonal ferrite at a calcination temperature of 850 to 1000 ° C. as described above, the above-mentioned C as a main component is required.
It is necessary to make the uO content 5.5 to 17 mol%.

【0030】このような本発明における磁性酸化焼結体
は、磁性酸化物焼結体中に導電体が埋設された構造を備
える高周波回路部品、例えば、インピーダ、インダクタ
として用いられる。
The magnetic oxide sintered body according to the present invention is used as a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, for example, an impedance or an inductor.

【0031】[0031]

【実施例】以下、具体的実施例を挙げて本発明をさらに
詳細に説明する。
The present invention will be described below in further detail with reference to specific examples.

【0032】[実験例I] (実施例サンプルおよび比較例サンプルの作製)焼結後
の組成が下記表1に示すような組成となるように各原料
を秤量し、鋼鉄製ボールミルで15時間湿式混合した。
次に、この混合粉を大気中、表1に記載された温度で2
時間仮焼きした。次いで、表1に示されるごとく副成分
としてBi23を所定量添加した後、鉄鋼製ボールミル
で15時間粉砕した。
[0032] Experimental Example I] (Example Preparation of samples and comparative sample) composition after sintering and each raw material was weighed so that the compositions shown in Table 1, 15 hour wet a steel ball mill Mixed.
Next, this mixed powder was dried in air at a temperature shown in Table 1 for 2 hours.
Time baked. Next, as shown in Table 1, a predetermined amount of Bi 2 O 3 was added as an auxiliary component, and the mixture was pulverized with a steel ball mill for 15 hours.

【0033】このようにして得られた六方晶フェライト
粉を造粒して、100MPaの圧力で所望の形状に成形
した。
The hexagonal ferrite powder thus obtained was granulated and formed into a desired shape at a pressure of 100 MPa.

【0034】この成形体を大気中、表1に示される焼成
温度で2時間焼結した。六方晶フェライト焼結体の組成
は下記表1に示すとおりであり、これらの各サンプルに
ついて、密度、並びに25℃における周波数500MH
zおよび2GHzの透磁率をそれぞれ測定して表1に示
した。透磁率は周波数500MHzおよび2GHzの周
波数において、それぞれ2.0以上の値を目標としてい
る。
This compact was sintered in the atmosphere at the firing temperature shown in Table 1 for 2 hours. The composition of the hexagonal ferrite sintered body is as shown in Table 1 below. For each of these samples, the density and the frequency of 500 MH at 25 ° C.
The magnetic permeability at z and 2 GHz were measured and shown in Table 1. The magnetic permeability aims at a value of 2.0 or more at the frequencies of 500 MHz and 2 GHz.

【0035】なお、Y型六方晶フェライトによる占有率
は、焼結体の粉砕粉を用いて、X線回折ピークの強度比
より算出した。
The occupancy by the Y-type hexagonal ferrite was calculated from the intensity ratio of X-ray diffraction peaks using the pulverized powder of the sintered body.

【0036】[0036]

【表1】 [Table 1]

【0037】[実験例II]次に、本発明の磁性体を用いて
インピーダンス素子を作製した。すなわち、焼結後の組
成が上記表1の実施例7サンプルに示されるような組成
となるように各原料を秤量し、鋼鉄製ボールミルで15
時間湿式混合した。次に、この混合粉を大気中、950
℃で2時間仮焼きした。次いで、副成分としてBi23
を5wt%添加した後、鉄鋼製ボールミルで15時間粉
砕した。
[Experimental Example II] Next, an impedance element was manufactured using the magnetic material of the present invention. That is, each raw material was weighed such that the composition after sintering had a composition as shown in the sample of Example 7 in Table 1 above, and was weighed for 15 minutes using a steel ball mill.
Wet mixed for hours. Next, this mixed powder was placed in the atmosphere at 950.
Calcination was performed at 2 ° C. for 2 hours. Next, Bi 2 O 3
Was added and then pulverized with a steel ball mill for 15 hours.

【0038】この仮焼き粉末に有機バインダーを混合
し、ドクターブレード法により均一なグリーンシートを
形成した。
An organic binder was mixed with the calcined powder, and a uniform green sheet was formed by a doctor blade method.

【0039】比較のためにNiCuZn系スピネルフェ
ライト粉末(NiO=45モル%、CuO=5モル%、
ZnO=1.5モル%、Fe23=48モル%、CoO
=0.5モル%)を用いて作製したグリーンシートも準
備した。
For comparison, NiCuZn-based spinel ferrite powder (NiO = 45 mol%, CuO = 5 mol%,
ZnO = 1.5 mol%, Fe 2 O 3 = 48 mol%, CoO
= 0.5 mol%) was also prepared.

【0040】この一方で、銀を混合してなる導電性ペー
ストを用意し、先のグリーンシート上にコイルをスパイ
ラル状となるように積層した。厚み方向に圧力を加えて
圧着し、磁性体に電極がサンドイッチされたグリーンシ
ート積層体を作製した。これを930℃で2時間焼成し
た。得られた焼結体の側面の内部導電体の位置に銀ペー
ストを塗布し、外部電極を焼き付け、図1に概略的に示
されるインピーダンス素子(高周波回路部品)とした。
なお、図1は素子内部構造の理解を容易にするためにモ
デル図として描かれている。図1において、符号11は
インナーコンダクタ(Agコイル)であり、符号10は
ターミナルコンダクタであり、符号20はフェライトを
示している。
On the other hand, a conductive paste prepared by mixing silver was prepared, and a coil was laminated on the above-mentioned green sheet in a spiral shape. Pressure was applied in the thickness direction to perform compression bonding to produce a green sheet laminate in which electrodes were sandwiched between magnetic materials. This was fired at 930 ° C. for 2 hours. A silver paste was applied to the position of the internal conductor on the side surface of the obtained sintered body, and an external electrode was baked to obtain an impedance element (high-frequency circuit component) schematically shown in FIG.
FIG. 1 is drawn as a model diagram to facilitate understanding of the internal structure of the device. In FIG. 1, reference numeral 11 denotes an inner conductor (Ag coil), reference numeral 10 denotes a terminal conductor, and reference numeral 20 denotes a ferrite.

【0041】このようにして得られたインピーダンス素
子のインピーダンスおよび透磁率を周波数2GHzで測
定したところ、従来のNiCuZn系スピネルフェライ
トではインピーダンスが135Ω(透磁率は1.2)で
あったのに対して、本発明のものではインピーダンスが
208Ω(透磁率は3.7)と約54%以上改善されて
いた。
When the impedance and the magnetic permeability of the impedance element thus obtained were measured at a frequency of 2 GHz, the impedance of the conventional NiCuZn-based spinel ferrite was 135Ω (the magnetic permeability was 1.2). According to the present invention, the impedance was 208 Ω (permeability was 3.7), which was improved by about 54% or more.

【0042】[0042]

【発明の効果】上記の結果より本発明の効果は明らかで
ある。すなわち、本発明は、Y型六方晶フェライトで8
0%以上占有されてなる磁性酸化物焼結体であって、該
磁性酸化物焼結体は、主成分として酸化コバルトをCo
O換算で3〜15モル%、酸化銅をCuO換算で5.5
〜17モル%、酸化鉄をFe23換算で57〜61モル
%、残部をAO(AOは、BaOまたはSrOの少なく
とも1種)として含み、副成分として酸化ビスマス(B
23)を0.5〜7wt%を含有してなるように構成
されているので、数百MHz〜GHzといった高周波帯
域まで磁気特性が良好で使用可能であり、かつY型六方
晶フェライト以外の異相をできるだけ含まず1000℃
以下特に、900℃付近で焼成可能である磁性酸化物焼
結体およびこれを用いた高周波回路部品を提供すること
ができる。
The effects of the present invention are clear from the above results. That is, the present invention relates to a Y-type hexagonal ferrite,
A magnetic oxide sintered body occupied by 0% or more, wherein the magnetic oxide sintered body contains cobalt oxide as a main component in Co.
3 to 15 mol% in terms of O, and copper oxide in terms of CuO of 5.5
1717 mol%, iron oxide is 57-61 mol% in terms of Fe 2 O 3 , the balance is AO (AO is at least one of BaO or SrO), and bismuth oxide (B
Since i 2 O 3) is configured to be contained 0.5~7Wt% to several hundred magnetic properties up to a high frequency band such MHz~GHz is available good, and Y-type hexagonal ferrite 1000 ° C, containing as little other phase as possible
Particularly, it is possible to provide a magnetic oxide sintered body that can be fired at around 900 ° C. and a high-frequency circuit component using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いたインダクタンス素子(高周波回
路部品)の概略図面である。
FIG. 1 is a schematic drawing of an inductance element (high-frequency circuit component) used in an example.

【符号の説明】[Explanation of symbols]

10…ターミナルコンダクタ 11…インナーコンダクタ 20…フェライト 10 terminal conductor 11 inner conductor 20 ferrite

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G018 AA01 AA09 AA10 AA22 AA24 AA37 AB03 AC16 5E041 AA06 AA19 BD01 CA01 HB01 NN01 NN02 NN06 NN18  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G018 AA01 AA09 AA10 AA22 AA24 AA37 AB03 AC16 5E041 AA06 AA19 BD01 CA01 HB01 NN01 NN02 NN06 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Y型六方晶フェライトで80%以上占有
されてなる磁性酸化物焼結体であって、 該磁性酸化物焼結体は、主成分として酸化コバルトをC
oO換算で3〜15モル%、酸化銅をCuO換算で5.
5〜17モル%、酸化鉄をFe23換算で57〜61モ
ル%、残部をAO(AOは、BaOまたはSrOの少な
くとも1種)として含み、 副成分として酸化ビスマス(Bi23)を0.5〜7w
t%を含有してなることを特徴とする磁性酸化物焼結
体。
1. A magnetic oxide sintered body occupied by 80% or more of a Y-type hexagonal ferrite, wherein the magnetic oxide sintered body contains cobalt oxide as a main component.
3 to 15 mol% in terms of oO; copper oxide in terms of CuO;
5 to 17 mol%, iron oxide is 57 to 61 mol% in terms of Fe 2 O 3 , and the balance is AO (AO is at least one of BaO and SrO), and bismuth oxide (Bi 2 O 3 ) is used as a sub-component. 0.5 ~ 7w
A magnetic oxide sintered body characterized by containing t%.
【請求項2】 前記磁性酸化物焼結体の製造における仮
焼温度が850℃〜1000℃である請求項1に記載の
磁性酸化物焼結体。
2. The magnetic oxide sintered body according to claim 1, wherein a calcination temperature in the production of the magnetic oxide sintered body is 850 ° C. to 1000 ° C.
【請求項3】 磁性酸化物焼結体中に導電体が埋設され
た構造を備える高周波回路部品であって、 前記磁性酸化物焼結体は、Y型六方晶フェライトで80
%以上占有され、かつ、 該磁性酸化物焼結体は、主成分として酸化コバルトをC
oO換算で3〜15モル%、酸化銅をCuO換算で5.
5〜17モル%、酸化鉄をFe23換算で57〜61モ
ル%、残部をAO(AOは、BaOまたはSrOの少な
くとも1種)として含み、 副成分として酸化ビスマス(Bi23)を0.5〜7w
t%を含有してなることを特徴とする高周波回路部品。
3. A high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, wherein the magnetic oxide sintered body is a Y-type hexagonal ferrite.
% Or more, and the magnetic oxide sintered body contains cobalt oxide as a main component.
3 to 15 mol% in terms of oO; copper oxide in terms of CuO;
5 to 17 mol%, iron oxide is 57 to 61 mol% in terms of Fe 2 O 3 , and the balance is AO (AO is at least one of BaO and SrO), and bismuth oxide (Bi 2 O 3 ) is used as a sub-component. 0.5 ~ 7w
A high-frequency circuit component characterized by containing t%.
【請求項4】 前記磁性酸化物焼結体の製造における仮
焼温度が850℃〜1000℃である請求項3に記載の
高周波回路部品。
4. The high-frequency circuit component according to claim 3, wherein a calcination temperature in the production of the magnetic oxide sintered body is 850 ° C. to 1000 ° C.
【請求項5】 前記導電体が銀(Ag)を主成分とする
請求項3または請求項4に記載の高周波回路部品。
5. The high-frequency circuit component according to claim 3, wherein the conductor is mainly composed of silver (Ag).
JP2001056152A 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same Expired - Fee Related JP4074437B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001056152A JP4074437B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same
PCT/JP2001/006691 WO2002070432A1 (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high-frequency circuit part employing the same
EP01954432A EP1364927B1 (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high-frequency circuit part employing the same
DE60136223T DE60136223D1 (en) 2001-03-01 2001-08-03 SINTERED MAGNETIC OXIDE AND HIGH FREQUENCY CIRCUIT UNIT USING THIS
CNB018087744A CN1232471C (en) 2001-03-01 2001-08-03 Magnetic oxide sinter and high frequency circuit part employing same
US10/070,706 US6660179B2 (en) 2001-03-01 2001-08-03 Sintered body and high-frequency circuit component
KR10-2001-7016331A KR100423961B1 (en) 2001-03-01 2001-08-03 Sintered body and high-frequency circuit component
TW90119381A TW572864B (en) 2001-03-01 2001-08-08 Magnetic oxide sinter and high-frequency circuit part employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001056152A JP4074437B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same

Publications (2)

Publication Number Publication Date
JP2002260911A true JP2002260911A (en) 2002-09-13
JP4074437B2 JP4074437B2 (en) 2008-04-09

Family

ID=18916219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001056152A Expired - Fee Related JP4074437B2 (en) 2001-03-01 2001-03-01 Magnetic oxide sintered body and high-frequency circuit component using the same

Country Status (1)

Country Link
JP (1) JP4074437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148438A1 (en) * 2006-06-21 2007-12-27 Hitachi Metals, Ltd. Magnetic material antenna and ferrite sinter
JP2009170704A (en) * 2008-01-17 2009-07-30 Hitachi Metals Ltd Ferrite sintered compact and magnetic material antenna

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129433A (en) * 1995-10-31 1997-05-16 Tokin Corp Soft magnetic hexagonal ferrite
JPH09167703A (en) * 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd Magnetic material for microwave and high frequency circuit parts using the material
JPH09246031A (en) * 1996-03-11 1997-09-19 Osamu Kimura Magnetic material for high frequency
JPH10335133A (en) * 1997-05-30 1998-12-18 Osamu Kimura Magnetic material for high frequency
JP2000272961A (en) * 1999-01-18 2000-10-03 Osamu Kimura Magnetic material for high-frequency use
JP2000323320A (en) * 1999-03-09 2000-11-24 Tdk Corp Manufacture of soft magnetic ferrite powder and manufacture of laminated chip inductor
JP2001006915A (en) * 1999-06-23 2001-01-12 Osamu Kimura Magnetic material for high frequency
JP2002015913A (en) * 2000-04-28 2002-01-18 Tdk Corp Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP2002068830A (en) * 2000-09-01 2002-03-08 Murata Mfg Co Ltd Hexagonal y type oxide magnetic material and inductor element
JP2002246224A (en) * 2001-02-14 2002-08-30 Toda Kogyo Corp Soft magnetic sheet
JP2002252109A (en) * 2001-02-23 2002-09-06 Tdk Corp Magnetic ferrite material and laminated ferrite parts
JP2004143042A (en) * 2003-12-16 2004-05-20 Matsushita Electric Ind Co Ltd Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129433A (en) * 1995-10-31 1997-05-16 Tokin Corp Soft magnetic hexagonal ferrite
JPH09167703A (en) * 1995-12-15 1997-06-24 Matsushita Electric Ind Co Ltd Magnetic material for microwave and high frequency circuit parts using the material
JPH09246031A (en) * 1996-03-11 1997-09-19 Osamu Kimura Magnetic material for high frequency
JPH10335133A (en) * 1997-05-30 1998-12-18 Osamu Kimura Magnetic material for high frequency
JP2000272961A (en) * 1999-01-18 2000-10-03 Osamu Kimura Magnetic material for high-frequency use
JP2000323320A (en) * 1999-03-09 2000-11-24 Tdk Corp Manufacture of soft magnetic ferrite powder and manufacture of laminated chip inductor
JP2001006915A (en) * 1999-06-23 2001-01-12 Osamu Kimura Magnetic material for high frequency
JP2002015913A (en) * 2000-04-28 2002-01-18 Tdk Corp Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
JP2002068830A (en) * 2000-09-01 2002-03-08 Murata Mfg Co Ltd Hexagonal y type oxide magnetic material and inductor element
JP2002246224A (en) * 2001-02-14 2002-08-30 Toda Kogyo Corp Soft magnetic sheet
JP2002252109A (en) * 2001-02-23 2002-09-06 Tdk Corp Magnetic ferrite material and laminated ferrite parts
JP2004143042A (en) * 2003-12-16 2004-05-20 Matsushita Electric Ind Co Ltd Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148438A1 (en) * 2006-06-21 2007-12-27 Hitachi Metals, Ltd. Magnetic material antenna and ferrite sinter
US8154464B2 (en) 2006-06-21 2012-04-10 Hitachi Metals, Ltd. Magnetic material antenna and ferrite sintered body
JP2009170704A (en) * 2008-01-17 2009-07-30 Hitachi Metals Ltd Ferrite sintered compact and magnetic material antenna

Also Published As

Publication number Publication date
JP4074437B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP3693398B2 (en) Ceramic magnetic material and high frequency circuit component using the same
JP5256612B2 (en) Hexagonal ferrite and antenna and communication equipment using the same
JP3876790B2 (en) High frequency circuit element
US6660179B2 (en) Sintered body and high-frequency circuit component
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP3772963B2 (en) Manufacturing method of magnetic material for high frequency
JP2002141215A (en) Oxide magnetic material, its manufacturing method, and laminated chip inductor
JP4069284B2 (en) Magnetic ferrite materials and multilayer ferrite parts
JP2002068830A (en) Hexagonal y type oxide magnetic material and inductor element
JP3975051B2 (en) Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
US6623879B2 (en) Soft-magnetic hexagonal ferrite composite particles, and green sheet using the same and soft-magnetic hexagonal ferrite sintered ceramics
JP4074440B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP2004262682A (en) Magnetic oxide sintered compact and high-frequency circuit part using the same
JPH0891919A (en) Magnetic oxide material composition, its production and inductor, laminated chip inductor and composite laminated part
JP2001010820A (en) Ferrite composition, ferrite sintered compact laminate- type electronic part and production thereof
JP4074438B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP4074437B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JPH1092624A (en) Sintered body of hexagonal z-type magnetic oxide, its manufacture, and impedance element
JP4074439B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP4449091B2 (en) Magnetic ferrite materials, multilayer chip ferrite components, composite multilayer components and magnetic cores
WO2004074208A1 (en) Sintered magnetic oxide and high-frequency circuit component therefrom
JP2004262683A (en) Magnetic oxide sintered compact and high-frequency circuit part using the same
JP4934947B2 (en) Ceramic porcelain composition and method for producing the same
JP2987762B2 (en) Ferroelectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees