JP4934947B2 - Ceramic porcelain composition and method for producing the same - Google Patents

Ceramic porcelain composition and method for producing the same Download PDF

Info

Publication number
JP4934947B2
JP4934947B2 JP2004112388A JP2004112388A JP4934947B2 JP 4934947 B2 JP4934947 B2 JP 4934947B2 JP 2004112388 A JP2004112388 A JP 2004112388A JP 2004112388 A JP2004112388 A JP 2004112388A JP 4934947 B2 JP4934947 B2 JP 4934947B2
Authority
JP
Japan
Prior art keywords
hexagonal ferrite
type hexagonal
magnetic material
volume
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004112388A
Other languages
Japanese (ja)
Other versions
JP2005298230A (en
Inventor
博 丸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004112388A priority Critical patent/JP4934947B2/en
Publication of JP2005298230A publication Critical patent/JP2005298230A/en
Application granted granted Critical
Publication of JP4934947B2 publication Critical patent/JP4934947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、セラミック磁器組成物及びその製造方法に関し、更に詳しくは、例えば、インダクタンス素子、アンテナ素子等の電子部品に好適に用いられるセラミック磁器組成物及びその製造方法に関するものである。 The present invention relates to a ceramic porcelain composition and its production how, more particularly, for example, those related to the preferred ceramic porcelain composition are used and a manufacturing methods from electronic components such as inductance elements, the antenna elements .

携帯電話、無線LAN等の移動体通信機器において、回路整合等を目的としたインダクタンス素子等の電子部品が多く用いられる。最近の移動体通信機器の高周波化に伴い、これらに用いられる電子部品に対して数100MHz〜数GHz帯領域で使用可能な特性が求められている。従来は、数100MHz〜数GHz帯領域ではガラス等の誘電体材料がインダクタンス素子等の磁芯として用いられてきた。   In mobile communication devices such as mobile phones and wireless LANs, electronic components such as inductance elements for the purpose of circuit matching are often used. With recent increases in the frequency of mobile communication devices, characteristics that can be used in the range of several hundreds of MHz to several GHz for electronic components used in these devices are required. Conventionally, a dielectric material such as glass has been used as a magnetic core for an inductance element or the like in the region of several hundred MHz to several GHz.

しかしながら、ガラス等の誘電体材料は透磁率が全周波数帯で1であるため、電子部品の小型化に伴い、ガラス等の誘電体材料では大きなインダクタンス値が得られないという問題がある。また、従来から磁性体材料として用いられているNi−Cu−Znフェライトは、透磁率の周波数限界(スネークの限界)があるため、数100MHz〜数GHz帯領域では十分な透磁率が得られず、その周波数帯域でのインダクタ材料に適用することができなかった。   However, since the dielectric material such as glass has a magnetic permeability of 1 in all frequency bands, there is a problem that a large inductance value cannot be obtained with a dielectric material such as glass as the electronic component is downsized. Further, Ni—Cu—Zn ferrite conventionally used as a magnetic material has a permeability frequency limit (a limit of snakes), so that sufficient permeability cannot be obtained in the region of several hundred MHz to several GHz. It could not be applied to inductor materials in that frequency band.

そこで、透磁率がスピネルフェライトの周波数限界を超えた周波数領域まで伸びている六方晶フェライト材料が数100MHz〜数GHz帯領域での磁性体材料として提案されている。六方晶フェライトは、c軸に対して垂直な面内に磁化容易軸を持ち、フェロックスプレーナ型フェライトとも呼ばれる磁性体材料であり、1957年にフィリップスから報告された。フェロックスプレーナ型の代表的な磁性体材料としては、Co置換系Z型六方晶フェライト3BaO・2CoO・12Fe(CoZ)、Co置換系Y型六方晶フェライト2BaO・2CoO・6Fe(CoY)、Co置換系W型六方晶フェライトBaO・2CoO・8Fe(CoW)等が知られている。フェロックスプレーナ型フェライトの中でも、CoY単相の合成温度(約1050℃)は、CoZ単相(1300℃)及びCoW単相(1200℃)それぞれの合成温度に比べて低く、また、CoYは、透磁率の周波数限界が3GHz以上まで伸びているため、数100MHz〜数GHz帯領域での磁性体材料として有望視されている。 Therefore, a hexagonal ferrite material whose magnetic permeability extends to a frequency region exceeding the frequency limit of spinel ferrite has been proposed as a magnetic material in the region of several hundred MHz to several GHz. Hexagonal ferrite is a magnetic material having an easy axis of magnetization in a plane perpendicular to the c-axis, and is also called a ferro-planar ferrite, and was reported by Philips in 1957. As a typical magnetic material of the Ferroc planar type, Co-substituted Z-type hexagonal ferrite 3BaO.2CoO.12Fe 2 O 3 (Co 2 Z), Co-substituted Y-type hexagonal ferrite 2BaO.2CoO.6Fe 2 O 3 (Co 2 Y), Co-substituted W-type hexagonal ferrite BaO.2CoO.8Fe 2 O 3 (Co 2 W), and the like are known. Among the Ferro-spreader type ferrites, the synthesis temperature of the Co 2 Y single phase (about 1050 ° C.) is lower than the synthesis temperature of each of the Co 2 Z single phase (1300 ° C.) and the Co 2 W single phase (1200 ° C.). In addition, Co 2 Y is promising as a magnetic material in the region of several hundred MHz to several GHz because the frequency limit of permeability extends to 3 GHz or more.

例えば、特許文献1にはY型またはM型六方晶フェライトを主要相とする磁性体材料からなる高周波用磁性体材料が提案されている。この高周波磁性体材料は、数100MHz〜数GHz帯域で使用でき、1000℃以下の温度で焼成可能で、相対X線密度が90%以上のものである。また、特許文献2にはCo置換Y型六方晶フェライトからなる複合磁性材料が提案されている。この複合磁性材料は、数MHzから数GHzの周波数帯において比較的大きな透磁率を持ち、かつ、高いQ値を維持し得るものである。   For example, Patent Document 1 proposes a high-frequency magnetic material made of a magnetic material whose main phase is Y-type or M-type hexagonal ferrite. This high-frequency magnetic material can be used in the several hundred MHz to several GHz band, can be fired at a temperature of 1000 ° C. or less, and has a relative X-ray density of 90% or more. Patent Document 2 proposes a composite magnetic material made of Co-substituted Y-type hexagonal ferrite. This composite magnetic material has a relatively large magnetic permeability in a frequency band of several MHz to several GHz and can maintain a high Q value.

また、電子部品が小型化し、数100MHz〜数GHz帯領域におけるインダクタンス素子やアンテナ素子として高いインダクタンス値を得るためには、使用される磁性体材料のQ値(=μ’/μ”)が同周波数帯領域で高いことが必要不可欠である。   In addition, in order to reduce the size of electronic components and obtain high inductance values as inductance elements and antenna elements in the several hundred MHz to several GHz band region, the Q value (= μ ′ / μ ″) of the magnetic material used is the same. It is essential to be high in the frequency band region.

特開2003−146739号公報JP 2003-146739 A 特開2001−126914号公報JP 2001-126914 A

しかしながら、特許文献1、2に記載の従来のY型六方晶フェライトは、透磁率が数100MHz〜数GHz帯領域まで伸びるが、同周波数帯領域でのQ値が約40〜80程度と低いため、インダクタンス素子やアンテナ素子等の電子部品用の磁性体材料としての用途には向かないという課題があった。   However, the conventional Y-type hexagonal ferrite described in Patent Documents 1 and 2 has a magnetic permeability extending from several hundred MHz to several GHz, but the Q value in the same frequency band is as low as about 40 to 80. There is a problem that it is not suitable for use as a magnetic material for electronic parts such as an inductance element and an antenna element.

本発明は、上記課題を解決するためになされたもので、数100MHz〜数GHz帯領域でのQ値が100以上の磁性体材料を得ることができるセラミック磁器組成物、その製造方法及びセラミック焼結体の製造方法を提供することを目的としている。   The present invention has been made to solve the above-mentioned problems, and a ceramic porcelain composition capable of obtaining a magnetic material having a Q value of 100 or more in a region of several hundred MHz to several GHz, a method for producing the same, and ceramic firing It aims at providing the manufacturing method of a zygote.

本発明者は、Y型六方晶フェライト材料のQ値について種々検討した結果、特定のY型六方晶フェライト材料と非磁性体材料とを特定比率で混合することによって、数100MHz〜数GHz帯領域でのQ値を100以上に高められることを知見した。   As a result of various studies on the Q value of the Y-type hexagonal ferrite material, the present inventor has mixed a specific Y-type hexagonal ferrite material and a non-magnetic material at a specific ratio, so that several hundred MHz to several GHz band region is obtained. It was found that the Q value at 100 can be increased to 100 or more.

本発明は、上記知見に基づいてなされたもので、本発明の請求項1に記載のセラミック磁器組成物は、組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料40〜95体積%と、非磁性体材料5〜60体積%と、を含み、上記非磁性体材料は、組成式(Ba 1−z Sr )O・cFe (但し、0≦z≦1.0及び0.75≦c≦1.25)で表されることを特徴とするものである。 The present invention has been made based on the above findings, the ceramic porcelain composition according to claim 1 of the present invention, the composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y ) O · bFe 2 O 3 (where 0.205 ≦ a ≦ 0.25, 0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ and 40 to 95 vol% Y-type hexagonal ferrite material represented by 0.75), and 5 to 60% by volume non-magnetic material, only including, the non-magnetic material, composition formula (Ba 1-z Sr z ) O · cFe 2 O 3 (where 0 ≦ z ≦ 1.0 and 0.75 ≦ c ≦ 1.25) .

また、本発明の請求項2に記載のセラミック磁器組成物は、組成式(1−a−b)(Ba 1−x Sr )・a(Co 1−y Cu )O・bFe (但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料40〜95体積%と、非磁性体材料5〜60体積%と、を含み、上記非磁性体材料は、少なくともSiO、B、CaOを含み、上記SiO の含有量が60〜85モル%であるガラス材料であることを特徴とするものである。 Also, the ceramic porcelain composition according to claim 2 of the present invention, the composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 (Provided that 0.205 ≦ a ≦ 0.25, 0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75) includes a ferrite material 40 to 95% by volume, 5 to 60 and percent by volume non-magnetic material, and the non-magnetic material, viewing contains at least SiO 2, B 2 O 3, CaO, the content of the SiO 2 Is a glass material of 60 to 85 mol% .

また、本発明の請求項3に記載のセラミック磁器組成物の製造方法は、組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料と、組成式(Ba1−zSr)O・cFe(但し、0≦z≦1.0及び0.75≦c≦1.25)で表される非磁性体材料と、をそれぞれ得る工程と、上記Y型六方晶フェライト材料40〜95体積%と上記非磁性体材料5〜60体積%とを混合する工程と、上記Y型六方晶フェライト材料と上記非磁性体材料との混合物を焼成して焼結体を得る工程と、を備えたことを特徴とするものである。 A method for manufacturing a ceramic porcelain composition according to claim 3 of the present invention, the composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe Y represented by 2 O 3 (where 0.205 ≦ a ≦ 0.25, 0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75) and type hexagonal ferrite material, non-magnetic represented by the composition formula (Ba 1-z Sr z) O · cFe 2 O 3 ( where, 0 ≦ z ≦ 1.0 and 0.75 ≦ c ≦ 1.25) A body material, a step of mixing the Y-type hexagonal ferrite material 40 to 95% by volume and the non-magnetic material 5 to 60% by volume, the Y-type hexagonal ferrite material and the non-material. And a step of obtaining a sintered body by firing a mixture with a magnetic material .

また、本発明の請求項4に記載のセラミック磁器組成物の製造方法は、組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料と、少なくともSiO、B、CaOを含み、上記SiOの含有量が60〜85モル%であるガラス材料である非磁性体材料と、をそれぞれ得る工程と、上記Y型六方晶フェライト材料40〜95体積%と上記非磁性体材料5〜60体積%とを混合する工程と、上記Y型六方晶フェライト材料と上記非磁性体材料との混合物を焼成して焼結体を得る工程と、を備えたことを特徴とするものである。 A method for manufacturing a ceramic porcelain composition according to claim 4 of the present invention, the composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe Y represented by 2 O 3 (where 0.205 ≦ a ≦ 0.25, 0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75) and type hexagonal ferrite material, a step of obtaining at least comprises SiO 2, B 2 O 3, CaO, and a non-magnetic material which is a glass material content of the SiO 2 is 60 to 85 mol%, respectively, A step of mixing 40 to 95% by volume of the Y-type hexagonal ferrite material and 5 to 60% by volume of the nonmagnetic material, and firing a mixture of the Y-type hexagonal ferrite material and the nonmagnetic material. And a step of obtaining a sintered body .

また、本発明の請求項5に記載のセラミック磁器組成物の製造方法は、請求項3または請求項4の発明において、上記Y型六方晶フェライト材料と上記非磁性体材料との混合物を焼成する温度が、上記Y型六方晶フェライト材料を得る時の温度より低い温度であることを特徴とすることを特徴とするものである。 According to a fifth aspect of the present invention, there is provided a method for producing a ceramic porcelain composition according to the third or fourth aspect, wherein the mixture of the Y-type hexagonal ferrite material and the non-magnetic material is fired. The temperature is lower than the temperature at which the Y-type hexagonal ferrite material is obtained.

而して、本発明のセラミック磁器組成物は、組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料40〜95体積%と、非磁性体材料5〜60体積%と、を含む混合物である。Y型六方晶フェライト材料と非磁性体材料を上記混合比率で含むため、Y型六方晶フェライト材料相と非磁性体材料相の2相に分離したセラミック焼結体を得ることができる。Y型六方晶フェライト材料相と非磁性体材料相の2相に分離することによって、セラミック焼結体の数100MHz〜数GHz帯領域でのQ値を100以上に高めることができると共に透磁率μ’を1以上に大きくすることができる。セラミック焼結体の透磁率μ’を1以上に大きくすることができるため、例えばインダクタンス素子を作製した場合にはコイルの巻き数を減少させ、導体損失を低減することができる。この焼結体は、上記Y型六方晶フェライト材料の混合比率が低いほどQ値を高めることができるが、その混合比率が40体積%未満になると焼結体の透磁率μ’が小さくなってインダクタンス素子等の電子部品の磁性体材料として適さなくなる虞がある。また、上記Y型六方晶フェライト材料の混合比率が95体積%を超えるとY型六方晶フェライト材料単体の焼結体のQ値に近づいてQ値が低くなるため好ましくない。 And Thus, the ceramic porcelain composition of the present invention, the composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 ( where, 0 205 ≦ a ≦ 0.25, 0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75) Y-type hexagonal ferrite material 40˜ It is a mixture containing 95% by volume and 5-60% by volume of a non-magnetic material. Since the Y-type hexagonal ferrite material and the non-magnetic material are contained in the above-mentioned mixing ratio, a ceramic sintered body separated into two phases of the Y-type hexagonal ferrite material phase and the non-magnetic material phase can be obtained. By separating the Y-type hexagonal ferrite material phase and the non-magnetic material phase into two phases, the Q value of the ceramic sintered body in the several hundred MHz to several GHz band region can be increased to 100 or more and the magnetic permeability μ 'Can be increased to 1 or more. Since the magnetic permeability μ ′ of the ceramic sintered body can be increased to 1 or more, for example, when an inductance element is manufactured, the number of turns of the coil can be reduced and the conductor loss can be reduced. In this sintered body, the Q value can be increased as the mixing ratio of the Y-type hexagonal ferrite material is lower. However, when the mixing ratio is less than 40% by volume, the permeability μ ′ of the sintered body decreases. There is a possibility that it is not suitable as a magnetic material for electronic parts such as inductance elements. Further, if the mixing ratio of the Y-type hexagonal ferrite material exceeds 95% by volume, the Q-value becomes low as it approaches the Q-value of the sintered body of the Y-type hexagonal ferrite material alone, such being undesirable.

また、Coの一部をCuで置換した上記組成のY型六方晶フェライト材料は、1000℃以下の温度で合成することができ、このY型六方晶フェライト材料と非磁性体材料とを上記混合比率で含む本発明のセラミック磁器組成物は、1000℃以下の温度で焼成することができ、相対密度が90%以上で、機械的強度の優れたセラミック焼結体を得ることができる。また、本発明のセラミック磁器組成物は、1000℃以下の温度で焼成することができるため、電子部品の内部導体としてAgやAg−Pd合金等の導体損失の少ない導電性金属を使用することができる。Cuの置換量を示すy値が0.25未満になると焼結温度が1000℃以上になり、またy値が0.75を超えるとCuO等の異相が発生して数100MHz〜数GHz帯領域でのQ値が100未満になって好ましくない。尚、相対密度とは、アルキメデス法で実測した焼結体の密度を、X線回折法で得られた格子定数から算出された理論密度で除した値である。   Further, the Y-type hexagonal ferrite material having the above composition in which a part of Co is substituted with Cu can be synthesized at a temperature of 1000 ° C. or less, and the Y-type hexagonal ferrite material and the nonmagnetic material are mixed together. The ceramic porcelain composition of the present invention contained in a ratio can be fired at a temperature of 1000 ° C. or less, and a ceramic sintered body having a relative density of 90% or more and excellent mechanical strength can be obtained. In addition, since the ceramic porcelain composition of the present invention can be fired at a temperature of 1000 ° C. or lower, it is possible to use a conductive metal with low conductor loss such as Ag or Ag—Pd alloy as an internal conductor of an electronic component. it can. When the y value indicating the amount of substitution of Cu is less than 0.25, the sintering temperature is 1000 ° C. or more, and when the y value exceeds 0.75, a heterogeneous phase such as CuO is generated, and several hundred MHz to several GHz band region. The Q value at is less than 100, which is not preferable. The relative density is a value obtained by dividing the density of the sintered body actually measured by the Archimedes method by the theoretical density calculated from the lattice constant obtained by the X-ray diffraction method.

また、本発明に用いられる非磁性体材料は、Y型六方晶フェライトの結晶構造と同様に六方晶系の結晶構造を有するものが好ましい。中でも、Y型六方晶フェライトの結晶構造に近い結晶構造を有する、組成式(Ba1−zSr)O・cFe(但し、0≦z≦1.0及び0.75≦c≦1.25)で表される非磁性体材料が好ましい。このような非磁性体材料を用いることによって、焼成時にY型六方晶フェライト材料と非磁性体材料の結晶間に歪が少なく、焼成時における割れ等の不具合を生じる虞がない。この非磁性体材料の組成式におけるz値及びc値が上記範囲を外れた場合には、Y型六方晶フェライト材料と混合しても数100MHz〜数GHz帯領域でのQ値が100以上のセラミック焼結体を得られない虞がある。 The nonmagnetic material used in the present invention preferably has a hexagonal crystal structure similar to the crystal structure of Y-type hexagonal ferrite. Among them, the composition formula (Ba 1−z Sr z ) O · cFe 2 O 3 (where 0 ≦ z ≦ 1.0 and 0.75 ≦ c ≦) has a crystal structure close to that of Y-type hexagonal ferrite. The nonmagnetic material represented by 1.25) is preferable. By using such a non-magnetic material, there is little distortion between the crystals of the Y-type hexagonal ferrite material and the non-magnetic material at the time of firing, and there is no possibility of causing problems such as cracks at the time of firing. When the z value and c value in the composition formula of this non-magnetic material are out of the above ranges, the Q value in the region of several hundred MHz to several GHz is 100 or more even when mixed with the Y-type hexagonal ferrite material. There is a possibility that a ceramic sintered body cannot be obtained.

また、非磁性体材料としては、少なくともSiO、B、CaOを含むガラス材料であっても良い。このガラス材料は誘電率が6程度と低いため、本発明のセラミック磁器組成物として用いることによって、インダクタ材料やアンテナ材料として適用する場合に、インダクタの共振周波数を高める材料として有効である。非磁性体材料としては、例えばSiO60〜85モル%の範囲で含まれていることが好ましい。また、SiO、B、CaO以外にAlやTiO等の酸化物を含むものであっても良い。 Further, as the non-magnetic material, it may be a glass material containing at least SiO 2, B 2 O 3, CaO. Since this glass material has a low dielectric constant of about 6, it is effective as a material for increasing the resonance frequency of an inductor when used as a ceramic porcelain composition of the present invention when applied as an inductor material or an antenna material. The non-magnetic material, for example, it is preferable that SiO 2 is contained in the range of 60 to 85 mol%. Moreover, oxides such as Al 2 O 3 and TiO 2 may be included in addition to SiO 2 , B 2 O 3 , and CaO.

本発明のセラミック磁器組成物を製造する場合には、予め上記組成式で表されるY型六方晶フェライト材料及び非磁性体材料をそれぞれ得た後、これら両材料を上述の混合比率で混合することによって得ることができる。また、本発明のセラミック焼結体を製造する場合には、Y型六方晶フェライト材料と非磁性体材料を上述の混合比率で混合した後、この混合物を、Y型六方晶フェライト材料の合成温度よりも低い温度で焼成することによって得ることができる。Y型六方晶フェライト材料及び非磁性体材料としては、それぞれ上述した組成を有するものが好ましい。   When producing the ceramic porcelain composition of the present invention, after obtaining the Y-type hexagonal ferrite material and the nonmagnetic material represented by the above composition formula in advance, these two materials are mixed in the above-mentioned mixing ratio. Can be obtained. When the ceramic sintered body of the present invention is manufactured, after mixing the Y-type hexagonal ferrite material and the non-magnetic material at the mixing ratio described above, this mixture is mixed with the synthesis temperature of the Y-type hexagonal ferrite material. Can be obtained by firing at a lower temperature. As the Y-type hexagonal ferrite material and the nonmagnetic material, those having the above-described compositions are preferable.

つまり、上記組成の六方晶フェライト材料は1000℃以下でも焼成可能であるが、敢えて1000℃以上の高温で仮焼し、本発明のセラミック磁器組成物として焼成する時には1000℃以下の温度で焼成する。このように焼成温度を制御することによってY型六方晶フェライト材料相と非磁性体材料相との2相に分離したセラミック焼結体を得ることができ、Y型六方晶フェライト材料単相の場合よりもセラミック焼結体の数100MHz〜数GHz帯領域でのQ値を高めることができる。   In other words, the hexagonal ferrite material having the above composition can be fired at 1000 ° C. or lower, but it is preliminarily fired at a high temperature of 1000 ° C. or higher, and is fired at a temperature of 1000 ° C. or lower when fired as the ceramic porcelain composition of the present invention. . By controlling the firing temperature in this way, a ceramic sintered body separated into two phases of a Y-type hexagonal ferrite material phase and a non-magnetic material phase can be obtained. It is possible to increase the Q value of the ceramic sintered body in the several hundred MHz to several GHz band region.

本発明のセラミック磁器組成物の焼成温度が上記組成の六方晶フェライト材料の合成温度に近づくと、焼成時にY型六方晶フェライト材料と非磁性体材料との間で相互拡散が起こり、Y型六方晶フェライト材料相と非磁性体材料相の2相に分離できない虞があるため好ましくない。   When the firing temperature of the ceramic porcelain composition of the present invention approaches the synthesis temperature of the hexagonal ferrite material having the above composition, mutual diffusion occurs between the Y-type hexagonal ferrite material and the non-magnetic material during firing, and the Y-type hexagonal This is not preferable because there is a possibility that it cannot be separated into two phases of a crystal ferrite material phase and a non-magnetic material phase.

本発明によれば、数100MHz〜数GHz帯領域でのQ値が100以上の磁性体材料を得ることができるセラミック磁器組成物及びその製造方法を提供することができる。 According to the onset bright, can Q value of the number 100MHz~ several GHz region to provide a ceramic porcelain composition and the manufacturing how it is possible to obtain 100 or more magnetic materials.

本実施形態では、組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料と、組成式(Ba1−zSr)O・cFe(但し、0≦z≦1.0及び0.75≦c≦1.25)で表される非磁性体材料とからなるセラミック磁器組成物、及びY型六方晶フェライト材料と、SiO、B、CaOを含むガラス材料からなるセラミック磁器組成物を用いて評価用のセラミック焼結体を作製し、それぞれの相対密度、透磁率μ’及びQ値を測定した。 In this embodiment, the composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 ( where, 0.205 ≦ a ≦ 0.25 , 0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75), and a composition formula (Ba 1-z Sr) z ) a ceramic porcelain composition comprising a nonmagnetic material represented by O.cFe 2 O 3 (where 0 ≦ z ≦ 1.0 and 0.75 ≦ c ≦ 1.25), and Y-type hexagonal crystal A ceramic sintered body for evaluation is produced using a ceramic porcelain composition made of a ferrite material and a glass material containing SiO 2 , B 2 O 3 , and CaO, and the relative density, permeability μ ′, and Q value of each are determined. It was measured.

本実施例では、非磁性体材料の組成を(Ba0.25Sr0.75)O・Feの組成に固定し、Y型六方晶フェライト材料の組成式中のa、b、x及びyそれぞれを表1に示すように本発明の範囲から本発明の範囲外まで振って、各組成の影響を観る評価用試料を作製した。尚、表1において*印を付した試料は本発明の範囲外の試料である。 In this example, the composition of the non-magnetic material is fixed to the composition of (Ba 0.25 Sr 0.75 ) O · Fe 2 O 3 , and a, b, x in the composition formula of the Y-type hexagonal ferrite material are used. As shown in Table 1, each of y and y was shaken from the scope of the present invention to outside the scope of the present invention, and a sample for evaluation was prepared to observe the influence of each composition. In Table 1, samples marked with * are out of the scope of the present invention.

(1)評価用試料の作製
まず、出発原料として、炭酸バリウム(BaCO)、炭酸ストロンチウム(SrCO)、酸化コバルト(Co)、酸化鉄(Fe)及び酸化銅(CuO)を用意し、これらを表1に示す組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFeとなるように調合した。次いで、調合した原料粉をボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中で1000〜1150℃で仮焼し、Y型六方晶フェライト材料の仮焼粉を得た。一方、非磁性体材料は、出発原料として、BaCO、SrCO及びFeを用意し、(Ba0.25Sr0.75)O・Feとなるように調合し、これをボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中1000〜1150℃で仮焼して非磁性体材料粉を得た。
(1) Preparation of evaluation sample First, as starting materials, barium carbonate (BaCO 3 ), strontium carbonate (SrCO 3 ), cobalt oxide (Co 3 O 4 ), iron oxide (Fe 2 O 3 ), and copper oxide (CuO) ) was prepared and formulated them so as to have the composition formula shown in Table 1 (1-a-b) (Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 . Next, the prepared raw material powder was wet-mixed with a ball mill, the mixture was dried, and then calcined at 1000 to 1150 ° C. in an air atmosphere to obtain a calcined powder of Y-type hexagonal ferrite material. On the other hand, the non-magnetic material is prepared by preparing BaCO 3 , SrCO 3 and Fe 2 O 3 as starting materials and (Ba 0.25 Sr 0.75 ) O · Fe 2 O 3. Was mixed with a ball mill and dried, and then calcined at 1000 to 1150 ° C. in an air atmosphere to obtain non-magnetic material powder.

次いで、上述の方法によって得られたY型六方晶フェライト材料の仮焼粉及び非磁性体材料粉をそれぞれ秤量し、Y型六方晶フェライト材料の仮焼粉が95体積%、非磁性体材料粉が5体積%となるように調合し、この調合物をボールミルで湿式粉砕し、比表面積が5m/g以上の仮焼混合粉を得た。この仮焼混合粉に酢酸ビニル系バインダを加えて十分に混練、乾燥し、その仮焼混合粉をトロイダルコア状にプレス成形し、表1に示す温度で空気中において焼成して、試料No.1〜36を評価用のセラミック焼結体として得た。 Next, the Y-type hexagonal ferrite material calcined powder and non-magnetic material powder obtained by the above-mentioned method are weighed, and the Y-type hexagonal ferrite material calcined powder is 95% by volume. Of 5% by volume, and this mixture was wet pulverized by a ball mill to obtain a calcined mixed powder having a specific surface area of 5 m 2 / g or more. A vinyl acetate binder was added to the calcined mixed powder and sufficiently kneaded and dried. The calcined mixed powder was press-molded into a toroidal core and fired in air at the temperature shown in Table 1. 1 to 36 were obtained as ceramic sintered bodies for evaluation.

(2)評価用試料の評価方法
試料No.1〜36の評価用のセラミック焼結体(2相が混合したセラミック焼結体)の透磁率μ’、Q値(=μ’/μ”)及び相対密度を測定し、その測定結果を表1に示した。μ’、Q値は、それぞれμ’、Q値をインピーダンスアナライザ(ヒューレットパッカード社製)を用いて周波数1GHzの条件で測定した。また、これらのセラミック焼結体の相対密度は、アルキメデス法で実測した焼結密度とX線回折による理論密度に基づいて計算し、その結果を表1に示した。
(2) Evaluation method of sample for evaluation Magnetic permeability μ ′ and Q value (= μ ′ / μ ″) of ceramic sintered bodies for evaluation (ceramic sintered bodies mixed with two phases) of sample Nos. 1 to 36 The relative density was measured, and the measurement results are shown in Table 1. The μ ′ and Q values were measured using a impedance analyzer (manufactured by Hewlett-Packard) at a frequency of 1 GHz, respectively. The relative densities of these ceramic sintered bodies were calculated based on the sintered density measured by Archimedes method and the theoretical density by X-ray diffraction, and the results are shown in Table 1.

表1に示す結果によれば、本発明の範囲内の試料No.4〜6、試料No.9〜12、試料No.21〜23及び試料No.26〜28のセラミック焼結体は、いずれも1GHzでのQ値が100以上を示し、しかも1000℃以下で焼成することができるセラミック焼結体であることが判った。これに対して、本発明の範囲外でCuの置換量を示すy値が0.25未満の試料No.3、8、20、25、30のセラミック焼結体は、いずれも焼成温度が1000℃以上の高温であり、また、y値が0.75を超える試料No.7、13、18、24、29、及び34は、いずれも1000℃以下で焼成することができるが、いずれもCuO等の異相が発生して1GHzでのQ値が100未満に減少することが判った。   According to the results shown in Table 1, the ceramic sintered bodies of sample Nos. 4 to 6, sample Nos. 9 to 12, sample Nos. 21 to 23 and sample Nos. 26 to 28 within the scope of the present invention are Was found to be a ceramic sintered body that exhibited a Q value of 100 or more at 1 GHz and that could be fired at 1000 ° C. or less. On the other hand, the ceramic sintered bodies of sample Nos. 3, 8, 20, 25, and 30 having y values less than 0.25 indicating the amount of substitution of Cu outside the scope of the present invention all have a firing temperature of 1000. Sample Nos. 7, 13, 18, 24, 29, and 34 having a high temperature of not lower than ℃ and y value exceeding 0.75 can all be fired at 1000 ℃ or lower. It has been found that the Q value at 1 GHz decreases to less than 100 due to the occurrence of a different phase.

Figure 0004934947
Figure 0004934947

本実施例では、Y型六方晶フェライト材料を0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feの組成に固定し、組成式(Ba1−zSr)O・cFeで表される非磁性体材料のc値及びz値それぞれを表2に示すように本発明の範囲から本発明の範囲外まで振って、各組成の影響を観る評価用試料を作製した。尚、表2において*印を付した試料は本発明の範囲外の試料である。 In this example, the Y-type hexagonal ferrite material is made into a composition of 0.20 (Ba 0.50 Sr 0.50 ) · 0.24 (Co 0.50 Cu 0.50 ) O · 0.56Fe 2 O 3 . The c value and the z value of the nonmagnetic material represented by the composition formula (Ba 1-z Sr z ) O · cFe 2 O 3 are fixed and the range of the present invention is as shown in Table 2. The sample for evaluation was prepared by shaking to the outside and observing the influence of each composition. In Table 2, samples marked with * are samples outside the scope of the present invention.

(1)評価用試料の作製
まず、出発原料として、BaCO、SrCO、Co、Fe及びCuOを用意し、これらを0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feとなるように調合した。次いで、調合した原料粉をボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中1000〜1150℃で仮焼し、Y型六方晶フェライト材料の仮焼粉を得た。一方、非磁性体材料は、出発原料として、BaCO、SrCO及びFeを用意し、表1に示す組成式(Ba1−zSr)O・cFeとなるように調合し、これをボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中1000〜1150℃で仮焼して表1に示す非磁性体材料粉を得た。
(1) Preparation of Evaluation Sample First, BaCO 3 , SrCO 3 , Co 3 O 4 , Fe 2 O 3 and CuO are prepared as starting materials, and these are 0.20 (Ba 0.50 Sr 0.50 ). · 0.24 (Co 0.50 Cu 0.50) is prepared to have a O · 0.56Fe 2 O 3. Next, the prepared raw material powder was wet-mixed with a ball mill, the mixture was dried, and then calcined at 1000 to 1150 ° C. in an air atmosphere to obtain a calcined powder of Y-type hexagonal ferrite material. On the other hand, for the non-magnetic material, BaCO 3 , SrCO 3, and Fe 2 O 3 are prepared as starting materials so that the composition formula (Ba 1-z Sr z ) O · cFe 2 O 3 shown in Table 1 is obtained. After mixing and wet-mixing with a ball mill, and drying this mixture, it was calcined at 1000 to 1150 ° C. in an air atmosphere to obtain nonmagnetic material powders shown in Table 1.

次いで、上述の方法によって得られたY型六方晶フェライト材料の仮焼粉及び非磁性体材料粉をそれぞれ秤量し、Y型六方晶フェライト材料の仮焼粉が95体積%、非磁性体材料粉が5体積%となるように調合し、この調合物をボールミルで湿式粉砕し、比表面積が5m/g以上の仮焼混合粉を得た。この仮焼混合粉に酢酸ビニル系バインダを加えて十分に混練、乾燥し、その仮焼混合粉をトロイダルコア状にプレス成形し、表2に示す温度で空気中において焼成して、試料No.37〜51を評価用のセラミック焼結体として得た。 Next, the Y-type hexagonal ferrite material calcined powder and non-magnetic material powder obtained by the above-mentioned method are weighed, and the Y-type hexagonal ferrite material calcined powder is 95% by volume. Of 5% by volume, and this mixture was wet pulverized by a ball mill to obtain a calcined mixed powder having a specific surface area of 5 m 2 / g or more. A vinyl acetate binder was added to the calcined mixed powder and sufficiently kneaded and dried. The calcined mixed powder was press-molded into a toroidal core and fired in air at the temperatures shown in Table 2. 37 to 51 were obtained as ceramic sintered bodies for evaluation.

(2)評価用試料の評価方法
試料No.37〜51の評価用のセラミック焼結体について実施例1と同様の評価を行い、その結果を表1に示した。
(2) Evaluation Method of Evaluation Sample Evaluation of the ceramic sintered bodies for evaluation of sample Nos. 37 to 51 was performed in the same manner as in Example 1, and the results are shown in Table 1.

表2に示す結果によれば、本発明の範囲内の試料No.42〜47のセラミック焼結体は、いずれも数100MHz〜数GHz帯領域でのQ値が100以上を示し、しかも1000℃以下で焼成することができるセラミック焼結体であることが判った。これに対して、本発明の範囲外の試料No.37〜41及び試料No.48〜51のセラミック焼結体は、いずれも1GHzでのQ値が100未満に減少することが判った。   According to the results shown in Table 2, all of the ceramic sintered bodies of sample Nos. 42 to 47 within the scope of the present invention have a Q value of 100 or more in the region of several hundred MHz to several GHz, and 1000 ° C. It was found to be a ceramic sintered body that can be fired below. On the other hand, it was found that the Q values at 1 GHz decreased to less than 100 for the ceramic sintered bodies of Sample Nos. 37 to 41 and Sample Nos. 48 to 51 outside the scope of the present invention.

Figure 0004934947
Figure 0004934947

本実施例では、Y型六方晶フェライト材料を0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feの組成に固定すると共に非磁性体材料を(Ba0.25Sr0.75)O・Feの組成に固定し、これら両者の混合比率を表3に示すように本発明の範囲から本発明の範囲外まで振って、混合比率の影響を観る評価用試料を作製した。尚、表3において*印を付した試料は本発明の範囲外の試料である。 In this example, the Y-type hexagonal ferrite material is made into a composition of 0.20 (Ba 0.50 Sr 0.50 ) · 0.24 (Co 0.50 Cu 0.50 ) O · 0.56Fe 2 O 3 . While fixing, the nonmagnetic material was fixed to the composition of (Ba 0.25 Sr 0.75 ) O.Fe 2 O 3 , and the mixing ratio of these two is shown in Table 3 from the scope of the present invention. A sample for evaluation was prepared by shaking outside the range and observing the influence of the mixing ratio. In Table 3, samples marked with * are samples outside the scope of the present invention.

(1)評価用試料の作製
まず、出発原料として、BaCO、SrCO、Co、Fe及びCuOを用意し、これらを0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feとなるように調合した。次いで、調合した原料粉をボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中1000〜1150℃で仮焼し、Y型六方晶フェライト材料の仮焼粉を得た。一方、非磁性体材料は、出発原料として、BaCO、SrCO及びFeを用意し、(Ba0.25Sr0.75)O・Feとなるように調合し、これをボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中1000〜1150℃で仮焼して表1に示す非磁性体材料粉を得た。
(1) Preparation of Evaluation Sample First, BaCO 3 , SrCO 3 , Co 3 O 4 , Fe 2 O 3 and CuO are prepared as starting materials, and these are 0.20 (Ba 0.50 Sr 0.50 ). · 0.24 (Co 0.50 Cu 0.50) is prepared to have a O · 0.56Fe 2 O 3. Next, the prepared raw material powder was wet-mixed with a ball mill, the mixture was dried, and then calcined at 1000 to 1150 ° C. in an air atmosphere to obtain a calcined powder of Y-type hexagonal ferrite material. On the other hand, the non-magnetic material is prepared by preparing BaCO 3 , SrCO 3 and Fe 2 O 3 as starting materials and (Ba 0.25 Sr 0.75 ) O · Fe 2 O 3. Were mixed with a ball mill and dried, and then calcined at 1000 to 1150 ° C. in an air atmosphere to obtain non-magnetic material powders shown in Table 1.

次いで、上述の方法によって得られたY型六方晶フェライト材料の仮焼粉及び非磁性体材料粉を表3に示す混合比率になるようにそれぞれ秤量して調合し、この調合物をボールミルで湿式粉砕し、比表面積が5m/g以上の仮焼混合粉を得た。この仮焼混合粉に酢酸ビニル系バインダを加えて十分に混練、乾燥し、その仮焼混合粉をトロイダルコア状にプレス成形し、表3に示す温度で空気中において焼成して、試料No.53〜57を評価用のセラミック焼結体として得た。 Next, the Y-type hexagonal ferrite material calcined powder and non-magnetic material powder obtained by the above method are weighed and mixed so as to have the mixing ratio shown in Table 3, and this mixture is wet-treated with a ball mill. The mixture was pulverized to obtain a calcined mixed powder having a specific surface area of 5 m 2 / g or more. A vinyl acetate binder was added to the calcined mixed powder and sufficiently kneaded and dried. The calcined mixed powder was press-molded into a toroidal core and fired in air at the temperatures shown in Table 3. 53 to 57 were obtained as ceramic sintered bodies for evaluation.

(2)評価用試料の評価方法
試料No. 53〜57の評価用のセラミック焼結体について実施例1と同様の評価を行い、その結果を表3に示した。
(2) Evaluation Method of Evaluation Sample Evaluation of the ceramic sintered bodies for evaluation of sample Nos. 53 to 57 was performed in the same manner as in Example 1, and the results are shown in Table 3.

表3に示す結果によれば、本発明の範囲内の試料No.54〜56のセラミック焼結体は、いずれも1GHzでのQ値が100以上を示し、しかも1000℃以下で焼成することができるセラミック焼結体であることが判った。また、Y型六方晶フェライト材料の混合比率が減少するほどQ値が高くなることが判った。これに対して、非磁性体材料の混合比率が60体積%を超える試料No.53のセラミック焼結体は、1GHzでのQ値が100以上であるが、透磁率μ’が1.1まで減少し、実用的でないことが判った。また、非磁性体材料の混合比率が5体積%未満の試料No.57のセラミック焼結体は、1GHzでのQ値が100以下に減少することが判った。   According to the results shown in Table 3, all of the ceramic sintered bodies of sample Nos. 54 to 56 within the scope of the present invention have a Q value of 1 or more at 100 GHz and are fired at 1000 ° C. or less. It was found to be a ceramic sintered body that can be obtained. It was also found that the Q value increased as the mixing ratio of the Y-type hexagonal ferrite material decreased. In contrast, the ceramic sintered body of sample No. 53 in which the mixing ratio of the nonmagnetic material exceeds 60% by volume has a Q value at 1 GHz of 100 or more, but the magnetic permeability μ ′ is up to 1.1. Decreased and found impractical. Moreover, it turned out that the Q value in 1 GHz reduces to 100 or less in the ceramic sintered compact of sample No. 57 whose mixing ratio of nonmagnetic material is less than 5 volume%.

Figure 0004934947
Figure 0004934947

本実施例では、Y型六方晶フェライト材料を0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feの組成に固定し、非磁性体材料としてSiO、B、CaOを含むガラス材料を用い、ガラス材料の各組成を振って、ガラス材料の各組成の影響を観る評価用試料を作製した。 In this example, the Y-type hexagonal ferrite material is made into a composition of 0.20 (Ba 0.50 Sr 0.50 ) · 0.24 (Co 0.50 Cu 0.50 ) O · 0.56Fe 2 O 3 . A glass sample containing SiO 2 , B 2 O 3 , and CaO as a nonmagnetic material was fixed, and each composition of the glass material was shaken to produce a sample for evaluation to observe the influence of each composition of the glass material.

(1)評価用試料の作製
まず、出発原料として、BaCO、SrCO、Co、Fe及びCuOを用意し、これらを0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feとなるように調合した。次いで、調合した原料粉をボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中1000〜1150℃で仮焼し、Y型六方晶フェライト材料の仮焼粉を得た。一方、非磁性体材料は、出発原料として、SiO、B及びCaOの各酸化物を用意し、SiOを60〜85モル%、Bを1〜35モル%、CaOを1〜14モル%の範囲でそれぞれを振って表4に示すように調合し、これをアルミナ坩堝に入れて、約1500℃まで加熱した後、室温まで急冷した。得られたガラス材料を粗粉砕してボールミルで微粉砕して表4に示す非磁性体材料を得た。
(1) Preparation of Evaluation Sample First, BaCO 3 , SrCO 3 , Co 3 O 4 , Fe 2 O 3 and CuO are prepared as starting materials, and these are 0.20 (Ba 0.50 Sr 0.50 ). · 0.24 (Co 0.50 Cu 0.50) is prepared to have a O · 0.56Fe 2 O 3. Next, the prepared raw material powder was wet-mixed with a ball mill, the mixture was dried, and then calcined at 1000 to 1150 ° C. in an air atmosphere to obtain a calcined powder of Y-type hexagonal ferrite material. On the other hand, the non-magnetic material is prepared by using SiO 2 , B 2 O 3 and CaO oxides as starting materials, SiO 2 being 60 to 85 mol%, B 2 O 3 being 1 to 35 mol%, and CaO. In the range of 1-14 mol%, each was shaken and prepared as shown in Table 4. The mixture was put in an alumina crucible and heated to about 1500 ° C., and then rapidly cooled to room temperature. The resulting glass material was coarsely crushed and finely pulverized by a ball mill to obtain a non-magnetic material shown in Table 4.

次いで、上述の方法によって得られたY型六方晶フェライト材料の仮焼粉及び非磁性体材料粉をそれぞれ秤量し、Y型六方晶フェライト材料の仮焼粉が95体積%、非磁性体材料粉が5体積%となるように調合し、この調合物をボールミルで湿式粉砕し、比表面積が5m/g以上の仮焼混合粉を得た。この仮焼混合粉に酢酸ビニル系バインダを加えて十分に混練、乾燥し、その仮焼混合粉をトロイダルコア状にプレス成形し、表4に示す温度で空気中において焼成して、試料No.58〜64の評価用のセラミック焼結体を得た。 Next, the Y-type hexagonal ferrite material calcined powder and non-magnetic material powder obtained by the above-mentioned method are weighed, and the Y-type hexagonal ferrite material calcined powder is 95% by volume. Of 5% by volume, and this mixture was wet pulverized by a ball mill to obtain a calcined mixed powder having a specific surface area of 5 m 2 / g or more. A vinyl acetate binder was added to the calcined mixed powder and sufficiently kneaded and dried. The calcined mixed powder was press-molded into a toroidal core, fired in the air at the temperatures shown in Table 4, and sample No. Ceramic sintered bodies for evaluation of 58 to 64 were obtained.

(2)評価用試料の評価方法
試料No. 58〜64の評価用のセラミック焼結体について実施例1と同様の評価を行い、その結果を表4に示した。
(2) Evaluation method of evaluation sample Evaluations similar to Example 1 were performed on the evaluation ceramic sintered bodies of sample Nos. 58 to 64, and the results are shown in Table 4.

表4に示す結果によれば、60〜85モル%のSiOを含む試料No.59〜63のセラミック焼結体は、いずれも1GHzでのQ値が100以上を示し、しかも1000℃以下で焼成することができるセラミック焼結体であることが判った。SiOの含有量が上記範囲より低い試料No.64のセラミック焼結体は、1000℃以下の温度で焼成することができるが、1GHzでのQ値が100以下であることが判った。SiOの含有量が上記範囲より低い試料No.58のセラミック焼結体は、焼成温度が1000℃以上で、1GHzでのQ値が100以下であることが判った。 According to the results shown in Table 4, each of the ceramic sintered bodies of sample Nos. 59 to 63 containing 60 to 85 mol% of SiO 2 has a Q value at 1 GHz of 100 or more and 1000 ° C. or less. It was found to be a ceramic sintered body that can be fired. The ceramic sintered body of sample No. 64 having a SiO 2 content lower than the above range can be fired at a temperature of 1000 ° C. or lower, but it was found that the Q value at 1 GHz is 100 or lower. The ceramic sintered body of Sample No. 58 having a SiO 2 content lower than the above range was found to have a firing temperature of 1000 ° C. or higher and a Q value at 1 GHz of 100 or lower.

Figure 0004934947
Figure 0004934947

本実施例では、Y型六方晶フェライト材料を0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feの組成に固定すると共に非磁性体材料のガラス成分のSiO、B及びCaOを一定のモル比率の組成に固定し、これら両者の混合比率を表5に示すように本発明の範囲から本発明の範囲外まで振って、混合比率の影響を観る評価用試料を作製した。尚、表5において*印を付した試料は本発明の範囲外の試料である。 In this example, the Y-type hexagonal ferrite material is made into a composition of 0.20 (Ba 0.50 Sr 0.50 ) · 0.24 (Co 0.50 Cu 0.50 ) O · 0.56Fe 2 O 3 . In addition to fixing, SiO 2 , B 2 O 3 and CaO as glass components of the non-magnetic material are fixed to a composition having a constant molar ratio, and the mixing ratio of these two is shown in Table 5 from the scope of the present invention. The sample for evaluation which shakes outside the range and observes the influence of a mixing ratio was produced. In Table 5, samples marked with * are out of the scope of the present invention.

(1)評価用試料の作製
まず、出発原料として、BaCO、SrCO、Co、Fe及びCuOを用意し、これらを0.20(Ba0.50Sr0.50)・0.24(Co0.50Cu0.50)O・0.56Feとなるように調合した。次いで、調合した原料粉をボールミルで湿式混合し、この混合物を乾燥させた後、大気雰囲気中1000〜1150℃で仮焼し、Y型六方晶フェライト材料の仮焼粉を得た。一方、非磁性体材料は、出発原料として、SiO、B及びCaOの各酸化物を用意し、SiO75モル%、B25モル%、CaO5モル%になるように調合し、これをアルミナ坩堝に入れて、約1500℃まで加熱した後、室温まで急冷した。得られたガラス材料を粗粉砕してモールミルで微粉砕して所望の非磁性体材料を得た。
(1) Preparation of Evaluation Sample First, BaCO 3 , SrCO 3 , Co 3 O 4 , Fe 2 O 3 and CuO are prepared as starting materials, and these are 0.20 (Ba 0.50 Sr 0.50 ). · 0.24 (Co 0.50 Cu 0.50) is prepared to have a O · 0.56Fe 2 O 3. Next, the prepared raw material powder was wet-mixed with a ball mill, the mixture was dried, and then calcined at 1000 to 1150 ° C. in an air atmosphere to obtain a calcined powder of Y-type hexagonal ferrite material. On the other hand, the non-magnetic material is prepared by using SiO 2 , B 2 O 3 and CaO oxides as starting materials so that SiO 2 is 75 mol%, B 2 O 3 25 mol%, and CaO 5 mol%. This was prepared, put in an alumina crucible, heated to about 1500 ° C., and then rapidly cooled to room temperature. The obtained glass material was coarsely pulverized and finely pulverized with a molding mill to obtain a desired nonmagnetic material.

次いで、上述の方法によって得られたY型六方晶フェライト材料の仮焼粉及び非磁性体材料粉を表5に示す混合比率になるようにそれぞれ秤量して調合し、この調合物をボールミルで湿式粉砕し、比表面積が5m/g以上の仮焼混合粉を得た。この仮焼混合粉に酢酸ビニル系バインダを加えて十分に混練、乾燥し、その仮焼混合粉をトロイダルコア状にプレス成形し、表5に示す温度で空気中において焼成して、試料No.65〜69を評価用のセラミック焼結体として得た。 Next, the Y-type hexagonal ferrite material calcined powder and non-magnetic material powder obtained by the above-mentioned method are weighed and mixed so as to have the mixing ratios shown in Table 5, and this mixture is wet-treated with a ball mill. The mixture was pulverized to obtain a calcined mixed powder having a specific surface area of 5 m 2 / g or more. A vinyl acetate binder was added to the calcined mixed powder and sufficiently kneaded and dried. The calcined mixed powder was press-molded into a toroidal core and fired in the air at the temperatures shown in Table 5 to obtain a sample No. 65 to 69 were obtained as ceramic sintered bodies for evaluation.

(2)評価用試料の評価方法
試料No. 65〜69の評価用のセラミック焼結体について実施例1と同様の評価を行い、その結果を表5に示した。
(2) Evaluation method of evaluation sample The evaluation similar to Example 1 was performed about the ceramic sintered body for evaluation of sample No. 65-69, and the result was shown in Table 5.

表5に示す結果によれば、実施例3の場合と同一傾向を示す結果が得られた。即ち、本発明の範囲内の試料No.66〜68のセラミック焼結体は、いずれも1GHzでのQ値が100以上を示し、しかも1000℃以下で焼成することができるセラミック焼結体であることが判った。また、Y型六方晶フェライト材料の混合比率が減少するほどQ値が高くなることが判った。これに対して、非磁性体材料の混合比率が60体積%を超える試料No.65のセラミック焼結体は、1GHzでのQ値が100以上であるが、透磁率μ’が1.0まで減少することが判った。また、非磁性体材料の混合比率が5体積%未満の試料No.69のセラミック焼結体は、1GHzでのQ値が100以下に減少することが判った。   According to the result shown in Table 5, the result which shows the same tendency as the case of Example 3 was obtained. That is, all of the ceramic sintered bodies of sample Nos. 66 to 68 within the scope of the present invention are ceramic sintered bodies that exhibit a Q value of 100 or more at 1 GHz and can be fired at 1000 ° C. or less. I found out. It was also found that the Q value increased as the mixing ratio of the Y-type hexagonal ferrite material decreased. In contrast, the ceramic sintered body of sample No. 65 in which the mixing ratio of the non-magnetic material exceeds 60% by volume has a Q value at 1 GHz of 100 or more, but the magnetic permeability μ ′ is up to 1.0. It turned out to decrease. Moreover, it turned out that the Q value in 1 GHz decreases to 100 or less in the ceramic sintered body of sample No. 69 in which the mixing ratio of the nonmagnetic material is less than 5% by volume.

Figure 0004934947
Figure 0004934947

尚、本発明は上記各実施例に何等制限されるものではなく、本発明の範囲内において各構成元素量を適宜設定することができる。   In addition, this invention is not restrict | limited at all to said each Example, Each component element amount can be suitably set within the scope of the present invention.

本発明は、例えば数100MHz〜数GHzの高周波領域に用いられるインダクタンス素子やアンテナ素子等の電子部品を製造する場合に適用することができる。   The present invention can be applied when manufacturing electronic components such as an inductance element and an antenna element used in a high frequency region of several hundred MHz to several GHz, for example.

Claims (5)

組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料40〜95体積%と、非磁性体材料5〜60体積%と、を含み、上記非磁性体材料は、組成式(Ba1−zSr)O・cFe(但し、0≦z≦1.0及び0.75≦c≦1.25)で表されることを特徴とするセラミック磁器組成物。 Composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 ( where, 0.205 ≦ a ≦ 0.25,0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75) Y-type hexagonal ferrite material 40 to 95% by volume, and nonmagnetic material 5 to 60% by volume wherein percent, and the non-magnetic material, composition formula (Ba 1-z Sr z) O · cFe 2 O 3 ( where, 0 ≦ z ≦ 1.0 and 0.75 ≦ c ≦ 1.25) A ceramic porcelain composition represented by: 組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料40〜95体積%と、非磁性体材料5〜60体積%と、を含み、上記非磁性体材料は、少なくともSiO、B、CaOを含み、上記SiOの含有量が60〜85モル%であるガラス材料であることを特徴とするセラミック磁器組成物。 Composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 ( where, 0.205 ≦ a ≦ 0.25,0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75) Y-type hexagonal ferrite material 40 to 95% by volume, and nonmagnetic material 5 to 60% by volume And the non-magnetic material is a glass material containing at least SiO 2 , B 2 O 3 , and CaO and having a content of SiO 2 of 60 to 85 mol%. Porcelain composition. 組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料と、組成式(Ba1−zSr)O・cFe(但し、0≦z≦1.0及び0.75≦c≦1.25)で表される非磁性体材料と、をそれぞれ得る工程と、上記Y型六方晶フェライト材料40〜95体積%と上記非磁性体材料5〜60体積%とを混合する工程と、上記Y型六方晶フェライト材料と上記非磁性体材料との混合物を焼成して焼結体を得る工程と、を備えたことを特徴とするセラミック磁器組成物の製造方法。 Composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 ( where, 0.205 ≦ a ≦ 0.25,0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75), and a composition formula (Ba 1−z Sr z ) O · cFe A step of obtaining a nonmagnetic material represented by 2 O 3 (where 0 ≦ z ≦ 1.0 and 0.75 ≦ c ≦ 1.25), and the Y-type hexagonal ferrite materials 40 to 95 And a step of mixing 5% to 60% by volume of the non-magnetic material and a step of firing a mixture of the Y-type hexagonal ferrite material and the non-magnetic material to obtain a sintered body. A method for producing a ceramic porcelain composition, comprising: 組成式(1−a−b)(Ba1−xSr)・a(Co1−yCu)O・bFe(但し、0.205≦a≦0.25、0.55≦b≦0.595、0≦x≦0.50、及び0.25≦y≦0.75)で表されるY型六方晶フェライト材料と、少なくともSiO、B、CaOを含み、上記SiOの含有量が60〜85モル%であるガラス材料である非磁性体材料と、をそれぞれ得る工程と、上記Y型六方晶フェライト材料40〜95体積%と上記非磁性体材料5〜60体積%とを混合する工程と、上記Y型六方晶フェライト材料と上記非磁性体材料との混合物を焼成して焼結体を得る工程と、を備えたことを特徴とするセラミック磁器組成物の製造方法。 Composition formula (1-a-b) ( Ba 1-x Sr x) · a (Co 1-y Cu y) O · bFe 2 O 3 ( where, 0.205 ≦ a ≦ 0.25,0.55 ≦ b ≦ 0.595, 0 ≦ x ≦ 0.50, and 0.25 ≦ y ≦ 0.75), and at least SiO 2 , B 2 O 3 , and CaO, A non-magnetic material which is a glass material having a SiO 2 content of 60 to 85 mol%, a Y-hexagonal ferrite material of 40 to 95% by volume, and a non-magnetic material of 5 to 5%. A ceramic porcelain composition comprising: a step of mixing 60% by volume; and a step of firing a mixture of the Y-type hexagonal ferrite material and the non-magnetic material to obtain a sintered body . Manufacturing method. 上記Y型六方晶フェライト材料と上記非磁性体材料との混合物を焼成する温度が、上記Y型六方晶フェライト材料を得る時の温度より低い温度であることを特徴とする請求項3または請求項4に記載のセラミック磁器組成物の製造方法。 The temperature at which the mixture of the Y-type hexagonal ferrite material and the nonmagnetic material is fired is lower than the temperature at which the Y-type hexagonal ferrite material is obtained. 5. A method for producing a ceramic porcelain composition according to 4.
JP2004112388A 2004-04-06 2004-04-06 Ceramic porcelain composition and method for producing the same Expired - Lifetime JP4934947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004112388A JP4934947B2 (en) 2004-04-06 2004-04-06 Ceramic porcelain composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004112388A JP4934947B2 (en) 2004-04-06 2004-04-06 Ceramic porcelain composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005298230A JP2005298230A (en) 2005-10-27
JP4934947B2 true JP4934947B2 (en) 2012-05-23

Family

ID=35330236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004112388A Expired - Lifetime JP4934947B2 (en) 2004-04-06 2004-04-06 Ceramic porcelain composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4934947B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105595B1 (en) * 2008-08-13 2012-01-18 주식회사 이엠따블유 Manufacture method of ferrite
JP5570205B2 (en) * 2009-03-26 2014-08-13 京セラ株式会社 Magnetic sintered body, composite sintered body of magnetic body and dielectric, manufacturing method thereof, and electronic component using the same
CN115677338B (en) * 2022-11-21 2024-01-16 哈尔滨工业大学 Z-type hexagonal ferrite magneto-electric coupling ceramic material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876790B2 (en) * 2001-08-27 2007-02-07 株式会社村田製作所 High frequency circuit element

Also Published As

Publication number Publication date
JP2005298230A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
KR101899734B1 (en) Ferrite composition and electronic component
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
JPWO2006064839A1 (en) Hexagonal ferrite and antenna and communication equipment using the same
JP5322429B2 (en) Composite sintered body of magnetic body and dielectric body and LC composite electronic component
JP2003146739A (en) Magnetic material for high frequency and high frequency circuit element using the same
KR102232105B1 (en) Ferrite composition and multilayer electronic component
EP1364927A1 (en) Magnetic oxide sinter and high-frequency circuit part employing the same
KR20160118973A (en) Ferrite composition and electronic component
US6669861B2 (en) Y-type hexagonal oxide magnetic material and inductor element
JP3492802B2 (en) Low loss ferrite material
JP4934947B2 (en) Ceramic porcelain composition and method for producing the same
JPWO2013115064A1 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JP5106350B2 (en) Composite sintered body of magnetic body and dielectric body and LC composite electronic component using the same
JP3580145B2 (en) Method for producing Ni-Cu-Zn ferrite material
JP2003221232A (en) Ferrite material and its production method
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JP2002260914A (en) Sintered magnetic oxide and high-frequency circuit part using the same
JP4074437B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
CN115124335B (en) Ferrite composition and electronic component
JP4074439B2 (en) Magnetic oxide sintered body and high-frequency circuit component using the same
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JP2010100511A (en) Composite sintered compact of magnetic substance and dielectric substance, and lc composite electronic component
JP4436493B2 (en) High frequency low loss ferrite material and ferrite core using the same
JP4678569B2 (en) Dielectric ceramic composition for electronic devices
JP5541475B2 (en) Ferrite sintered body, manufacturing method thereof, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4934947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term