JP2002255860A - Method for carrying out decomposition treatment of slightly decomposable halogen compound - Google Patents

Method for carrying out decomposition treatment of slightly decomposable halogen compound

Info

Publication number
JP2002255860A
JP2002255860A JP2001050948A JP2001050948A JP2002255860A JP 2002255860 A JP2002255860 A JP 2002255860A JP 2001050948 A JP2001050948 A JP 2001050948A JP 2001050948 A JP2001050948 A JP 2001050948A JP 2002255860 A JP2002255860 A JP 2002255860A
Authority
JP
Japan
Prior art keywords
halogen compound
hardly decomposable
decomposable halogen
reaction
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001050948A
Other languages
Japanese (ja)
Other versions
JP4938931B2 (en
Inventor
Takeshi Nishiwaki
剛 西脇
Akira Kaneko
彰 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2001050948A priority Critical patent/JP4938931B2/en
Publication of JP2002255860A publication Critical patent/JP2002255860A/en
Application granted granted Critical
Publication of JP4938931B2 publication Critical patent/JP4938931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for carrying out decomposing treatment of an organohalogen compound, enabling stable treatment making the organohalogen compound harmless in good reproducibility, compared with a conventional method in a method for carrying out dehalogenative decomposition treatment of the organohalogen compound by an alkali. SOLUTION: This method for carrying out decomposition treatment of an organohalogen compound by using an alkali in a hermetically sealable reactor is characterized by carrying out dehalogenation reaction of the organohalogen in <3 volume % oxygen concentration of a space part in the above reactor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【本発明の属する技術分野】本発明は、難分解性ハロゲ
ン化合物、例えば、ポリ塩化ビフェニール(以下、「P
CB」と略記する)類等を、アルカリにより脱ハロゲン
化分解させて処理する難分解性ハロゲン化合物の分解処
理方法に関する。
TECHNICAL FIELD The present invention relates to a hardly decomposable halogen compound such as polychlorinated biphenyl (hereinafter referred to as "P
Abbreviated as "CB") and the like, which are dehalogenated and decomposed with an alkali for treatment.

【0002】[0002]

【従来の技術】PCB等に代表される難分解性ハロゲン
化合物は環境汚染物質として知られており、このものを
無害化する処理方法が幾つか提案されている。中でもア
ルカリ金属分散体を用いる化学的分解処理方法は、安全
でしかも確実に処理できることから最も注目されてい
る。
2. Description of the Related Art Hard-to-decompose halogen compounds represented by PCBs and the like are known as environmental pollutants, and several treatment methods for detoxifying the compounds have been proposed. Above all, a chemical decomposition treatment method using an alkali metal dispersion has received the most attention because it can be treated safely and reliably.

【0003】従来、かかる難分解性ハロゲン化合物の分
解処理方法としては、例えば、 環境汚染物質であるPCB類又はPCB類を含む有機
溶媒溶液を分散状態にあるアルカリ金属と共に加熱処理
する環境汚染物質の処理方法(特開昭49−82570
号公報参照)、 炭化水素ベースの油に溶解している難分解性ハロゲン
化合物と溶融ナトリウム粒子群とを100〜160℃の
温度範囲で反応させる難分解性ハロゲン化合物の脱ハロ
ゲン化方法(特開昭59−20179号公報参照)、 塩化ビフェニール組成物をアルカリ金属と加熱条件下
で反応させる塩化ビフェニール組成物の処理方法(カナ
ダ特許第1142551号公報参照)、 有機溶媒中でハロゲン化合物とアルカリ金属分散体と
を、該有機化合物と混じらない活性水素化合物を加えて
反応させるハロゲン化合物の分解方法(特開平9−21
6838号公報参照)、等が知られている。
[0003] Conventionally, as a method for decomposing such a hardly decomposable halogen compound, for example, there is a method of heat-treating environmental pollutants such as PCBs or an organic solvent solution containing PCBs together with alkali metals in a dispersed state. Processing method (JP-A-49-82570)
Japanese Patent Application Laid-Open (JP-A) No. 6-181, and a method for dehalogenating a hardly decomposable halogen compound by reacting a hardly decomposable halogen compound dissolved in a hydrocarbon-based oil with molten sodium particles in a temperature range of 100 to 160 ° C. JP-A-59-20179), a method for treating a biphenyl chloride composition by reacting the biphenyl chloride composition with an alkali metal under heating conditions (see Canadian Patent No. 1142551), dispersion of a halogen compound and an alkali metal in an organic solvent. A method for decomposing a halogen compound by adding an active hydrogen compound which is not mixed with the organic compound to react with the compound (JP-A-9-21)
No. 6838), and the like.

【0004】[0004]

【発明が解決しようとする課題】上記した従来の難分解
性ハロゲン化合物の分解処理方法においては、反応をよ
り安全に行なうために、外気と遮断可能な反応容器を用
い、該装置の反応容器内に分解処理したい難分解性ハロ
ゲン化合物とアルカリ金属等とを入れ、内部を不活性ガ
スで置換した後に反応を行うのが通常である。
In the above-mentioned conventional method for decomposing a hardly decomposable halogen compound, in order to carry out the reaction more safely, a reaction vessel which can be shut off from the outside air is used. Usually, a hardly decomposable halogen compound to be decomposed and an alkali metal or the like are charged, and the reaction is usually carried out after replacing the inside with an inert gas.

【0005】しかしながら、不活性ガスの置換方法や不
活性ガスの純度によって、難分解性ハロゲン化合物の分
解処理時間にばらつきが見られたり、難分解性ハロゲン
化合物が完全に分解されない場合等があり問題となって
いた。
However, depending on the method of replacing the inert gas and the purity of the inert gas, the decomposition time of the hardly decomposable halogen compound may vary, or the hardly decomposable halogen compound may not be completely decomposed. It was.

【0006】本発明は、かかる実状に鑑みてなされたも
のであり、難分解性ハロゲン化合物をアルカリにより脱
ハロゲン化分解処理する方法において、従来の方法より
も再現性よく安定した難分解性ハロゲン化合物の無害化
処理が可能な難分解性ハロゲン化合物の分解処理方法を
提供することを課題とする。
The present invention has been made in view of the above circumstances, and a method for dehalogenating and decomposing a hardly decomposable halogen compound with an alkali has been described. It is an object of the present invention to provide a method for decomposing a hardly decomposable halogen compound, which is capable of detoxifying the compound.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、難分解性ハロゲン化合
物の分解処理時間にばらつきが見られたり、難分解性ハ
ロゲン化合物が完全に分解されない場合には、反応容器
の空間部(反応容器内に反応物及び溶媒等を添加した残
りの空間部)の酸素濃度が高いことがわかった。そこ
で、反応容器の空間部の酸素濃度を所定濃度未満とし
て、又は酸素濃度を所定濃度に管理して難分解性ハロゲ
ン化合物の脱ハロゲン化反応を行なうことにより、極め
て再現性よく安定した難分解性ハロゲン化合物の無害化
処理が実現されることを見出し、本発明を完成するに到
った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the decomposition time of the hardly decomposable halogen compound has been varied, and the hardly decomposable halogen compound has been completely removed. When not decomposed, it was found that the oxygen concentration in the space portion of the reaction vessel (the remaining space portion where the reactants, the solvent, and the like were added in the reaction vessel) was high. Therefore, by controlling the oxygen concentration in the space of the reaction vessel to be lower than the predetermined concentration or controlling the oxygen concentration to the predetermined concentration to perform the dehalogenation reaction of the hardly decomposable halogen compound, the reproducible and stable hardly decomposable compound can be obtained. The present inventors have found that detoxification of a halogen compound can be realized, and have completed the present invention.

【0008】即ち、本発明は、難分解性ハロゲン化合物
をアルカリを用いて脱ハロゲン化反応させる難分解性ハ
ロゲン化合物の分解処理方法であって、反応系内の酸素
濃度を3容量%未満として難分解性ハロゲン化合物の脱
ハロゲン化反応を行なうことを特徴とする難分解性ハロ
ゲン化合物の分解処理方法を提供する。
That is, the present invention relates to a method for decomposing a hardly decomposable halogen compound by subjecting the hardly decomposable halogen compound to a dehalogenation reaction using an alkali, wherein the oxygen concentration in the reaction system is less than 3% by volume. Provided is a method for decomposing a hardly decomposable halogen compound, which comprises performing a dehalogenation reaction of the decomposable halogen compound.

【0009】本発明の好ましい態様は次の通りである。 (1)外気と遮断可能な反応容器内で難分解性ハロゲン
化合物をアルカリを用いて脱ハロゲン化反応させる難分
解性ハロゲン化合物の分解処理方法であって、前記反応
容器の空間部内の酸素濃度を3容量%未満に維持しなが
ら難分解性ハロゲン化合物の脱ハロゲン化反応を行な
う。 (2)酸素含有量が1容量%以下の不活性ガス雰囲気下
で、難分解性ハロゲン化合物の脱ハロゲン化反応を行な
う。 (3)前記(1)又は(2)において、前記反応容器の
空間部内の酸素濃度を1容量%以下に維持しながら難分
解性ハロゲン化合物の脱ハロゲン化反応を行なう。 (4)前記(1)〜(3)において、前記アルカリとし
てアルカリ金属分散体を用いる。
The preferred embodiments of the present invention are as follows. (1) A method for decomposing a hardly decomposable halogen compound by dehalogenating a hardly decomposable halogen compound using an alkali in a reaction vessel which can be shielded from the outside air, wherein the oxygen concentration in the space of the reaction vessel is reduced. A dehalogenation reaction of the hardly decomposable halogen compound is performed while maintaining the content at less than 3% by volume. (2) A dehalogenation reaction of a hardly decomposable halogen compound is performed in an inert gas atmosphere having an oxygen content of 1% by volume or less. (3) In the above (1) or (2), the dehalogenating reaction of the hardly decomposable halogen compound is performed while maintaining the oxygen concentration in the space of the reaction vessel at 1% by volume or less. (4) In the above (1) to (3), an alkali metal dispersion is used as the alkali.

【0010】(5)外気と遮断可能な反応容器内で、難
分解性ハロゲン化合物とアルカリ金属分散体の混合物に
活性化剤を添加して脱ハロゲン化反応を行なう難分解性
ハロゲン化合物の分解処理方法であって、前記反応容器
の空間部内の酸素濃度を3容量%未満として活性化剤を
添加する工程を設ける。 (6)外気と遮断可能な反応容器内で、難分解性ハロゲ
ン化合物とアルカリ金属分散体の混合物に活性化剤を添
加して脱ハロゲン化反応を行なう難分解性ハロゲン化合
物の分解処理方法であって、前記反応容器の空間部内の
酸素濃度を3容量%未満に維持しながら脱ハロゲン化反
応を行なう。 (7)前記(5)又は(6)において、前記反応容器の
空間部内の酸素濃度を1容量%以下に維持しながら脱ハ
ロゲン化反応を行なう。 (8)前記(5)〜(7)において、前記活性化剤の添
加終了後において反応混合物中の難分解性ハロゲン化合
物の残存量を1ppm以下とする。
(5) Decomposition treatment of a hardly decomposable halogen compound by adding an activator to a mixture of a hardly decomposable halogen compound and an alkali metal dispersion in a reaction vessel capable of shutting off outside air to perform a dehalogenation reaction A method of providing an oxygen concentration in the space of the reaction vessel of less than 3% by volume and adding an activator. (6) A method for decomposing a hardly decomposable halogen compound in which a deactivating reaction is performed by adding an activator to a mixture of a hardly decomposable halogen compound and an alkali metal dispersion in a reaction vessel capable of shutting off outside air. The dehalogenation reaction is performed while maintaining the oxygen concentration in the space of the reaction vessel at less than 3% by volume. (7) In the above (5) or (6), the dehalogenation reaction is performed while maintaining the oxygen concentration in the space of the reaction vessel at 1% by volume or less. (8) In the above (5) to (7), the residual amount of the hardly decomposable halogen compound in the reaction mixture after the completion of the addition of the activator is 1 ppm or less.

【0011】本発明によれば、アルカリ金属分散体によ
り脱ハロゲン化分解処理する方法において、従来の方法
よりも再現性よく安定した難分解性ハロゲン化合物の無
害化処理が可能となる。また、本発明によれば、反応容
器の空間部の酸素濃度を極力低く維持するだけで、従来
に比して短時間で完全なハロゲン化合物の脱ハロゲン化
分解処理が可能である。
According to the present invention, in the method of dehalogenating and decomposing with an alkali metal dispersion, it is possible to stably render the hardly decomposable halogen compound more reproducible and stable than the conventional method. Further, according to the present invention, complete dehalogenation / decomposition treatment of a halogen compound can be performed in a shorter time than in the past by simply maintaining the oxygen concentration in the space of the reaction vessel as low as possible.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の分解の対象となる難分解性ハロゲン化合物は、
一般的に脱ハロゲン化反応が困難な有機ハロゲン化合物
である。かかる難分解性ハロゲン化合物としては、例え
ば、PCB、ダイオキシン類、ポリ塩素化ベンゾフラン
類、ポリ塩素化ベンゼン、DDT等の芳香族ハロゲン化
合物;BHC等の脂環族ハロゲン化合物;等が挙げられ
る。本発明は、PCB等の廃棄物中に含まれる芳香族ハ
ロゲン化合物を対象とする場合に好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The hardly decomposable halogen compound to be decomposed in the present invention is
Generally, it is an organic halogen compound which is difficult to dehalogenate. Examples of such hardly decomposable halogen compounds include aromatic halogen compounds such as PCB, dioxins, polychlorinated benzofurans, polychlorinated benzene, and DDT; and alicyclic halogen compounds such as BHC. INDUSTRIAL APPLICABILITY The present invention is suitable for an aromatic halogen compound contained in waste such as PCB.

【0013】また、本発明は有機溶媒に溶解した難分解
性ハロゲン化合物を分解処理する場合にも適用すること
ができる。かかる有機溶媒としては、ケロシン、デカリ
ン、電気絶縁油(JIS C2320−1993に記載
の電気絶縁油)、重油(JIS K2205に記載の重
油)、潤滑油及びこれらの混合物等が挙げられる。本発
明は、電気絶縁油に含まれる難分解性ハロゲン化合物を
アルカリ金属分散体と反応させて脱ハロゲン化処理を行
う場合に特に好適である。
The present invention can also be applied to the case where a hardly decomposable halogen compound dissolved in an organic solvent is decomposed. Examples of such an organic solvent include kerosene, decalin, electric insulating oil (electric insulating oil described in JIS C2320-1993), heavy oil (heavy oil described in JIS K2205), lubricating oil, and mixtures thereof. The present invention is particularly suitable for a case where a hardly decomposable halogen compound contained in an electric insulating oil is reacted with an alkali metal dispersion to perform a dehalogenation treatment.

【0014】用いられるアルカリとしては、アルカリ金
属、アルカリ金属水酸化物、有機アルカリ金属、アルカ
リ金属炭酸塩、アルカリ土類金属、アルカリ土類金属水
酸化物、有機アルカリ土類金属、アルカリ土類金属炭酸
塩等が挙げられる。これらは単独で、あるいは2種以上
を組合せて用いることができる。
Examples of the alkali used include alkali metals, alkali metal hydroxides, organic alkali metals, alkali metal carbonates, alkaline earth metals, alkaline earth metal hydroxides, organic alkaline earth metals, and alkaline earth metals. Carbonates and the like. These can be used alone or in combination of two or more.

【0015】これらの中でも、本発明においてはアルカ
リ金属又はアルカリ土類金属を用いるのが好ましい。ア
ルカリ金属としては、例えば、ナトリウム、カリウム、
リチウム、セシウム及びこれらの合金等が挙げられる。
また、アルカリ土類金属としては、マグネシウム、カル
シウム及びこれらの合金等が挙げられる。本発明におい
ては、これらアルカリ金属又はアルカリ土類金属の中で
もアルカリ金属分散体を用いるのがより好ましい。アル
カリ金属分散体は、アルカリ金属を溶媒に分散させたも
のを用いることができるが、金属ナトリウム分散体が特
に好ましい。
Among these, in the present invention, it is preferable to use an alkali metal or an alkaline earth metal. As the alkali metal, for example, sodium, potassium,
Examples include lithium, cesium, and alloys thereof.
Examples of the alkaline earth metal include magnesium, calcium, and alloys thereof. In the present invention, among these alkali metals or alkaline earth metals, it is more preferable to use an alkali metal dispersion. As the alkali metal dispersion, one obtained by dispersing an alkali metal in a solvent can be used, and a metal sodium dispersion is particularly preferable.

【0016】アルカリ金属の分散に用いられる溶媒とし
ては、例えば、ケロシン、デカリン、電気絶縁油(JI
S C2320−1993に記載の電気絶縁油)、重油
(JIS K2205に記載の重油)、及びこれらの混
合物が挙げられるが、JISC2320−1993に記
載の電気絶縁油であるのが好ましい。
As the solvent used for dispersing the alkali metal, for example, kerosene, decalin, electric insulating oil (JI
Electrical insulating oil described in SC2320-1993), heavy oil (heavy oil described in JIS K2205), and a mixture thereof, and preferably an electrical insulating oil described in JISC2320-1993.

【0017】アルカリ金属分散体中のアルカリ金属濃度
には特に制限はないが、5〜50容量%の範囲のものが
好ましい。また、保存性、輸送性、再分散性及びハロゲ
ン化合物に対する分解処理能力等の観点から、アルカリ
金属の80%以上が、粒径が30μm以下、好ましくは
15μm以下のアルカリ金属微粒子であることが好まし
い。
The alkali metal concentration in the alkali metal dispersion is not particularly limited, but is preferably in the range of 5 to 50% by volume. Further, from the viewpoints of storability, transportability, redispersibility, decomposition treatment ability for halogen compounds, and the like, it is preferable that 80% or more of the alkali metal is alkali metal fine particles having a particle size of 30 μm or less, preferably 15 μm or less. .

【0018】かかるアルカリ金属分散体は、公知の方
法、例えば、Inorganic Synthese
s.,Vol.5,p6−10,”Sodium Di
spersions”に記載の方法や、特開平10−1
10205号公報に記載されたホモジナイザーを用いた
方法等により調製することができる。
Such an alkali metal dispersion can be prepared by a known method, for example, Inorganic Synthesis.
s. , Vol. 5, p6-10, "Sodium Di
methods described in “spersions”, and JP-A-10-1
It can be prepared by a method using a homogenizer described in No. 10205, and the like.

【0019】難分解性ハロゲン化合物との反応に用いら
れるアルカリの使用量は、ハロゲン化合物中に含まれる
ハロゲン原子1モルに対して、含有するアルカリの量に
換算して、通常1〜50モル、好ましくは1.05〜2
0モルの範囲である。
The amount of the alkali used for the reaction with the hardly decomposable halogen compound is usually 1 to 50 mol, in terms of the amount of the alkali contained in 1 mol of the halogen atom contained in the halogen compound. Preferably 1.05-2
It is in the range of 0 mol.

【0020】また、難分解性ハロゲン化合物とアルカリ
金属分散体とを反応させる場合には、水、低級アルコー
ル等の活性水素化合物を共存させるのが好ましい。用い
られる活性水素化合物の量は、アルカリ金属分散体中の
アルカリ金属1モルに対して、通常2モル以下、好まし
くは0.1〜1.5モルの範囲である。
When reacting a hardly decomposable halogen compound with an alkali metal dispersion, it is preferable to coexist an active hydrogen compound such as water or a lower alcohol. The amount of the active hydrogen compound used is usually 2 mol or less, preferably 0.1 to 1.5 mol, per 1 mol of the alkali metal in the alkali metal dispersion.

【0021】難分解性ハロゲン化合物をアルカリと反応
させて分解する方法は特に制限されない。例えば、アル
カリとしてアルカリ金属分散体を用い、活性化剤として
水を用いる場合には、アルカリ金属分散体と難分解性
ハロゲン化合物の混合物中に所定量の水を添加する方
法、難分解性ハロゲン化合物を含有する有機溶媒と所
定量の水とを混合した後、アルカリ金属分散体を添加す
る方法等を採用することができる。の方法の場合に
は、アルカリ金属と水との反応が激しいので、作業を安
全に行うためにアルカリ金属分散体を十分に撹拌しなが
ら水を少量ずつゆっくりと添加する必要がある。また、
の方法の場合においても安全に分解処理を行うため
に、難分解性ハロゲン化合物の有機溶媒溶液と所定量の
水との混合物を十分に撹拌しながら、アルカリ金属分散
体を少量ずつ、あるいは数回に分けて添加するのが好ま
しい。
The method of decomposing a hardly decomposable halogen compound by reacting it with an alkali is not particularly limited. For example, when an alkali metal dispersion is used as the alkali and water is used as the activator, a method of adding a predetermined amount of water to a mixture of the alkali metal dispersion and the hardly decomposable halogen compound, After mixing an organic solvent containing the compound with a predetermined amount of water, a method of adding an alkali metal dispersion and the like can be employed. In the case of the method described above, since the reaction between the alkali metal and water is intense, it is necessary to slowly add water little by little with sufficient stirring of the alkali metal dispersion in order to carry out the operation safely. Also,
Even in the case of the method, in order to safely perform the decomposition treatment, while sufficiently stirring a mixture of the organic solvent solution of the hardly decomposable halogen compound and a predetermined amount of water, the alkali metal dispersion is added little by little or several times. It is preferable to add them separately.

【0022】難分解性ハロゲン化合物とアルカリとの反
応温度は、通常0〜300℃、好ましくは室温〜200
℃、より好ましくは室温〜100℃の範囲である。反応
時間は、難分解性ハロゲン化合物の種類やその量に依存
するが、通常0.5〜3時間である。
The reaction temperature between the hardly decomposable halogen compound and the alkali is usually from 0 to 300 ° C., preferably from room temperature to 200 ° C.
° C, more preferably in the range of room temperature to 100 ° C. The reaction time depends on the type and amount of the hardly decomposable halogen compound, but is usually 0.5 to 3 hours.

【0023】本発明は、難分解性ハロゲン化合物をアル
カリと反応させる難分解性ハロゲン化合物の分解処理方
法において、難分解性ハロゲン化合物をアルカリと反応
させる反応系内の酸素濃度を3容量%未満、好ましくは
1容量%以下、より好ましくは0.1%重量以下とする
ことを特徴とする。
The present invention provides a method for decomposing a hardly decomposable halogen compound by reacting the hardly decomposable halogen compound with an alkali, wherein the oxygen concentration in the reaction system for reacting the hardly decomposable halogen compound with the alkali is less than 3% by volume. Preferably, the content is 1% by volume or less, more preferably 0.1% by weight or less.

【0024】反応系内の酸素濃度を3容量%未満とする
方法としては、例えば、外気と遮断可能な、若しくは密
閉可能な反応容器を用いて、難分解性ハロゲン化合物を
脱ハロゲン化反応させる前に該反応容器内の気体を不活
性ガスで完全に置換する方法が挙げられる。不活性ガス
としては、酸素含有量が3容量%未満、好ましくは酸素
含有量が1容量%以下、より好ましくは酸素含有0.1
容量%以下のものを用いる。不活性ガスの具体例として
は、窒素、ヘリウム、アルゴン等が挙げられる。
As a method for reducing the oxygen concentration in the reaction system to less than 3% by volume, for example, before the dehalogenation reaction of the hardly decomposable halogen compound using a reaction vessel which can be shielded from the outside air or can be sealed. Another method is to completely replace the gas in the reaction vessel with an inert gas. The inert gas has an oxygen content of less than 3% by volume, preferably an oxygen content of 1% by volume or less, more preferably an oxygen content of 0.1% by volume or less.
Use those having a capacity of not more than%. Specific examples of the inert gas include nitrogen, helium, argon and the like.

【0025】ここで用いられる反応容器としては、難分
解性ハロゲン化合物とアルカリとの反応に用いることが
できるものあれば、その材質や形状、容量(大きさ)等
に制限はないが、外気と遮断可能な反応容器が好まし
く、不活性ガスを導入し、反応容器内の気体を排気でき
る構造のものがより好ましい。
The material, shape and capacity (size) of the reaction vessel used herein are not limited as long as it can be used for the reaction between the hardly decomposable halogen compound and the alkali. A reaction vessel that can be shut off is preferable, and a structure that can introduce an inert gas and exhaust the gas in the reaction vessel is more preferable.

【0026】反応容器の空間部を不活性ガスで置換する
場合には、反応開始前に反応容器の空間部の大きさ、不
活性ガスの純度、不活性ガスの流量等に応じて、反応容
器の空間部内の気体を不活性ガスと置換して、反応容器
の空間部の酸素濃度が所定値未満(又は以下)にする必
要がある。
When the space in the reaction vessel is replaced with an inert gas, the reaction vessel may be replaced with an inert gas depending on the size of the space in the reaction vessel, the purity of the inert gas, the flow rate of the inert gas, and the like before the start of the reaction. It is necessary to replace the gas in the space with an inert gas so that the oxygen concentration in the space of the reaction vessel is less than (or less than) a predetermined value.

【0027】また、本発明は、反応容器内の酸素濃度を
所定濃度以下とした後、密閉して脱ハロゲン化反応を行
なうことができるが、酸素濃度を所定値未満(又は以
下)、具体的には、3容量%未満、好ましくは1容量%
以下、より好ましくは0.1容量%以下に維持しながら
反応を行なうのが好ましい。酸素濃度を所定値未満に維
持する方法としては、例えば、流量計等で流量を適宜調
節しながら、反応容器内に不活性ガスの供給を反応終了
まで継続する方法が挙げられる。この方法によれば、反
応中、反応容器の空間部の酸素濃度を、簡便かつ確実に
一定値以下に維持することができる。
According to the present invention, after the oxygen concentration in the reaction vessel is reduced to a predetermined concentration or less, the reaction can be carried out in a sealed state to carry out a dehalogenation reaction. Less than 3% by volume, preferably 1% by volume
It is preferable to carry out the reaction while maintaining the content at 0.1% by volume or less, more preferably. As a method for maintaining the oxygen concentration below a predetermined value, for example, a method in which the supply of an inert gas into the reaction vessel is continued until the end of the reaction while appropriately adjusting the flow rate using a flow meter or the like. According to this method, during the reaction, the oxygen concentration in the space of the reaction vessel can be easily and reliably maintained at a certain value or less.

【0028】本発明の特に好ましい態様としては、外気
と遮断可能な反応容器に難分解性ハロゲン化合物を入
れ、該容器内の気体を酸素含有量1容量%以下の不活性
ガスで完全に置換した後、所定温度に加熱し、不活性ガ
ス雰囲気下に、アルカリ金属分散体を加え、さらに所定
量の活性化剤をゆっくりと添加する方法である。この方
法によりれば、従来の分解処理プロセスに大幅な変更を
加えることなく、簡便かつ確実に反応系内の酸素濃度を
3容量%未満、好ましくは1容量%以下、より好ましく
は0.01容量%以下に維持することができ、難分解性
ハロゲン化合物の安定、かつ速やかな分解処理が実現さ
れる。
In a particularly preferred embodiment of the present invention, a hardly decomposable halogen compound is placed in a reaction vessel capable of shutting off outside air, and the gas in the vessel is completely replaced with an inert gas having an oxygen content of 1% by volume or less. Thereafter, the mixture is heated to a predetermined temperature, an alkali metal dispersion is added under an inert gas atmosphere, and a predetermined amount of an activator is slowly added. According to this method, the oxygen concentration in the reaction system is easily and reliably reduced to less than 3% by volume, preferably 1% by volume or less, more preferably 0.01% by volume without making a significant change to the conventional decomposition treatment process. % Or less, and stable and prompt decomposition treatment of the hardly decomposable halogen compound is realized.

【0029】また、本発明において、活性化剤を添加す
る場合には、活性化剤の添加工程前、好ましくは添加開
始から終了までの間、反応系内の酸素濃度を所定値未満
(又は以下)とすることにより、難分解性ハロゲン化合
物の脱ハロゲン化反応をより速やかに進行させることが
できる。活性化剤の添加終了時点における反応混合物中
の難分解性ハロゲン化合物の残存量は、通常1ppm以
下、好ましくは0.8ppm以下である。
In the present invention, when an activator is added, the oxygen concentration in the reaction system is less than a predetermined value (or below) before the activator addition step, preferably during the period from the start to the end of the addition. ) Allows the dehalogenation reaction of the hardly decomposable halogen compound to proceed more quickly. The residual amount of the hardly decomposable halogen compound in the reaction mixture at the end of the addition of the activator is usually 1 ppm or less, preferably 0.8 ppm or less.

【0030】反応終了後は、通常、大量の水を反応混合
物に添加し、未反応のアルカリを分解するのが好まし
い。反応溶媒を用いた場合には、反応処理液を分液して
回収されるトランスオイル等の有機溶媒は燃料等に再利
用することができる。
After completion of the reaction, it is usually preferable to add a large amount of water to the reaction mixture to decompose the unreacted alkali. When a reaction solvent is used, an organic solvent such as trans oil recovered by separating the reaction solution can be reused as a fuel or the like.

【0031】[0031]

【実施例】以下、実施例及び比較例により本発明を更に
詳細に説明する。本発明は、下記実施例に限定されるこ
となく、有機溶媒中で、難分解性ハロゲン化合物とアル
カリとを反応させて難分解性ハロゲン化合物を分解する
あらゆる方法に適用することができる。なお、以下の実
施例及び比較例においては、電気絶縁油(出光興産
(株)製)に、数ミクロン粒径の金属ナトリウムを分散
させて得られる10容量%金属ナトリウム分散体(以
下、「10%SD」と略す。)を用いた。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples, and can be applied to any method for decomposing a hardly decomposable halogen compound by reacting a hardly decomposable halogen compound with an alkali in an organic solvent. In the following Examples and Comparative Examples, a 10% by volume metal sodium dispersion (hereinafter, referred to as “10”) obtained by dispersing metal sodium having a particle diameter of several microns in an electric insulating oil (manufactured by Idemitsu Kosan Co., Ltd.). % SD ").

【0032】(実施例1)500mlの四つ口フラスコ
にPCB汚染油262.1g(PCB濃度37.15p
pm)を入れ、攪拌羽と温度計を取り付け、この四つ口
フラスコ内に、純度99.999容量%の窒素ガスを流
量計KG−1(草野科学器械製作所(株)、以下同
じ。)で100目盛り(0.264L/min)で流し
て反応系内を窒素置換しながら、40分かけて65℃ま
で昇温した。その後、窒素ガスの流量を流量計KG−1
で5目盛り(0.0009L/min)とし、10%S
Dを3.48g添加し、65℃で30分攪拌した後、更
に3.23gの10%SDを添加した。その後、直ちに
活性化剤として水0.24mlを60分かけて添加し、
更に65℃で60分間反応させた。反応混合物中のPC
B濃度の分析を、2回目の10%SD添加終了後、30
分後に行った。その結果、PCB濃度は検出限界以下
(0.5ppm以下、以下にて同じ。)であった。
(Example 1) 262.1 g of PCB-contaminated oil (PCB concentration: 37.15 p
pm), a stirring blade and a thermometer were attached, and nitrogen gas having a purity of 99.999% by volume was flowed into the four-necked flask with a flow meter KG-1 ( manufactured by Kusano Scientific Instruments Co., Ltd .; the same applies hereinafter). The temperature was raised to 65 ° C. over 40 minutes while the inside of the reaction system was purged with nitrogen by flowing at a scale of 100 (0.264 L / min). Thereafter, the flow rate of the nitrogen gas was measured by the flow meter KG-1.
5 scales (0.0009 L / min) and 10% S
After adding 3.48 g of D and stirring at 65 ° C. for 30 minutes, 3.23 g of 10% SD was further added. Thereafter, 0.24 ml of water was immediately added as an activator over 60 minutes,
The reaction was further performed at 65 ° C. for 60 minutes. PC in reaction mixture
The analysis of B concentration was performed 30 days after the completion of the second addition of 10% SD.
Went after a minute. As a result, the PCB concentration was below the detection limit (0.5 ppm or less, the same applies hereinafter).

【0033】(実施例2)500mlの四つ口フラスコ
にPCB汚染油254.4g(PCB濃度37.15p
pm)を入れ、攪拌羽と温度計を取り付け、純度99容
量%の窒素ガス(酸素含有量1容量%)を流量計KG−
1で100目盛り(0.264L/min)で流して窒
素置換しながら、40分かけて65℃まで昇温した。そ
の後、窒素ガスの流量を流量計KG−1で5目盛り
(0.0009L/min)とし、10%SDを3.7
0g添加し、65℃で30分攪拌した後、更に2.70
gの10%SDを添加した。その後、直ちに活性化剤と
して水0.24mlを60分かけて添加し、更に65℃
で60分間反応させた。反応混合物中のPCB濃度の分
析を、2回目の10%SD添加終了後、30分経過後に
行った。その結果、30分経過後の残存PCB濃度は検
出限界以下であった。
Example 2 In a 500 ml four-necked flask, 254.4 g of PCB-contaminated oil (PCB concentration: 37.15 p
pm), a stirring blade and a thermometer were attached, and nitrogen gas having a purity of 99% by volume (oxygen content: 1% by volume) was supplied to a flow meter KG-
The temperature was raised to 65 ° C. over 40 minutes while flowing at 100 graduations (0.264 L / min) and replacing with nitrogen. Thereafter, the flow rate of the nitrogen gas was set to 5 divisions (0.0009 L / min) by the flow meter KG-1, and 10% SD was 3.7.
After adding 0 g and stirring at 65 ° C. for 30 minutes, 2.70 was added.
g of 10% SD was added. Thereafter, 0.24 ml of water was immediately added as an activator over 60 minutes.
For 60 minutes. Analysis of the PCB concentration in the reaction mixture was performed 30 minutes after the completion of the second addition of 10% SD. As a result, the concentration of residual PCB after 30 minutes was below the detection limit.

【0034】(実施例3)500mlの四つ口フラスコ
に、PCB汚染油262.1g(PCB濃度37.15
ppm)を入れ、攪拌羽と温度計を取り付け、純度9
9.999%窒素ガスを流量計KG−1で5目盛り
(0.009L/min)で流して窒素置換しながら、
40分かけて65℃まで昇温した。その後、窒素ガスを
流量計KG−1で5目盛り(0.0009L/min)
で流しながら、10%SDを3.51g添加し、65℃
で30分攪拌した後、更に2.84gの10%SDを添
加した。その後、直ちに活性化剤として水0.24ml
を60分かけて添加し、更に65℃で60分間反応させ
た。反応混合物のPCB濃度の分析を、2回目の10%
SD添加終了後、30分経過時と60分経過時に行っ
た。その結果、30分経過時の残存PCB濃度は16.
74ppmであり、60分経過時の残存PCB濃度は検
出限界以下であった。
Example 3 In a 500 ml four-necked flask, 262.1 g of PCB-contaminated oil (PCB concentration: 37.15)
ppm), and a stirring blade and a thermometer were attached.
9.99% nitrogen gas was flown at 5 scales (0.009 L / min) with a flow meter KG-1 while purging with nitrogen.
The temperature was raised to 65 ° C. over 40 minutes. After that, nitrogen gas was flowed through the flow meter KG-1 at 5 scales (0.0009 L / min).
3.51 g of 10% SD was added while flowing at 65 ° C.
After stirring for 30 minutes, 2.84 g of 10% SD was further added. Then immediately 0.24 ml of water as activator
Was added over 60 minutes, and further reacted at 65 ° C. for 60 minutes. Analysis of the PCB concentration of the reaction mixture was performed for the second 10%
After completion of the addition of SD, the test was performed at the lapse of 30 minutes and 60 minutes. As a result, the residual PCB concentration after 30 minutes was 16.
It was 74 ppm, and the residual PCB concentration after 60 minutes was below the detection limit.

【0035】(比較例1)500mlの四つ口フラスコ
に、PCB汚染油263.5g(PCB濃度37.15
ppm)を入れ、攪拌羽と温度計とを取り付け、純度9
7容量%の窒素ガス(酸素含有量3容量%)を流量計K
G−1で100目盛り(0.264L/min)で流し
て反応系内を窒素置換しながら、40分かけて65℃ま
で昇温した。その後、窒素ガスの流量を流量計KG−1
で5目盛り(0.0009L/min)とし、10%S
Dを3.72g添加し、65℃で30分攪拌した後、更
に2.71gの10%SDを添加した。その後、直ぐに
活性化剤として水0.24mlを60分かけて添加し、
更に65℃で60分間反応させた。反応混合物中のPC
B濃度の分析を、2回目の10%SD添加終了後、30
分、60分及び120分経過後に行った。その結果、3
0分経過時の残存PCB濃度は21.24ppmであ
り、60分経過時の残存PCB濃度は0.77ppmで
あり、120分経過時の残存PCB濃度は検出限界以下
であった。
Comparative Example 1 In a 500 ml four-necked flask, 263.5 g of PCB-contaminated oil (PCB concentration: 37.15)
ppm), and a stirring blade and a thermometer were attached.
7% by volume nitrogen gas (oxygen content 3% by volume)
The temperature in the reaction system was raised to 65 ° C. over 40 minutes while the inside of the reaction system was purged with nitrogen by flowing at 100 scales (0.264 L / min) at G-1. Thereafter, the flow rate of the nitrogen gas was measured by the flow meter KG-1.
5 scales (0.0009 L / min) and 10% S
After adding 3.72 g of D and stirring at 65 ° C. for 30 minutes, 2.71 g of 10% SD was further added. Thereafter, 0.24 ml of water was immediately added as an activator over 60 minutes,
The reaction was further performed at 65 ° C. for 60 minutes. PC in reaction mixture
The analysis of B concentration was performed 30 days after the completion of the second addition of 10% SD.
Minutes, 60 minutes and 120 minutes later. As a result, 3
The residual PCB concentration after 0 minutes was 21.24 ppm, the residual PCB concentration after 60 minutes was 0.77 ppm, and the residual PCB concentration after 120 minutes was below the detection limit.

【0036】(比較例2)500mlの四つ口フラスコ
にPCB汚染油261.1g(PCB濃度37.15p
pm)を入れ、攪拌羽と温度計を取り付け、純度99.
999容量%の窒素ガスを流して窒素置換しながら13
分かけて65℃まで昇温した。そのときの四つ口フラス
コの空間部の酸素濃度は3.2容量%であった。次い
で、10%SDを2.34g添加し、65℃で30分攪
拌した後、更に4.47gの10%SDを添加した。そ
の後直ぐに活性化剤として水0.24mlを60分かけ
て添加し、更に65℃で120分間反応させた。反応混
合物のPCB濃度の分析を、2回目の10%SD添加終
了後、60分経過後、120経過後及び180分経過後
に行った。その結果、60分経過後においては、残存P
CB濃度は4.07ppm、120分経過後において
は、残存PCB濃度は0.53ppm、180分経過後
においては、残存PCB濃度は検出限界以下であった。
Comparative Example 2 261.1 g of PCB-contaminated oil (PCB concentration: 37.15 p
pm), and a stirring blade and a thermometer were attached.
While flowing 999% by volume of nitrogen gas and purging with nitrogen, 13
The temperature was raised to 65 ° C over a minute. At that time, the oxygen concentration in the space of the four-necked flask was 3.2% by volume. Next, 2.34 g of 10% SD was added, and the mixture was stirred at 65 ° C. for 30 minutes, and then 4.47 g of 10% SD was further added. Immediately thereafter, 0.24 ml of water was added as an activator over 60 minutes, and further reacted at 65 ° C. for 120 minutes. The analysis of the PCB concentration of the reaction mixture was performed after the completion of the second addition of 10% SD, 60 minutes, 120 minutes, and 180 minutes. As a result, after 60 minutes, the residual P
The CB concentration was 4.07 ppm, the residual PCB concentration was 0.53 ppm after 120 minutes, and the residual PCB concentration was below the detection limit after 180 minutes.

【0037】(比較例3)1Lの四つ口フラスコにPC
B汚染油261.9g(PCB濃度37.15ppm)
をとり、攪拌翼と温度計を取り付け、純度99.999
容量%窒素ガスを流して窒素置換した。そのときの空間
部内の酸素濃度は4容量%であった。その後、四つ口フ
ラスコ内部を外気と遮断し、65℃まで昇温して10%
SDを2.97g添加し、65℃で30分攪拌した後、
更に3.14gの10%SDを添加した。その後、直ぐ
に活性化剤として水0.24mlを60分かけて添加
し、更に65℃で120分間反応させた。反応混合物の
PCB濃度の分析を、2回目の10%SD添加終了後、
60分経過時及び180分経過時に行った。その結果、
60分経過時の残存PCB濃度は17.99ppmであ
り、180分経過時の残存PCB濃度は16.35pp
mであった。
Comparative Example 3 PC was placed in a 1 L four-necked flask.
261.9 g of B-contaminated oil (PCB concentration 37.15 ppm)
Take a stirrer and a thermometer, and purify 99.999
Nitrogen was purged by flowing a volume% nitrogen gas. The oxygen concentration in the space at that time was 4% by volume. Thereafter, the inside of the four-necked flask was shut off from the outside air, and the temperature was raised to 65 ° C. and 10%
After adding 2.97 g of SD and stirring at 65 ° C. for 30 minutes,
An additional 3.14 g of 10% SD was added. Thereafter, 0.24 ml of water was immediately added as an activator over 60 minutes, and further reacted at 65 ° C. for 120 minutes. Analysis of the PCB concentration of the reaction mixture was performed after the completion of the second 10% SD addition.
The test was performed when 60 minutes and 180 minutes had elapsed. as a result,
The residual PCB concentration after 60 minutes was 17.99 ppm, and the residual PCB concentration after 180 minutes was 16.35 pp.
m.

【0038】実施例1は純度99.999容量%の窒素
ガスを反応容器内に流しつづけて反応を行なった例であ
り、実施例2は純度99容量%の窒素ガスを反応容器内
に流して続けて反応を行なった例であり、実施例3は純
度99.999容量%の窒素ガスの流量を減らして実施
例1と同様に反応を行なった例である。いずれの場合
も、60分以内にPCBの分解が完全に行なわれた。
Example 1 is an example in which the reaction was carried out by continuously flowing nitrogen gas having a purity of 99.999% by volume into the reaction vessel, and Example 2 was conducted by flowing nitrogen gas having a purity of 99% by volume into the reaction vessel. Example 3 is an example in which the reaction was continued, and Example 3 was an example in which the reaction was performed in the same manner as in Example 1 except that the flow rate of nitrogen gas having a purity of 99.999% by volume was reduced. In each case, the decomposition of the PCB was complete within 60 minutes.

【0039】一方、比較例1は酸素濃度3容量%で反応
を行なった例であり、比較例2は酸素濃度3.2%で反
応を行なった例であり、比較例3は酸素濃度4容量%で
反応を行なった例である。比較例1では、PCBの分解
に120分を要している。また、比較例2及び3は、い
ずれも純度99.999容量%の窒素ガスで置換を行な
ったが置換が不十分な場合であるが、比較例2ではPC
Bの分解に180分を要し、比較例3ではPCBが完全
に分解されなかった。
On the other hand, Comparative Example 1 is an example in which the reaction was performed at an oxygen concentration of 3% by volume, Comparative Example 2 was an example in which the reaction was performed at an oxygen concentration of 3.2%, and Comparative Example 3 was an example in which the reaction was performed at an oxygen concentration of 4%. %. In Comparative Example 1, it took 120 minutes to decompose the PCB. In Comparative Examples 2 and 3, the replacement was performed with nitrogen gas having a purity of 99.999% by volume, but the replacement was insufficient.
It took 180 minutes to decompose B, and in Comparative Example 3, the PCB was not completely decomposed.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
アルカリ金属分散体により脱ハロゲン化分解処理する方
法において、従来の方法よりも再現性よく安定した難分
解性ハロゲン化合物の無害化処理が出来る難分解性ハロ
ゲン化合物の分解処理方法が提供される。また、本発明
によれば、反応容器の空間部の酸素濃度を極力低く維持
するだけで、従来に比して短時間で完全なハロゲン化合
物の脱ハロゲン化分解処理が可能である。
As described above, according to the present invention,
In a method of dehalogenating and decomposing with an alkali metal dispersion, a method for decomposing a hardly decomposable halogen compound which can stably render the hardly decomposable halogen compound harmless with higher reproducibility than conventional methods is provided. Further, according to the present invention, complete dehalogenation / decomposition treatment of a halogen compound can be performed in a shorter time than in the past by simply maintaining the oxygen concentration in the space of the reaction vessel as low as possible.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】難分解性ハロゲン化合物をアルカリを用い
て脱ハロゲン化反応させる難分解性ハロゲン化合物の分
解処理方法であって、反応系内の酸素濃度を3容量%未
満として難分解性ハロゲン化合物の脱ハロゲン化反応を
行なうことを特徴とする難分解性ハロゲン化合物の分解
処理方法。
1. A method for decomposing a hardly decomposable halogen compound by subjecting the hardly decomposable halogen compound to a dehalogenation reaction using an alkali, wherein the oxygen concentration in the reaction system is less than 3% by volume. A method for decomposing a hardly decomposable halogen compound, comprising subjecting the compound to a dehalogenation reaction.
【請求項2】前記反応系内の酸素濃度を1容量%以下と
して難分解性ハロゲン化合物の脱ハロゲン化反応を行な
う請求項1記載の難分解性ハロゲン化合物の分解処理方
法。
2. The method for decomposing a hardly decomposable halogen compound according to claim 1, wherein the dehalogenating reaction of the hardly decomposable halogen compound is performed by setting the oxygen concentration in the reaction system to 1% by volume or less.
【請求項3】難分解性ハロゲン化合物をアルカリを用い
て脱ハロゲン化反応させる難分解性ハロゲン化合物の分
解処理方法であって、酸素含有量が1容量%以下の不活
性ガス雰囲気下で難分解性ハロゲン化合物の脱ハロゲン
化反応を行なう請求項1又は2記載の難分解性ハロゲン
化合物の分解処理方法。
3. A method for decomposing a hardly decomposable halogen compound by subjecting the hardly decomposable halogen compound to a dehalogenation reaction using an alkali, wherein the hardly decomposable halogen compound is decomposed in an inert gas atmosphere having an oxygen content of 1% by volume or less. The method for decomposing a hardly decomposable halogen compound according to claim 1 or 2, wherein a dehalogenation reaction of the non-decomposable halogen compound is performed.
【請求項4】外気と遮断可能な反応容器内で、難分解性
ハロゲン化合物をアルカリを用いて脱ハロゲン化反応さ
せる難分解性ハロゲン化合物の分解処理方法であって、
前記反応容器の空間部内の酸素濃度を3容量%未満に維
持しながら難分解性ハロゲン化合物の脱ハロゲン化反応
を行なう請求項1記載の難分解性ハロゲン化合物の分解
処理方法。
4. A method for decomposing a hardly decomposable halogen compound, which comprises subjecting the hardly decomposable halogen compound to a dehalogenation reaction using an alkali in a reaction vessel that can be shielded from outside air,
The method for decomposing a hardly decomposable halogen compound according to claim 1, wherein the dehalogenating reaction of the hardly decomposable halogen compound is performed while maintaining the oxygen concentration in the space of the reaction vessel at less than 3% by volume.
【請求項5】前記反応容器の空間部内の酸素濃度を1容
量%以下に維持しながら難分解性ハロゲン化合物の脱ハ
ロゲン化反応を行なう請求項1〜4のいずれかに記載の
難分解性ハロゲン化合物の分解処理方法。
5. The hardly decomposable halogen according to claim 1, wherein the dehalogenating reaction of the hardly decomposable halogen compound is performed while maintaining the oxygen concentration in the space of the reaction vessel at 1% by volume or less. Compound decomposition method.
【請求項6】前記アルカリとして、アルカリ金属分散体
を用いる請求項1〜5のいずれかに記載の難分解性ハロ
ゲン化合物の分解処理方法。
6. The method according to claim 1, wherein an alkali metal dispersion is used as said alkali.
【請求項7】外気と遮断可能な反応容器内で、難分解性
ハロゲン化合物とアルカリ金属分散体の混合物に活性化
剤を添加する工程を有する請求項1〜6のいずれかに記
載の難分解性ハロゲン化合物の分解処理方法。
7. The method according to claim 1, further comprising a step of adding an activator to the mixture of the hardly decomposable halogen compound and the alkali metal dispersion in a reaction vessel capable of shutting off the outside air. Method for decomposing a reactive halogen compound.
【請求項8】外気と遮断可能な反応容器内で、難分解性
ハロゲン化合物とアルカリ金属分散体の混合物に活性化
剤を添加して脱ハロゲン化反応を行なう難分解性ハロゲ
ン化合物の分解処理方法であって、前記反応容器の空間
部内の酸素濃度を3容量%未満に維持しながら活性化剤
を添加する工程を有する難分解性ハロゲン化合物の分解
処理方法。
8. A method for decomposing a hardly decomposable halogen compound, wherein an activator is added to a mixture of a hardly decomposable halogen compound and an alkali metal dispersion in a reaction vessel which can be shielded from the outside air to carry out a dehalogenation reaction. A method for decomposing a hardly decomposable halogen compound, comprising the step of adding an activator while maintaining the oxygen concentration in the space of the reaction vessel at less than 3% by volume.
【請求項9】前記反応容器の空間部内の酸素濃度を1容
量%未満に維持しながら活性化剤を添加する工程を有す
る請求項8記載の難分解性ハロゲン化合物の分解処理方
法。
9. The method for decomposing a hardly decomposable halogen compound according to claim 8, further comprising the step of adding an activating agent while maintaining the oxygen concentration in the space of the reaction vessel at less than 1% by volume.
【請求項10】前記活性化剤の添加終了後において反応
混合物中の難分解性ハロゲン化合物の残存量が1ppm
以下であることを特徴とする請求項7〜9のいずれかに
記載の難分解性ハロゲン化合物の分解処理方法。
10. After the completion of the addition of the activator, the residual amount of the hardly decomposable halogen compound in the reaction mixture is 1 ppm.
The method for decomposing a hardly decomposable halogen compound according to any one of claims 7 to 9, wherein:
JP2001050948A 2001-02-26 2001-02-26 Method for decomposing a hardly decomposable halogen compound Expired - Lifetime JP4938931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050948A JP4938931B2 (en) 2001-02-26 2001-02-26 Method for decomposing a hardly decomposable halogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050948A JP4938931B2 (en) 2001-02-26 2001-02-26 Method for decomposing a hardly decomposable halogen compound

Publications (2)

Publication Number Publication Date
JP2002255860A true JP2002255860A (en) 2002-09-11
JP4938931B2 JP4938931B2 (en) 2012-05-23

Family

ID=18911828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050948A Expired - Lifetime JP4938931B2 (en) 2001-02-26 2001-02-26 Method for decomposing a hardly decomposable halogen compound

Country Status (1)

Country Link
JP (1) JP4938931B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215920A (en) * 1996-02-09 1997-08-19 Nippon Soda Co Ltd Method for treating halogen compound
JPH09216838A (en) * 1996-02-09 1997-08-19 Nippon Soda Co Ltd Decomposition of halogen compound
JPH1176756A (en) * 1997-09-10 1999-03-23 Sumitomo Heavy Ind Ltd Low temperature pyrolysis of dioxins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215920A (en) * 1996-02-09 1997-08-19 Nippon Soda Co Ltd Method for treating halogen compound
JPH09216838A (en) * 1996-02-09 1997-08-19 Nippon Soda Co Ltd Decomposition of halogen compound
JPH1176756A (en) * 1997-09-10 1999-03-23 Sumitomo Heavy Ind Ltd Low temperature pyrolysis of dioxins

Also Published As

Publication number Publication date
JP4938931B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JPS625008A (en) Method of decomposing noxious organic halide
US5663479A (en) Process for the chemical decomposition of halogenated organic compounds
JP4514284B2 (en) Method for treating organohalogen compounds
JP2002255860A (en) Method for carrying out decomposition treatment of slightly decomposable halogen compound
JP2001294539A (en) Method for dehalogenating organic halogen compound
JP2918542B1 (en) Method for treating organic halogen compounds
JP3011089B2 (en) Decomposition method of halogen compounds
JPH1128443A (en) Method for decomposing halogen compound
US5545800A (en) Clean process to destroy arsenic-containing organic compounds with recovery of arsenic
JPH08141107A (en) Decomposing method for organic compound halide
TWI773455B (en) Processing method for decomposing and removing dioxin in material
JPS63192468A (en) Decomposition of chloride at low temperature
JP4182033B2 (en) Energy-saving decomposition method of organic halogen compounds
JP2004115411A (en) Method for decomposing hardly decomposable organic halogen compound
JP2002187858A (en) Method for decomposing recalcitrant halogen compound
JP2001231882A (en) Method for dehalogenation of organic halogen compound
JP2005220421A (en) Alkali metal dispersion, and method for decomposing persistent halogen compound by using the dispersion
JP2003220375A (en) Method for decomposing organochlorine compound
JP3753959B2 (en) Combustion exhaust gas treatment equipment
JP2001293465A (en) Treating agent and treating method for contaminated medium
JPH11114517A (en) Method for decomposing pcb
JPH09215920A (en) Method for treating halogen compound
JP2004201702A (en) Method for dechloronating polychlorinated biphenyl mixture
KR20060071566A (en) The treatment method of pcbs contained in transformer oil
JP2006021200A (en) Combustion exhaust gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4938931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term