JP2002249813A - Rotary hearth type reducing furnace operating method - Google Patents

Rotary hearth type reducing furnace operating method

Info

Publication number
JP2002249813A
JP2002249813A JP2001045287A JP2001045287A JP2002249813A JP 2002249813 A JP2002249813 A JP 2002249813A JP 2001045287 A JP2001045287 A JP 2001045287A JP 2001045287 A JP2001045287 A JP 2001045287A JP 2002249813 A JP2002249813 A JP 2002249813A
Authority
JP
Japan
Prior art keywords
hearth
agglomerate
mass
powder
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001045287A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugidachi
宏志 杉立
Takao Harada
孝夫 原田
Osamu Tsuchiya
脩 土屋
Hidetoshi Tanaka
英年 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001045287A priority Critical patent/JP2002249813A/en
Publication of JP2002249813A publication Critical patent/JP2002249813A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a rotary hearth type reducing furnace operating method for manufacturing reduced metal which is capable of minimizing the increase of the facility cost and the operation cost, preventing firm plate-like fixed matter from being built up on a hearth to facilitate the discharge of the fixed matter, preventing or reducing the wear of a blade tip of a screw of a discharging device, performing the continuous operation for a long time, and achieving high rate of operation. SOLUTION: Fixing suppressing agent is added in advance to agglomerate containing powder metal oxide and powder carbonaceous substance, and charged onto the hearth by a charging unit so that the fixing-suppressing agent is dispersed in the fixed matter formed on the hearth. When reduced iron is scraped outside the furnace by the discharging device, the fixed matter is scraped while applying the compression force at the same time, thus generating cracks in the fixed matter with the fixing suppressing agent as a starting point, and the fixed matter is peeled from the hearth while splitting into small pieces, and scraped out together with reduced iron.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転炉床炉を用い
て金属酸化物から還元金属を製造する方法に関し、特
に、炉床上に強固な固着物が形成されることを防止して
長期連続操業を可能とする操業方法の改善に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing reduced metal from metal oxides using a rotary hearth furnace, and more particularly, to a method for preventing the formation of strong adhered substances on a hearth for a long period of time. It relates to the improvement of the operation method that enables the operation.

【0002】[0002]

【従来の技術】近年、電気炉による鋼材の製造が盛んに
なるにつれ、その主原料であるスクラップの需給の逼迫
や、電気炉での高級鋼製造に対する要請から還元鉄の需
要が増大しつつある。また、環境対策の観点から、従来
廃棄等されていた未利用の製鉄所や電気炉工場で発生す
るダスト類に含まれる鉄、Ni、Cr分等を還元金属と
して回収し、高炉、転炉、電気炉等の原料として再利用
する試みもさかんに行われている。
2. Description of the Related Art In recent years, as the production of steel products using an electric furnace has become popular, the demand for reduced iron has been increasing due to the tight supply and demand of scrap, which is the main raw material, and the demand for the production of high-grade steel in electric furnaces. . Also, from the viewpoint of environmental measures, iron, Ni, Cr etc. contained in dust generated at unused steel mills and electric furnace factories that have been discarded in the past are collected as reducing metals, and blast furnaces, converters, Attempts to reuse it as a raw material for electric furnaces and the like have been actively made.

【0003】還元鉄を製造するプロセスのひとつとし
て、粉状の鉄鉱石と粉状の石炭やコークスなどの炭材と
を混合して塊成化物、例えばペレットとなし、これを回
転炉床炉(回転炉床式還元炉)に装入して高温に加熱す
ることにより鉄鉱石中の酸化鉄を還元して固体状金属鉄
を得る方法が注目されている(例えば、特公昭45−1
9569号公報、特開平11−279611公報な
ど)。
[0003] As one of the processes for producing reduced iron, powdered iron ore is mixed with carbonaceous material such as powdered coal or coke to form agglomerates, for example, pellets, which are then converted into a rotary hearth furnace ( Attention has been paid to a method of reducing the iron oxide in iron ore to obtain solid metallic iron by charging it into a rotary hearth reduction furnace and heating it to a high temperature (for example, Japanese Patent Publication No. 45-1).
9569, JP-A-11-279611, etc.).

【0004】なお、この還元方法は、金属鉄の製造のみ
でなく、Ni、Cr等の非鉄金属をそれらの酸化物から
還元して製造するのにも用いることができる。以下、
「従来の技術」、「発明の実施の形態」等においては、
金属鉄の製造のみについて説明するが、必ずしもこれに
限定されるものではなく、他の非鉄金属の製造について
も同様に本発明が適用できるものである。
This reduction method can be used not only for the production of metallic iron but also for the production of non-ferrous metals such as Ni and Cr by reducing them from their oxides. Less than,
In "Prior art", "Embodiments of the invention" and the like,
Only the production of metallic iron will be described, but the present invention is not necessarily limited thereto, and the present invention can be similarly applied to the production of other non-ferrous metals.

【0005】従来の回転炉床炉による還元鉄製造プロセ
スの一例(従来技術1)を、図2に示す回転炉床炉の概
略の設備構成を説明する平面図を用いて説明する。
[0005] An example of a conventional reduced iron production process using a rotary hearth furnace (prior art 1) will be described with reference to a plan view illustrating a schematic equipment configuration of a rotary hearth furnace shown in FIG.

【0006】粉状の鉄酸化物および粉状の炭素質物質を
混合して造粒し生ペレットを作る。
[0006] Powdered iron oxide and powdery carbonaceous material are mixed and granulated to produce raw pellets.

【0007】この生ペレットを、乾燥機等によりペレッ
ト内から発生する可燃性揮発分が発火しない程度の温度
域に加熱して付着水分を除去し、乾燥ペレット(以下、
「塊成化物P」と称す。)とする。
[0007] The raw pellets are heated by a dryer or the like to a temperature range in which flammable volatiles generated from the inside of the pellets do not ignite to remove adhering moisture.
It is referred to as "agglomerate P". ).

【0008】この乾燥ペレット(塊成化物P)を適当な
装入装置を用いて回転炉床炉1中に供給して回転炉床2
上にペレット層を形成する。
The dried pellets (agglomerated material P) are supplied into a rotary hearth furnace 1 by using a suitable charging device,
A pellet layer is formed thereon.

【0009】このペレット層を炉内上方に設置したバー
ナー11の燃焼により輻射加熱して還元し、金属化を進
め還元鉄Rが得られる。
The pellet layer is reduced by radiant heating by combustion of a burner 11 installed in the upper part of the furnace, metallization proceeds, and reduced iron R is obtained.

【0010】還元鉄Rを冷却器12により、還元鉄Rに
ガスを直接吹き付けて冷却するか、または、水冷ジャケ
ットで間接冷却してから排出装置13により炉外へ排出
する。
The reduced iron R is cooled by directly blowing a gas to the reduced iron R by the cooler 12 or indirectly cooled by a water-cooled jacket and then discharged to the outside of the furnace by the discharge device 13.

【0011】回転炉床炉による還元鉄製造プロセスにお
いては、塊成化物Pを回転炉床上に載置する際、機械的
衝撃等により塊成化物が粉化して粉が発生する。また、
載置後においても、炉内で高温雰囲気に曝され、炭材中
の揮発成分の脱揮や還元反応によってCO、CO2ガス
等が発生して塊成化物の内圧が上昇し、塊成化物が割れ
たり、爆裂を起して粉が発生したりする場合がある。こ
のようにして発生した粉は回転炉床炉内で還元され金属
鉄の粉となる。
In the reduced iron production process using a rotary hearth furnace, when the agglomerate P is placed on a rotary hearth, the agglomerate is pulverized due to mechanical impact or the like, and powder is generated. Also,
Even after the loading, the furnace is exposed to a high-temperature atmosphere in the furnace, and devolatilization and reduction reaction of volatile components in the carbonaceous material generates CO, CO 2 gas, etc., and the internal pressure of the agglomerate increases. May crack or explode, generating powder. The powder thus generated is reduced in the rotary hearth furnace to become metallic iron powder.

【0012】さらに、回転炉床炉内で還元されて金属化
した塊成化物(還元鉄R)の排出は、通常、スクリュー
式排出装置を用いて行われるが、この際にも還元鉄が機
械的ハンドリングを受けて粉が発生する。
Further, the agglomerates (reduced iron R) reduced and metallized in the rotary hearth furnace are usually discharged using a screw-type discharge device. Powder is generated due to mechanical handling.

【0013】このようにして生じた粉は、排出装置によ
って完全に除去することは困難であり、一部は炉床上に
残ったり、排出装置によって炉床表面に擦り込まれたり
する。そして、粉が炉内に滞留すると、粉同士が高温で
焼結して炉床上に固着し、その固着物の上に新たな粉が
堆積して成長する。粉は金属鉄だけでなく鉄酸化物中の
脈石や炭素質物質中の灰分などに由来する鉱物成分(ス
ラグ成分)をも含有しており、この鉱物成分(スラグ成
分)が炉床上で溶融・凝固を繰り返す。また、排出装置
により金属鉄とともにスラグ成分が圧縮、圧延されるこ
とによって、金属鉄とスラグ成分が緻密に混在した高い
硬度の組織を有する板状固着物が炉床上に形成される。
The powder generated in this manner is difficult to completely remove by the discharge device, and part of the powder remains on the hearth or is rubbed into the hearth surface by the discharge device. When the powder stays in the furnace, the powder sinters at a high temperature and adheres to the hearth, and new powder accumulates and grows on the adhered material. The powder contains not only metallic iron but also mineral components (slag components) derived from gangue in iron oxides and ash in carbonaceous materials, and these mineral components (slag components) melt on the hearth.・ Repeat coagulation. Further, the slag component is compressed and rolled together with the metallic iron by the discharging device, so that a plate-like fixed substance having a high hardness structure in which the metallic iron and the slag component are densely mixed is formed on the hearth.

【0014】排出装置は、その機械的強度を確保するた
め適当な方法により冷却されているが、炉床上の板状固
着物は硬く高温であるため、排出装置の刃先は板状固着
物に接触する際に発生する摩擦熱等によって温度が上昇
し摩耗してしまう。そのため、しばしば操業を中断して
排出装置のスクリューを取り替える作業を必要とし、稼
働率の低下やメンテナンス費用の上昇等が大きな問題と
なっている(第1の問題点)。
The discharge device is cooled by an appropriate method in order to ensure its mechanical strength. However, since the plate-like fixed material on the hearth is hard and hot, the cutting edge of the discharge device contacts the plate-like fixed material. The temperature rises due to frictional heat or the like generated during the heating and wear occurs. For this reason, it is often necessary to interrupt the operation and replace the screw of the discharge device, and a decrease in the operating rate and an increase in maintenance cost are serious problems (first problem).

【0015】さらには、ときとして、この板状固着物が
大きく(広く)成長した後、排出装置のスクリューで引
っ掻かれて炉床から剥がされ、スクリューに巻き付いた
り、引っかかったりするなど重大な操業上の問題を引き
起こすこともある(第2の問題点)。
Further, sometimes, after the plate-like substance grows large (wide), it is scratched by the screw of the discharging device and peeled off from the hearth, and a serious operation such as winding or catching on the screw is caused. The above problem may be caused (second problem).

【0016】そこで、これらの問題点のうち第1の問題
点に対処するため、排出装置のスクリューの羽根の冷却
方法(構造)を工夫して刃先の摩耗を低減する提案が種
々なされている。
To address the first of these problems, various proposals have been made to reduce the wear of the cutting edge by devising a method (structure) of cooling the blades of the screw of the discharge device.

【0017】例えば、特開昭63−91484号公報に
開示されている発明(従来技術2)は、羽根を中空にし
てその中に冷却水を流すことによって羽根を冷却し、羽
根の腐食による損耗を低減させようとするものである。
For example, in the invention disclosed in Japanese Patent Application Laid-Open No. 63-91484 (prior art 2), the blades are cooled by hollowing the blades and flowing cooling water through the hollows, and the blades are worn away by corrosion. Is to be reduced.

【0018】また、US5,924,861に開示されて
いる発明(従来技術3)は、排出装置を囲むように水冷
管を配置してその輻射冷却によって羽根を冷却し、羽根
の腐食による損耗や刃先の摩耗を低減させようとするも
のである。
In the invention disclosed in US Pat. No. 5,924,861 (prior art 3), a water cooling tube is disposed so as to surround a discharge device, and the blades are cooled by radiation cooling. The purpose is to reduce the wear of the cutting edge.

【0019】ところが、特開昭63−91484号公報
に開示されている発明(従来技術2)では、羽根を水冷
した場合であっても、高温で硬度の高い炉床に接する刃
先部の温度は高くなり、刃先の摩耗の軽減にはあまり効
果がない。しかも、刃先の摩耗が進行して冷却水が外に
漏れ出すと製品である還元鉄を再酸化させてしまう。
However, in the invention disclosed in Japanese Patent Application Laid-Open No. 63-91484 (prior art 2), even when the blades are water-cooled, the temperature of the cutting edge in contact with the high-temperature, high-hardness hearth is not increased. It is not so effective in reducing the wear of the cutting edge. Moreover, when the wear of the cutting edge progresses and the cooling water leaks out, the reduced iron product is reoxidized.

【0020】また、US5,924,861に開示されて
いる発明(従来技術3)では、水冷管による輻射冷却に
よって間接的な冷却方法を用いているので、上述のよう
な刃先の摩耗による冷却水の漏れの問題はないが、間接
的な冷却のため上記の発明(従来技術2)よりさらに刃
先部を冷却する効果は小さく、刃先の摩耗に対してはほ
とんど効果がない。
In the invention (prior art 3) disclosed in US Pat. No. 5,924,861, an indirect cooling method is used by radiant cooling using a water cooling tube. Although there is no problem of leakage of the cutting edge, the effect of cooling the cutting edge portion is smaller than that of the above invention (prior art 2) due to indirect cooling, and has little effect on the wear of the cutting edge.

【0021】このように、単に羽根を冷却する方法を工
夫することのみでは、第1の問題点である刃先の摩耗の
問題を解決することはできないうえ、第2の問題点は全
く解決されない。
As described above, simply devising a method of cooling the blades cannot solve the first problem, that is, the problem of wear of the cutting edge, and the second problem cannot be solved at all.

【0022】このため、上記第1および第2の問題点を
根本的に解決すべく、炉床上に固着物が形成されない方
法または固着物が形成されても操業上問題とならないう
ちに除去できる方法の開発が要請されており、例えば、
以下の提案がなされているが、これらについても十分に
解決策を示すものではない。
[0022] Therefore, in order to fundamentally solve the first and second problems, a method in which no solid matter is formed on the hearth or a method in which even if the solid matter is formed, it can be removed without causing a problem in operation. Development is requested, for example,
The following proposals have been made, but they do not provide a sufficient solution.

【0023】特開平11−50120号公報に開示され
ている発明(従来技術4)は、炉床上に滞留する金属鉄
の粉や固着物を除去するため、噴流ガスで吹き飛ばして
吸引フードで回収する方法、回転羽根付き箒で掃き出す
方法、およびスクレーパーで掻き取る方法を提案したも
のである。しかし、噴射ガス流で吹き飛ばす方法では、
炉床に強固に固着した固着物の除去は困難であり、ま
た、吹き飛ばされた金属鉄の粉が吸引フード内に付着す
る問題がある。また、回転羽根付き箒で掃き出す方法で
は、やはり炉床に強固に固着した固着物の除去は困難で
ある。さらに、スクレーパーで掻き取る方法では、前述
したように、スクレーパーで金属鉄の粉が押しつぶされ
て圧縮、圧延され、かえって固着物の生成を助長する可
能性が高い問題などがあった。
In the invention disclosed in Japanese Patent Application Laid-Open No. 11-50120 (prior art 4), in order to remove metal iron powder and adhered matter remaining on the hearth, the powder is blown off by a jet gas and collected by a suction hood. It proposes a method, a method of sweeping with a rotating broom, and a method of scraping with a scraper. However, with the method of blowing off with a jet gas flow,
It is difficult to remove the adhered matter firmly adhered to the hearth, and there is a problem that the blown-off metal iron powder adheres to the suction hood. Also, with the method of sweeping with a broom with rotating blades, it is also difficult to remove the solid matter firmly fixed to the hearth. Further, in the method of scraping with a scraper, as described above, there is a problem that there is a high possibility that the metal iron powder is crushed by the scraper, compressed and rolled, and rather promotes the formation of adhered substances.

【0024】また、特開平10−140221号公報に
開示されている発明(従来技術5)は、先ず炉床上に粉
状の還元剤を敷き、その上に粉状鉄原料と粉状固体還元
剤とバインダーからなる板状成形物を載置し高温加熱す
ることにより、板状成形物と炉床の固着を防止しつつ板
状成形物を還元して還元鉄が製造できるとするものであ
る(いわゆる「床敷炭材法」)。しかしながら、この方
法には以下の問題点がある。
The invention (prior art 5) disclosed in Japanese Patent Application Laid-Open No. 10-140221 discloses a method in which a powdery reducing agent is first spread on a hearth, and a powdery iron raw material and a powdery solid reducing agent are placed thereon. By placing a plate-like molded product composed of a binder and a binder and heating it at a high temperature, the plate-like molded product can be reduced to produce reduced iron while preventing sticking between the plate-like molded product and the hearth ( The so-called "floor carbon material method"). However, this method has the following problems.

【0025】(1) 床敷炭材を炉床上に敷くための余分の
装入装置を必要とする。
(1) An extra charging device for laying the floor covering carbon material on the hearth is required.

【0026】(2) 板状成形物を炉床上に載置する前に床
敷炭材を敷く必要があるため、余分の炉床面積を必要と
し、還元炉設備が大きくなる。
(2) Since it is necessary to lay a floor bedding carbon material before placing the plate-like molded product on the hearth, an extra hearth area is required and the reduction furnace equipment becomes large.

【0027】(3) 床敷炭材を炉床上に薄く均一に敷くこ
とは困難であるので、板状成形物と炉床の固着を避ける
ためには、床敷炭材を厚めに敷く必要がある。そして、
この床敷炭材の上に、板状成形物を装入する際に板状成
形物に随伴される粉や炉内で板状成形物より発生する粉
が堆積する。仮に、還元鉄を取り出す際に還元鉄のみを
排出して床敷炭材を炉内に残すようにすると、粉も一緒
に炉内に残って長時間炉内に滞留し、上述と同様の機構
で床敷炭材上に大きな(広い)板状焼結物が形成され
る。その結果、床敷炭材の存在によりこの板状焼結物が
炉床に固着することは回避されたとしても、排出装置の
スクリューの刃先の摩耗の問題や板状焼結物の剥離によ
る操業上の問題が生じ得る。したがって、これらの問題
を回避するためには、還元鉄の取り出しの都度、粉をで
きるだけ排出・除去しておく必要があり、少なくとも床
敷炭材層のうち、粉が堆積する上部の相当部分を還元鉄
とともに排出し、替わりに新たな炭材を追加することが
必要となる。そうすると、還元鉄単位質量当たりの固体
還元剤原単位が上昇するばかりでなく、床敷炭材の加熱
に要した熱量が無駄となり燃料原単位も上昇する。
(3) Since it is difficult to spread the floor covering carbon material thinly and uniformly on the hearth, it is necessary to spread the floor covering carbon material thickly in order to avoid sticking of the plate-like molded product and the hearth. is there. And
The powder accompanying the plate-like molded product when the plate-like molded product is charged and the powder generated from the plate-shaped molded product in the furnace accumulate on the floor covering carbon material. If the reduced iron is only discharged when the reduced iron is taken out and the bed carbonaceous material is left in the furnace, the powder also remains in the furnace together and stays in the furnace for a long time, and the same mechanism as described above is used. As a result, a large (wide) plate-like sintered material is formed on the carbon floor material. As a result, even if this plate-like sintered material is prevented from sticking to the hearth due to the presence of the floor covering carbon material, the operation due to the problem of the wear of the cutting edge of the screw of the discharge device and the peeling of the plate-like sintered material. The above problems can occur. Therefore, in order to avoid these problems, it is necessary to discharge and remove the powder as much as possible every time the reduced iron is taken out. It is necessary to discharge with reduced iron and to add new carbon materials instead. In this case, not only does the solid unit of reducing agent per unit mass of reduced iron increase, but also the amount of heat required for heating the floor carbon material becomes useless, and the unit of fuel increases.

【0028】以上のように、この提案では設備コスト、
操業コストとも大幅に上昇するため、実用化には至って
いない。
As described above, in this proposal, the equipment cost,
The operation cost has risen significantly, so it has not been put into practical use.

【0029】[0029]

【発明が解決しようとする課題】そこで本発明の目的
は、設備コストおよび操業コストの上昇を最小限としつ
つ、炉床に強固な板状固着物が形成することを防止して
固着物の排出を容易にすることにより、排出装置のスク
リューの刃先の摩耗を防止乃至低減するとともに、板状
固着物の剥離を防止して長期の連続操業を可能とし、高
い稼働率が達成できる回転炉床式還元炉の操業方法を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to minimize the increase in equipment costs and operating costs while preventing the formation of strong plate-like fixed substances on the hearth and discharging the fixed substances. Rotating hearth type which can prevent or reduce the wear of the cutting edge of the screw of the discharging device, prevent peeling of the plate-like fixed material, enable long-term continuous operation, and achieve a high operation rate An object of the present invention is to provide a method for operating a reduction furnace.

【0030】[0030]

【課題を解決するための手段】第1発明(請求項1の発
明)は、粉状金属酸化物と粉状炭素質物質を含む塊成化
物を加熱、還元して還元金属を製造する回転炉床式還元
炉の操業方法であって、前記塊成化物を前記回転炉床式
還元炉に装入するに際し、前記塊成化物に、予め固着抑
制材を添加しておくことを特徴とする回転炉床式還元炉
の操業方法である。
A first invention (an invention of claim 1) is a rotary furnace for producing a reduced metal by heating and reducing an agglomerate containing a powdered metal oxide and a powdery carbonaceous material. A method for operating a bed-type reduction furnace, wherein the agglomerate is charged into the rotary hearth-type reduction furnace, wherein the agglomerate is preliminarily added with a sticking inhibitor. This is a method of operating a hearth-type reduction furnace.

【0031】ここに、「固着抑制材」とは、塊成化物が
炉床に載置された状態において、塊成化物の回りに散在
する物質または塊成化物の表面を被覆する物質をいう。
この固着抑制材は板状等の固着物の形成を防止できる。
Here, the term "adhesion inhibitor" refers to a substance scattered around the agglomerate or a substance covering the surface of the agglomerate when the agglomerate is placed on the hearth.
This adhesion suppressing material can prevent the formation of a fixed substance such as a plate.

【0032】第2発明(請求項2の発明)は、第1発明
(請求項1の発明)において、前記固着抑制材が、石炭
等の炭素質物質を含むものであることを特徴とする。
The second invention (the invention of the second invention) is characterized in that, in the first invention (the invention of the first invention), the sticking suppressing material contains a carbonaceous substance such as coal.

【0033】第1発明又は第2発明(請求項1又は2の
発明)によれば、固着抑制材が予め塊成化物に添加され
た後、炉床上に装入されるので、塊成化物に随伴される
粉と固着抑制材が混ざり合った状態で炉床上に載置され
る。そして、炉床上で、この混合粉に、還元中に塊成化
物から発生した粉や還元金属排出時に発生した粉が追加
される。この粉が炉床上に残留して炉内に長時間滞留し
ても、固着抑制材として添加した炭素質物質の粒子が還
元金属やスラグ成分の間に存在してこれらの結合を妨げ
るので、大きな(広い)板状固着物には成長しない。ま
た、例え固着物となっても、比較的小さな力により固着
抑制材としての炭素質物質の粒子が起点となって固着物
に亀裂が発生し、小片となって炉床から容易に分離でき
る。また、固着抑制材を炉床に敷くための装入装置が不
要で、かつ炉床面積を増加する必要がない。さらに、固
着抑制材の添加量は「床敷炭材法」(従来技術5)に比
べて少なくてよいので固体還元剤原単位や燃料原単位の
大幅な上昇が防止できる。
According to the first invention or the second invention (the invention of claim 1 or 2), after the sticking inhibitor is added to the agglomerate in advance and then charged on the hearth, It is placed on the hearth in a state where the accompanying powder and the adhesion inhibitor are mixed. Then, on the hearth, a powder generated from the agglomerate during the reduction and a powder generated during the discharge of the reduced metal are added to the mixed powder. Even if this powder remains on the hearth and stays in the furnace for a long time, the particles of the carbonaceous substance added as a sticking suppressant are present between the reduced metal and the slag component and hinder the bonding between them. It does not grow on (wide) plate-like fixed matter. Moreover, even if it becomes a fixed substance, a crack is generated in the fixed substance due to a particle of the carbonaceous substance as a fixing inhibitor due to a relatively small force, and it can be easily separated from the hearth as small pieces. Further, a charging device for laying the adhesion suppressing material on the hearth is not required, and the hearth area does not need to be increased. Furthermore, the amount of the adhesion inhibitor added may be smaller than that of the "bed carbon material method" (prior art 5), so that it is possible to prevent a large increase in the unit consumption of the solid reducing agent and the unit consumption of the fuel.

【0034】第3発明(請求項3の発明)は、第1又は
第2発明(請求項1又は2の発明)において、下式
(1)で定義される発生粉余剰C%が3.8質量%以上
となるように、固着抑制材の添加量を調整することを特
徴とする。
The third invention (the invention of claim 3) is the first or second invention (the invention of claim 1 or 2) wherein the surplus C% of the generated powder defined by the following formula (1) is 3.8. It is characterized in that the addition amount of the adhesion inhibitor is adjusted so as to be at least% by mass.

【0035】 〔発生粉余剰C%〕=〔塊成化物に含まれる炭素の質量%〕−〔塊成化物に含 まれる、鉄および亜鉛と結合している酸素の質量%〕×12/16+〔塊成化物 装入質量に対する固着抑制材の添加質量の割合〕×〔固着抑制材に含まれる炭素 の質量%〕… 式(1) なお、式(1)において、「塊成化物」および「固着抑
制材」は、還元前のものを意味する。
[Excess C% of generated powder] = [% by mass of carbon contained in the agglomerate] − [% by mass of oxygen combined with iron and zinc contained in the agglomerate] × 12/16 + [Ratio of the mass of the adhesion inhibitor added to the mass of the agglomerate charged] x [% by mass of carbon contained in the adhesion inhibitor] Formula (1) In the formula (1), "agglomerated material" and ""Anti-stickingmaterial" means that before reduction.

【0036】固着抑制材の添加量を調整して、発生粉余
剰C%を上記所定値以上とすることにより、固着物の圧
縮強度を大幅に低下できるので(後述の実施例1参
照)、第1又は第2発明(請求項1又は2の発明)の作
用効果が確実に得られる。
The compressive strength of the adhered material can be significantly reduced by adjusting the amount of the adhesion inhibitor added to make the surplus C% of the generated powder equal to or more than the predetermined value (see Example 1 described later). The operation and effect of the first or second invention (the invention of claim 1 or 2) can be reliably obtained.

【0037】なお、前記粉状炭素質物質からなる固着抑
制材に替えて、CaO、MgO、Al23の何れか一以
上の成分を主成分とする粉状物質からなる固着抑制材を
用いてもよい(第4発明)。あるいは、粉状炭素質物質
と、CaO、MgO、Al23の何れか一以上の成分を
主成分とする粉状物質との混合物を用いてもよい(第5
発明)。
It is to be noted that, instead of the sticking suppressing material made of the powdery carbonaceous material, a sticking suppressing material made of a powdery material containing at least one of CaO, MgO and Al 2 O 3 as a main component is used. (4th invention). Alternatively, a mixture of a powdery carbonaceous substance and a powdery substance mainly containing at least one of CaO, MgO, and Al 2 O 3 may be used (fifth embodiment).
invention).

【0038】第4又は第5発明によれば、CaO、Mg
O、Al23成分は、還元温度(最高1400℃程度)
で溶融しない高い融点を有するので上記粉状炭素質物質
と同様の作用効果を奏する。なお、CaO、MgO、A
23成分は、粉中の鉱物成分と一部反応してスラグを
生成するが、このスラグは、粉中の鉱物成分のみから生
成されるスラグより融点が高くなるため、排出装置によ
り圧縮されても従来技術1のようには緻密な組織を形成
せず問題とならない。また、CaO、MgO、Al23
成分からなる物質は安価なものが多く、かつこれらの成
分が製品還元金属に混入しても少量であるので、高炉、
転炉、電気炉等での使用において害とならず、最終的に
はスラグとして除去されるので問題とならない。
According to the fourth or fifth invention, CaO, Mg
O, Al 2 O 3 component, reduction temperature (up to about 1400 ° C)
And has a high melting point that does not melt, so that the same effect as the above-mentioned powdery carbonaceous material can be obtained. Note that CaO, MgO, A
The l 2 O 3 component partially reacts with the mineral component in the powder to form slag, which has a higher melting point than slag generated from only the mineral component in the powder. Even if this is done, a fine structure is not formed as in the prior art 1, and there is no problem. In addition, CaO, MgO, Al 2 O 3
Many substances consisting of components are inexpensive, and even if these components are mixed in the product reduced metal in a small amount, the blast furnace,
It is not harmful when used in converters, electric furnaces, and the like, and is not a problem because it is finally removed as slag.

【0039】また、前記粉状炭素質物質からなる固着抑
制材に替えて、液状炭素質物質又はスラリー状炭素質物
質からなる固着抑制材を用いてもよい(第6発明)。あ
るいは、液状炭素質物質又はスラリー状炭素質物質と、
CaO、MgO、Al23の何れか一以上の成分を主成
分とする粉状物質とからなる固着抑制材を用いてもよい
(第7発明)。
Further, instead of the sticking suppressing material made of the powdery carbonaceous material, a sticking suppressing material made of a liquid carbonaceous material or a slurry-like carbonaceous material may be used (a sixth invention). Alternatively, a liquid carbonaceous substance or a slurry-like carbonaceous substance,
It is also possible to use a sticking suppressing material composed of a powdery substance containing one or more of CaO, MgO and Al 2 O 3 as main components (seventh invention).

【0040】第6又は第7発明によれば、塊成化物の表
面が液状又はスラリー状炭素質物質に被覆され、この液
状又はスラリー状炭素質物質は、炉内で加熱されて乾留
反応により固化して塊成化物表面を固くし、機械的ハン
ドリングによる塊成化物表面からの粉発生が減少させ
る。また、粉が発生してもその粉中には乾留反応により
固化した炭素質物質が粉状で高濃度に含まれるので、さ
らに効果が大きい。
According to the sixth or seventh aspect, the surface of the agglomerate is coated with a liquid or slurry-like carbonaceous material, and the liquid or slurry-like carbonaceous material is heated in a furnace and solidified by a dry distillation reaction. To harden the agglomerate surface and reduce powder generation from the agglomerate surface due to mechanical handling. Further, even if powder is generated, the carbonaceous material solidified by the dry distillation reaction is contained in the powder at a high concentration, so that the effect is further enhanced.

【0041】[0041]

【発明の実施の形態】本発明の実施の形態を、図1およ
び図2を参照しながら、以下に詳細に説明する。ここ
に、図1は、本発明の特徴部分である固着抑制材を塊成
化物に添加する方法の一例を示す図であり、図2は、従
来技術と共通の回転炉床炉の概略設備構成を説明する平
面図である。なお、本発明の実施の形態は、還元鉄の製
造を例として説明を行う。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS. Here, FIG. 1 is a diagram showing an example of a method of adding a sticking suppressing material, which is a characteristic part of the present invention, to agglomerates, and FIG. 2 is a schematic equipment configuration of a rotary hearth furnace common to the prior art. It is a top view explaining. Note that the embodiment of the present invention will be described by taking the production of reduced iron as an example.

【0042】まず、図1を用いて説明を行う。粉状鉄酸
化物と粉状炭素質物質からなる塊成化物Pを乾燥機5で
含有水分量1質量%以下程度まで乾燥し、これに所定量
の固着抑制材Qを添加し、これをパイプ等の装入装置3
により炉床1上に載置する。
First, description will be made with reference to FIG. The agglomerate P composed of the powdered iron oxide and the powdered carbonaceous material is dried by the dryer 5 to a water content of about 1% by mass or less, and a predetermined amount of the sticking suppressing material Q is added thereto, and this is piped. Charging device 3
Is placed on the hearth 1.

【0043】ここで、粉状鉄酸化物としては、従来法と
同様、粉状の鉄鉱石や製鉄所や電気炉工場で発生する鉄
分を含んだダスト、スラッジ、スケール等を単独で、ま
たは2種以上組み合わせて使用することができる。
Here, as the powdered iron oxide, powdered iron ore, iron-containing dust, sludge, scale, etc. generated in ironworks and electric furnace plants may be used alone or in the same manner as in the conventional method. It can be used in combination of more than one species.

【0044】また、固着抑制材の一つである粉状炭素質
物質としては、石炭、コークス粉、石油コークス、チャ
ー、木炭、ピッチ等を単独または2種以上組み合わせて
使用することができる。
As the powdery carbonaceous substance which is one of the sticking suppressing materials, coal, coke powder, petroleum coke, char, charcoal, pitch, etc. can be used alone or in combination of two or more.

【0045】なお、塊成化物Pは特に形状に制限はな
く、ペレット、ブリケット、板状、ナゲット状等いずれ
であってもよい。
The shape of the agglomerate P is not particularly limited, and may be any of pellets, briquettes, plates, nuggets, and the like.

【0046】固着抑制材Qとしては、上記粉状炭素質物
質と同様のものを用いてもよいし、タール、アスファル
ト等の液状炭素質物質や、これら液状炭素質物質に前記
粉状炭素質物質を混合したスラリー状炭素質物質を用い
てもよい。あるいは、炭素質物質(粉状、液状またはス
ラリー状)のかわりに、ドロマイト、石灰石、アルミ
ナ、マグネシア等、若しくはこれらを原料とする煉瓦屑
等、すなわちCaO、MgO、Al23の何れか一以上
の成分を主成分とする粉状高融点物質を用いてもよい。
また、炭素質物質(粉状、液状またはスラリー状)と前
記粉状高融点物質との混合物を用いてもよい。
As the adhesion suppressing material Q, the same material as the above-mentioned powdery carbonaceous material may be used, or a liquid carbonaceous material such as tar or asphalt, or the above-mentioned powdery carbonaceous material may be added to these liquid carbonaceous materials. May be used. Alternatively, instead of the carbonaceous substance (powder, liquid, or slurry), dolomite, limestone, alumina, magnesia, or the like, or brick debris or the like made from these materials, that is, any one of CaO, MgO, and Al 2 O 3 A powdery high melting point substance containing the above components as main components may be used.
Further, a mixture of a carbonaceous substance (powder, liquid or slurry) and the powdery high melting point substance may be used.

【0047】粉状の固着抑制材Qを塊成化物Pに添加す
る方法としては、例えば、図1に示すように、装入装置
3の上部の受入れホッパー7の上方に切り出しホッパー
(固着抑制材添加装置4)を設け、そこから固着抑制材
Qを重力を利用して定量切り出しして受入れホッパー7
内に投入して塊成化物Pに混ぜ込む方法など通常用いら
れる添加方法を採用すればよい。なお、固着抑制材の添
加は、上記場所に限るものではなく、乾燥機5前や乾燥
機5の出口部、あるいは乾燥後の塊成化物Pを受入れホ
ッパー7へ送るベルトコンベア6上で行ってもよい。
As a method of adding the powdery adhesion suppressing material Q to the agglomerate P, for example, as shown in FIG. 1, a cut-out hopper (adhesion suppressing material) is provided above the receiving hopper 7 above the charging device 3. An addition device 4) is provided, from which a fixed amount of the anti-sticking material Q is cut out using gravity to receive a hopper 7.
It is sufficient to adopt a commonly used addition method such as a method of charging the mixture into the inside and mixing with the agglomerate P. The addition of the adhesion inhibitor is not limited to the above-mentioned place, and is performed before the dryer 5 or at the outlet of the dryer 5 or on the belt conveyor 6 which receives the agglomerate P after drying and sends it to the hopper 7. Is also good.

【0048】また、液状またはスラリー状の固着抑制材
Qを塊成化物Pに添加する方法としては、例えば、塊成
化物Pが乾燥機5出口からベルトコンベア6上へ落下す
る場所a、若しくはベルトコンベア6から受入れホッパ
ー7へ落下する場所b、若しくは場所a、bの両方の場
所で、タンク(図示せず)から圧送した固着抑制材を噴
霧する方法を用いれば塊成化物にほぼ均一に固着抑制材
を被覆できるので好ましい。この場合、通常行われるよ
うに、タンクや圧送用配管(図示せず)をスチームトレ
ーサー等で加温すれば、液またはスラリーの粘度を低下
させることができ容易に圧送・噴霧できる。
As a method of adding the liquid or slurry-like sticking suppressing material Q to the agglomerate P, for example, a place a where the agglomerate P falls onto the belt conveyor 6 from the outlet of the dryer 5 or a belt a If the method of spraying the adhesion-suppressing material pumped from a tank (not shown) is used at the place b where the conveyor 6 is dropped to the receiving hopper 7 or at both the places a and b, the agglomeration is almost uniformly fixed. It is preferable because the suppressor can be coated. In this case, as usual, if the tank or the pressure feed pipe (not shown) is heated by a steam tracer or the like, the viscosity of the liquid or slurry can be reduced and the pressure feed / spray can be easily performed.

【0049】粉状炭素質物質からなる固着抑制材の添加
量は、発生粉100質量部に対して7.5質量部以上と
することが好ましく、15質量部以上とすることがさら
に好ましい。これに対する発生粉余剰C%は、それぞれ
+3.8質量%、+10.4質量%である。後述の実施
例で示すごとく、固着抑制材添加量を7.5質量部以上
(発生粉余剰C%を3.8質量%以上)とすることによ
り、固着物の圧縮強度が大幅に低下し、排出機での炉床
からの分離・排出が容易となる。また、固着抑制材添加
量を15質量部以上(発生粉余剰C%を10.4質量%
以上)とすることにより、固着物の強度はさらに低下し
て、室温においては手指で粒状に分離できる程度の強度
となるので、排出機での炉床からの分離・排出がさらに
容易となる。
The addition amount of the sticking suppressor composed of the powdery carbonaceous substance is preferably at least 7.5 parts by mass, more preferably at least 15 parts by mass, per 100 parts by mass of the generated powder. The generated powder surplus C% is + 3.8% by mass and + 10.4% by mass, respectively. As shown in the examples below, by setting the addition amount of the adhesion inhibitor to 7.5 parts by mass or more (the surplus C% of generated powder is 3.8 mass% or more), the compressive strength of the adhered material is significantly reduced, Separation and discharge from the hearth by the discharger becomes easy. Further, the addition amount of the adhesion inhibitor is 15 parts by mass or more (excess C% of generated powder is 10.4% by mass.
By doing so, the strength of the adhered substance is further reduced, and at room temperature, the strength is such that it can be separated into particles by hand. Therefore, separation and discharge from the hearth by the discharger becomes easier.

【0050】粉状炭素質物質からなる固着抑制材の粒度
は、粗すぎると固着物中に散在する固着抑制材の粒子数
が減少して小片化の効果が低下し、一方、細かすぎると
粉砕コストが上昇するだけでなく、塊成化物への添加時
や炉床上への装入時に飛散するなど添加歩留りが悪くな
るので、例えば、後述の実施例で用いた−2mm程度の
粒度とし、操業時において固着物の除去の状況を観察し
つつ適宜粒度を変更して最適粒度を決定すればよい。
If the particle size of the sticking suppressing material made of the powdery carbonaceous material is too coarse, the number of particles of the sticking suppressing material scattered in the adhered substance is reduced, and the effect of fragmentation is reduced. Not only does the cost rise, but also the addition yield deteriorates, such as when it is added to agglomerates or when it is charged onto the hearth, so that the particle size is, for example, about -2 mm used in the examples described below. In some cases, the optimum particle size may be determined by appropriately changing the particle size while observing the state of removal of the adhered matter.

【0051】粉状高融点物質からなる固着抑制材を用い
る場合には、その添加量(添加質量)は、炭素質物質を
固着抑制材として用いる場合に比べ、多めにすることが
好ましい。なぜならば、大きな(広い)固着物の生成を
防止し、固着物を小片に分割するための亀裂を発生させ
る起点となるためには、固着抑制材は固着物内に散在し
てある程度の空間容積を占める必要があり、炭素質物質
に比べ密度の大きいCaO、MgO、Al23を主成分
とする粉状物質を用いる場合、炭素質物質と同様の効果
を得るためには、多めの質量を必要とするためである。
In the case of using a sticking inhibitor made of a powdery high melting point substance, it is preferable that the amount of addition (addition mass) is larger than that in the case where a carbonaceous substance is used as the sticking inhibitor. This is because, in order to prevent the formation of large (wide) adhered substances and to serve as a starting point for generating cracks for dividing the adhered substances into small pieces, the adhesion suppressing material is scattered in the adhered substances and has a certain space volume. When a powdery material having CaO, MgO, or Al 2 O 3 as a main component having a higher density than that of the carbonaceous material is used, in order to obtain the same effect as that of the carbonaceous material, a larger mass is required. Is required.

【0052】また、粉状高融点物質からなる固着抑制材
の粒度は、炭素質物質の粒度に比べやや粗くする方が、
固着抑制材粒子の比表面積を減少させてスラグ生成量を
減少させ、スラグ化しない未反応の高融点物質が多く残
留して固着物の成長を妨げるので好ましい。
Further, it is preferable that the particle size of the adhesion suppressing material composed of the powdery high melting point material is slightly coarser than that of the carbonaceous material.
This is preferable because the specific surface area of the adhesion-suppressing material particles is reduced to reduce the amount of slag produced, and a large amount of unreacted high-melting-point material that does not turn into slag remains to hinder the growth of adhered substances.

【0053】液状またはスラリー状の固着抑制材を用い
る場合には、その添加量(添加質量)は、粉状の炭素質
物質より少なめでよい。なぜならば、液状またはスラリ
ー状の固着抑制材を用いた場合、塊成化物の表面を被覆
した液状炭素質物質が炉内で加熱・固化されて塊成化物
の表面を固くして粉発生量自体を減少させるからであ
る。
When a liquid or slurry-like adhesion inhibitor is used, the amount of addition (addition mass) may be smaller than that of the powdery carbonaceous substance. This is because, when a liquid or slurry-like sticking suppressor is used, the liquid carbonaceous material coated on the surface of the agglomerate is heated and solidified in a furnace to harden the surface of the agglomerate and generate powder itself. It is because it reduces.

【0054】このようにして固着抑制材Qが添加された
塊成化物Pは、装入装置3により炉床2上に載置され
る。この際、装入装置3により炉床2上に載置される際
に塊成化物P同士や塊成化物Pと装入装置3のパイプ内
壁との摩擦等により発生した粉(発生粉A)が、固着抑
制材Qと混ざり合った状態(混合物M)で塊成化物Pと
ともに炉床2上にばら撒かれる。
The agglomerate P to which the adhesion suppressing material Q has been added in this manner is placed on the hearth 2 by the charging device 3. At this time, when the agglomerates P are placed on the hearth 2 by the charging device 3, powder generated due to friction between the agglomerates P or between the agglomerates P and the pipe inner wall of the charging device 3 (generated powder A). Is mixed with the agglomerates P and is spread on the hearth 2 in a state of being mixed with the adhesion suppressing material Q (mixture M).

【0055】次に、図2を用いて説明を行う。そして、
炉床2の回転とともに塊成化物Pが装入装置3から排出
装置13に向かって炉内を移動する間に、炉床2の上部
の炉体14に設置した複数のバーナー11から燃料と酸
素含有ガスを炉内に吹き込み、その吹き込んだ燃料、塊
成化物P中の粉状炭素質物質から発生する可燃性揮発成
分および粉状鉄酸化物が還元されて発生するCOガスを
燃焼させ、炉内雰囲気温度を約1200〜1500℃と
して、前記炉床2上に載置した塊成化物Pを上部から輻
射加熱する。
Next, description will be made with reference to FIG. And
While the agglomerate P moves in the furnace from the charging device 3 toward the discharging device 13 with the rotation of the hearth 2, fuel and oxygen are supplied from the plurality of burners 11 installed in the furnace body 14 above the hearth 2. The contained gas is blown into the furnace, and the blown fuel, combustible volatile components generated from the powdered carbonaceous material in the agglomerate P, and the CO gas generated by reducing the powdered iron oxide are burned, and the furnace is burned. The internal atmosphere temperature is set to about 1200 to 1500 ° C., and the agglomerate P placed on the hearth 2 is radiantly heated from above.

【0056】なお、バーナー11用燃料としては、従来
法と同様、天然ガス、コークス炉ガス、プロパンガス、
ブタンガス等のガス燃料、重油等の液体燃料、または石
炭等の固体燃料のいずれであっても差し支えなく、酸素
含有ガスとしては、空気または酸素富化空気を用いるの
がよい。
The fuel for the burner 11 may be natural gas, coke oven gas, propane gas,
Any gaseous fuel such as butane gas, liquid fuel such as heavy oil, or solid fuel such as coal may be used. As the oxygen-containing gas, air or oxygen-enriched air is preferably used.

【0057】炉床に載置された塊成化物Pは、炉内を移
動する間に炉床2上部からの輻射加熱で約1200〜1
450℃に加熱され、塊成化物P中の粉状鉄酸化物が粉
状炭素質物質により還元されて金属化する。
While moving in the furnace, the agglomerate P placed on the hearth is heated to about 1200 to 1 by radiant heating from the upper part of the hearth 2.
Heated to 450 ° C., the powdered iron oxide in the agglomerate P is reduced by the powdered carbonaceous substance and metallized.

【0058】その間、塊成化物Pの加熱時に発生する粉
(発生粉B)や還元鉄Rの排出時に発生する粉(発生粉
C)が、前記混合物M(発生粉A+固着抑制材Q)上に
さらに追加され(これを混合物Nとする)、この混合物
Nのうち排出装置13によって除去し切れなかった部分
が炉床2上に長時間滞留し蓄積されて焼結・還元が進
み、やがて固着物を形成する。
During this time, the powder (generated powder B) generated when the agglomerate P is heated and the powder (generated powder C) generated when the reduced iron R is discharged are deposited on the mixture M (generated powder A + adhesion inhibitor Q). (This is referred to as a mixture N), and a portion of the mixture N which has not been completely removed by the discharge device 13 stays and accumulates on the hearth 2 for a long time, sintering and reduction proceeds, and eventually the solidification occurs. Form a kimono.

【0059】ここに、発生粉AおよびBは、元々塊成化
物から発生した粉であるので、これらの粉中の炭素質物
質の量は、酸化鉄が金属鉄まで還元されるのにほぼ必要
十分な量(またはやや過剰量)しか含有されていないた
め、これらの粉の還元が終了したとき炭素質物質はほと
んど残らない。また、発生粉Cは還元鉄から発生したも
のであるので、これも炭素質物質をほとんど含まない。
しかし、固着抑制材Qとして添加した炭素質物質または
高融点物質が混合物N(発生粉A+発生粉B+発生粉C
+固着抑制材Q)中に存在するため、固着物中にも炭素
質物質または高融点物質が散在して固着物の焼結反応を
妨げ、固着物が緻密にならず、また大きな(広い)固着
物にまで成長しない。また、液状又はスラリー状炭素質
物質を用いた場合にも、これらの炭素質物質は炉内で加
熱されて乾留反応により固体炭素となるので粉状炭素質
物質と同様の効果を示す。なお、固着抑制材として添加
した炭素質物質は、炉内において塊成化物の近傍に存在
し、還元中に塊成化物から発生するCOリッチガスに覆
われるので、バーナ排ガス中のCO2、H2Oによるガス
化反応が防止され、固体状態で存在し上記作用効果を奏
するものである。
Here, since the generated powders A and B are powders originally generated from agglomerates, the amount of carbonaceous substance in these powders is almost necessary for reducing iron oxide to metallic iron. Since only a sufficient amount (or a slight excess) is contained, little carbonaceous material remains when the reduction of these powders is completed. Further, since the generated powder C is generated from reduced iron, it also hardly contains a carbonaceous substance.
However, the carbonaceous substance or the high melting point substance added as the adhesion suppressing material Q is a mixture N (generated powder A + generated powder B + generated powder C).
+ Because it is present in the adhesion-preventing material Q), the carbonaceous substance or the high-melting-point substance is scattered also in the adhesion, hindering the sintering reaction of the adhesion, and the adhesion is not dense and large (wide). Does not grow to a fixed substance. Also, when a liquid or slurry-like carbonaceous material is used, these carbonaceous materials are heated in a furnace to form solid carbon by a dry distillation reaction, and thus have the same effect as a powdery carbonaceous material. Note that the carbonaceous material added as a fixing suppressor is present in the vicinity of the agglomerate in a furnace, because the covered CO rich gas generated from the agglomerate during the reduction, CO 2 of the burner in the exhaust gas, H 2 The gasification reaction by O is prevented, and it exists in a solid state and has the above-mentioned effects.

【0060】これに対して、従来法においては、固着物
は、発生粉A、BおよびCだけから形成され、したがっ
て固着物中には炭素質物質や高融点物質はほとんど存在
せず、焼結を阻害する物質が存在しないので緻密で大き
な(広い)固着物が生成してしまう。
On the other hand, in the conventional method, the adhered substance is formed only from the generated powders A, B, and C, and therefore, there is almost no carbonaceous substance or high melting point substance in the adhered substance. Since there is no substance that inhibits the adhesion, a dense and large (wide) adhered substance is formed.

【0061】還元が終了し金属化した塊成化物(還元鉄
R)を、回転炉床炉1からの排出時および排出後のハン
ドリングに耐える機械的強度を発現させるために、排出
装置13の手前に設置した冷却器12で1000℃程度
まで冷却する。冷却方法としては、N2 等の不活性ガス
や天然ガス等の炭化水素ガスを還元鉄に直接吹き付ける
方法や、水冷ジャケットで間接的に冷却する方法などの
方法を採用すればよい。この際、固着物も同時に冷却さ
れる。
The metallized agglomerate (reduced iron R) after the reduction is completed is discharged from the rotary hearth furnace 1 and before the discharge device 13 in order to develop mechanical strength enough to withstand handling after the discharge. Is cooled to about 1000 ° C. by the cooler 12 installed at As a cooling method, a method of directly blowing an inert gas such as N 2 or a hydrocarbon gas such as a natural gas to the reduced iron, or a method of indirectly cooling with a water-cooling jacket may be employed. At this time, the adhered matter is also cooled at the same time.

【0062】1000℃程度に冷却した還元鉄Rを排出
装置13で炉外に排出する。排出装置13としては、ス
クリュー方式はもちろんのこと、スクレーパー方式の排
出装置などを採用してもよい。排出装置13で還元鉄R
を炉外に掻き出す際に、同時に固着物に圧縮力を加えつ
つ掻くことによって、固着物中に散在する炭素質物質や
高融点物質を起点に固着物に亀裂が発生し、この亀裂で
区画された固着物の小片は炉床から容易に剥がされ、還
元鉄Rとともに掻き出される。還元鉄Rとともに掻き出
された固着物は、必要により、篩い分け等して取り除い
てやればよい。あるいは、固着物は鉄分、炭素質物質、
スラグ成分等で構成されているので、篩い分け等せずそ
のまま還元鉄原料の一部として用いてもよい。
The reduced iron R cooled to about 1000 ° C. is discharged out of the furnace by the discharge device 13. As the discharge device 13, not only a screw type but also a scraper type discharge device may be employed. Reduced iron R in the discharge device 13
At the same time as scraping out the outside of the furnace, while simultaneously applying a compressive force to the fixed object, a crack is generated in the fixed object starting from a carbonaceous substance or a high melting point substance scattered in the fixed object, and is divided by this crack. The small pieces of the adhered matter are easily peeled off from the hearth and scraped out together with the reduced iron R. The adhered matter scraped out together with the reduced iron R may be removed by sieving or the like, if necessary. Alternatively, the adhered substance is iron, carbonaceous material,
Since it is composed of slag components and the like, it may be used as a part of the reduced iron raw material without sieving or the like.

【0063】[0063]

【実施例】固着抑制材として炭素質物質を添加した場合
の固着物の生成状況を確認するため、以下の実験室実験
を行った。 (実施例1)発生粉を模擬するため、表1に化学成分を
示した転炉ダスト89質量部および無煙炭11質量部の
混合物をボールミルで全量が−2mmとなるように粉砕
したものを作製した。ついで、固着抑制材として上記の
無煙炭のみを全量−2mmに粉砕したものを作製し、発
生粉と固着抑制材とが混合した状態を作り出すために、
この固着抑制材を上記模擬発生粉100質量部に対し
て、それぞれ、0(無添加)、5、7.5、10質量部
添加し混合した試料を準備した。
EXAMPLES The following laboratory experiments were performed to confirm the state of formation of the adhered substance when a carbonaceous substance was added as a sticking inhibitor. Example 1 In order to simulate generated powder, a mixture of 89 parts by mass of converter dust and 11 parts by mass of anthracite whose chemical components are shown in Table 1 was pulverized by a ball mill so that the total amount was -2 mm. . Then, as an anti-adhesion material, only the anthracite described above was crushed to a total amount of −2 mm to produce a mixture, and in order to create a state in which the generated powder and the anti-adhesion material were mixed,
Samples were prepared by adding 0 (no addition), 5, 7.5, and 10 parts by mass of the adhesion suppressing material to 100 parts by mass of the simulated powder, respectively.

【0064】[0064]

【表1】 [Table 1]

【0065】各試料を加圧力5Nで30mm角×約8m
m厚さにプレス成形し、これをN2ガス雰囲気、1300
℃に制御した反応管内径60mmの横形電気炉に挿入
し、30min間保持した後、N2ガス雰囲気中で室温
まで冷却して焼結体を作製した。
Each sample was 30 mm square × about 8 m at a pressure of 5 N.
m thickness, and press-mold this in N 2 gas atmosphere, 1300
The reaction tube was inserted in a horizontal electric furnace having an inner diameter of 60 mm controlled at a temperature of 60 ° C., kept for 30 minutes, and then cooled to room temperature in a N 2 gas atmosphere to produce a sintered body.

【0066】この焼結体の見掛け密度をJIS鉄鉱石ペ
レット−体積測定方法に基づいて測定した後、この焼結
体の面の中央部にφ10mmのロッドで圧縮荷重を掛
け、焼結体が破壊した際の最大荷重を圧縮強度とした。
表2に焼結体の見掛け密度および圧縮強度を示す。
After measuring the apparent density of the sintered body according to the JIS iron ore pellet-volume measuring method, a compressive load was applied to the center of the surface of the sintered body with a rod of 10 mm to break the sintered body. The maximum load at this time was defined as the compressive strength.
Table 2 shows the apparent density and compressive strength of the sintered body.

【0067】[0067]

【表2】 [Table 2]

【0068】表2に示す結果より、固着抑制材(無煙
炭)の添加量が0(無添加)〜5質量部まで(発生粉余
剰C%:−2.8〜+1.6質量%)は、焼結体の見掛
け密度が2.39g/cm3以上とかなり高く緻密な焼
結体を形成していることを示し、圧縮強度も1820N
以上と非常に高い値を示している。それでも、固着抑制
材を添加しない実験No.1−1に比べ、固着抑制材を
5質量部添加したものは、圧縮強度が2970Nから1
820Nへ低下しており、固着抑制材添加効果が表れて
いる。固着抑制材の添加量が7.5質量部以上になる
と、焼結体の見掛け密度が2.14g/cm3以下へと
大きく低下している。これは、密度の小さい固着抑制材
(無煙炭)が焼結体中に存在していることを示し、圧縮
強度も420N以下へと急激に低下することがわかっ
た。 (実施例2)実施例1と同じ模擬発生粉100質量部に
対して、実施例1と同じ固着抑制材(無煙炭)をそれぞ
れ、0(無添加)、5、10、15、20、25、30
質量部添加し混合した試料を準備した。発生粉余剰C%
は、質量%で、それぞれ−2.8、+1.6、+6.
0、+10.4、+14.8、+19.2、+23.6
である。
From the results shown in Table 2, from 0 (no addition) to 5 parts by mass (excess C% of generated powder: -2.8 to +1.6 mass%), The apparent density of the sintered body was significantly higher than 2.39 g / cm 3 , indicating that a dense sintered body was formed.
The above values are very high. Nevertheless, in Experiment No. without addition of the adhesion inhibitor. Compared to 1-1, the one obtained by adding 5 parts by mass of the adhesion inhibitor has a compressive strength of 2970 N to 1
820 N, indicating the effect of adding the adhesion inhibitor. When the addition amount of the adhesion inhibitor is 7.5 parts by mass or more, the apparent density of the sintered body is greatly reduced to 2.14 g / cm 3 or less. This indicates that a low-density sticking suppressing material (anthracite) is present in the sintered body, and it was found that the compressive strength was also sharply reduced to 420 N or less. (Example 2) For 100 parts by mass of the same simulated powder as in Example 1, the same sticking suppressing material (anthracite) as in Example 1 was added (0, no addition), 5, 10, 15, 20, 25, 25, respectively. 30
A sample in which parts by mass were added and mixed was prepared. Generated powder surplus C%
Is -2.8, +1.6, +6.
0, +10.4, +14.8, +19.2, +23.6
It is.

【0069】各試料10gを内寸30mm幅×55mm
長さのアルミナ製トレー上にほぼ一定厚さに敷き、これ
をN2ガス雰囲気、1300℃に制御した反応管内径6
0mmの横形電気炉に挿入し、30min間保持した
後、N2ガス雰囲気中で室温まで冷却した。
Each sample (10 g) was sized 30 mm wide × 55 mm.
It was spread on an alumina tray with a length of approximately constant thickness, and this was placed in an N 2 gas atmosphere at 1300 ° C., and the inside diameter of the reaction tube was controlled at 6 ° C.
After inserting into a 0 mm horizontal electric furnace and holding it for 30 minutes, it was cooled to room temperature in a N 2 gas atmosphere.

【0070】上記実験後の各試料は、固着抑制材の添加
量に関わらず一体化した塊状物となったが、その表面の
状況は、固着抑制材無添加の場合、緻密であるのに対し
て、固着抑制材の添加量を増加するにしたがい、粗くな
るのが観察された。
Each of the samples after the above experiment was an integrated lump regardless of the amount of the addition of the anti-sticking material. As a result, it was observed that as the amount of addition of the adhesion inhibitor increased, it became coarser.

【0071】つぎに、固着の度合いを判断するため、上
記塊状物の表面を手指でこすり、剥離する量を測定し
た。その結果を表3に示す。
Next, in order to determine the degree of sticking, the surface of the lump was rubbed with a finger and the amount to be peeled was measured. Table 3 shows the results.

【0072】[0072]

【表3】 [Table 3]

【0073】表3に示すように、固着抑制材を無添加〜
10質量部添加したものでは、塊状物は強固な焼結体を
形成しており手指ではほとんど剥離しなかったが、固着
抑制材を5質量部添加したものでは、手指にても塊状物
の表面から粒状物が一部剥離し始め、固着抑制材を15
質量部添加したものでは、塊状物の約半量が粒状物とし
て分離でき、固着抑制材を25質量部以上添加したもの
では、塊状物の大半が粒状物として分離できた。
As shown in Table 3, no adhesion inhibitor was added.
In the case of adding 10 parts by mass, the lump formed a strong sintered body and hardly peeled off with the finger, but in the case of adding 5 parts by mass of the adhesion suppressing material, the surface of the lump even on the finger. Particulate matter starts to peel from
With the addition of parts by mass, about half of the mass could be separated as granules, and with the addition of 25 parts by mass or more of the adhesion inhibitor, most of the mass could be separated as granules.

【0074】したがって、上記実施例1の結果から、粉
状炭素質物質からなる固着抑制材を添加すれば固着物の
圧縮強度が低下し、その添加量は、発生粉余剰C%が
3.8質量%以上(発生粉100質量部に対して7.5
質量部以上)となるように調整することにより、固着物
の圧縮強度が大幅に低下し、排出機での炉床からの分離
・排出が容易となるので好ましいことが分かった。上記
実施例2の結果から、発生粉余剰C%が10.4質量%
以上(発生粉100質量部に対して15質量部以上)と
なるように調整することにより、手指で容易に粒状に分
離できる程度の強度となり排出機での炉床からの分離・
排出がより容易となるのでさらに好ましいことが明らか
となった。
Therefore, from the results of Example 1 described above, the addition of a sticking inhibitor made of a powdery carbonaceous material lowers the compressive strength of the sticking material. % By mass (7.5 parts by mass based on 100 parts by mass of generated powder)
(Parts by mass or more) has been found to be preferable because the compressive strength of the adhered substance is greatly reduced and separation / discharge from the hearth by the discharger becomes easy. From the results of Example 2, the generated powder surplus C% was 10.4% by mass.
By adjusting so as to be above (15 parts by mass or more with respect to 100 parts by mass of the generated powder), the strength becomes such that it can be easily separated into granules by hand, and separation from the hearth by the discharger
It has been found to be even more preferred because the discharge is easier.

【0075】[0075]

【発明の効果】第1又は第2発明(請求項1又は2の発
明)によれば、固着抑制材として添加した炭素質物質の
粒子が発生粉から形成される還元金属やスラグ成分の間
に存在してこれらの結合を妨げるので、大きな(広い)
板状固着物には成長せず、例え、固着物となっても炭素
質物質の粒子が起点になって亀裂が発生して小片化され
るので、炉床からの分離は容易となり、排出装置のスク
リューの刃先の摩耗を防止乃至低減でき、かつ長期の連
続操業を可能とし炉の稼働率が改善され、メンテナンス
費用も低減できる。また、固着抑制材を炉床に敷く装入
装置が不要で、かつ炉床面積も増加する必要がないの
で、設備コストの大幅な上昇が回避できる。さらに、固
着抑制材の添加量は少なくてよいので、固体還元剤原単
位や燃料原単位の大幅な上昇が防止でき、操業コストの
上昇も最小限に抑制できる。固着抑制材としての炭素質
物質は粉状のものを使用できるが、塊状のものを装入し
て炉内で粉状にすることも可能であり、また粉状のもの
と塊状のものを混合して使用することも可能である。
According to the first or second invention (the invention of claim 1 or 2), particles of the carbonaceous substance added as a sticking inhibitor are formed between reduced metal and slag components formed from generated powder. Large (wide) because they exist and prevent these bonds
It does not grow into a plate-like fixed matter, and even if it becomes a fixed matter, the particles of the carbonaceous substance start and cracks are generated, so that it is separated into small pieces. In addition, the wear of the cutting edge of the screw can be prevented or reduced, the continuous operation can be performed for a long time, the operation rate of the furnace can be improved, and the maintenance cost can be reduced. Further, since a charging device for laying the adhesion suppressing material on the hearth is not required and the hearth area does not need to be increased, a large increase in equipment cost can be avoided. Furthermore, since the addition amount of the sticking suppressing material may be small, it is possible to prevent a large increase in the unit consumption of the solid reducing agent and the unit consumption of the fuel, and it is possible to suppress an increase in the operating cost to a minimum. Powdery carbonaceous material can be used as an adhesion-preventing material, but it is also possible to charge a lumpy substance and make it into a powdery state in a furnace. It is also possible to use it.

【0076】第3発明(請求項3の発明)によれば、固
着抑制材としての炭素質質物質の添加量を、発生粉余剰
C%が所定値以上となるように調整することにより、固
着物の圧縮強度を大幅に低下できるので、上記第1又は
第2発明(請求項1又は2の発明)の効果が確実に得ら
れる。
According to the third invention (invention of claim 3), the amount of the carbonaceous substance added as a sticking inhibitor is adjusted so that the generated powder surplus C% is equal to or more than a predetermined value. Since the compressive strength of the kimono can be greatly reduced, the effect of the first or second invention (the invention of claim 1 or 2) can be reliably obtained.

【0077】第4又は第5発明によれば、CaO、Mg
O、Al23成分は、一部粉中の鉱物成分と反応してス
ラグを生成するものの、その生成スラグの融点が高く固
着物を緻密化しないため問題とならず、また未反応分は
還元温度で溶融しない高い融点を有するので上記粉状炭
素質物質と同様の効果が得られることに加え、固着抑制
材として安価な物質が利用できるのでコストが低減でき
る。
According to the fourth or fifth invention, CaO, Mg
O and Al 2 O 3 components partially react with mineral components in the powder to form slag, but the generated slag has a high melting point and does not densify the adhered matter, so that there is no problem. Since it has a high melting point that does not melt at the reduction temperature, the same effect as that of the above-mentioned powdery carbonaceous material can be obtained. In addition, since an inexpensive substance can be used as a sticking suppressing material, the cost can be reduced.

【0078】第6又は第7発明によれば、塊成化物の表
面が液状又はスラリー状炭素質物質に被覆され、この液
状またはスラリー状炭素質物質が炉内で加熱・乾留され
て固化することにより塊成化物表面が固くなり、機械的
ハンドリングによる塊成化物表面からの粉発生が減少
し、また、粉が発生してもその粉中には炭素質物質が高
濃度に含まれるので、上記第1又は第2発明(請求項1
又は2の発明)より固着抑制材の添加量を減らしても同
等の効果を得ることができる。
According to the sixth or seventh aspect, the surface of the agglomerate is coated with a liquid or slurry-like carbonaceous material, and the liquid or slurry-like carbonaceous material is heated and carbonized in a furnace to be solidified. The surface of the agglomerate becomes harder, and powder generation from the agglomerate surface due to mechanical handling is reduced.Also, even if powder is generated, the powder contains a high concentration of a carbonaceous substance. The first or second invention (claim 1
Alternatively, the same effect can be obtained even if the addition amount of the adhesion inhibitor is reduced as compared with the invention 2).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、固着抑制材を塊成化物に添加する方
法の一例を示す説明図である。
FIG. 1 is an explanatory view showing one example of a method of adding a sticking inhibitor to an agglomerate according to the present invention.

【図2】回転炉床炉の概略の設備構成を示す平面図であ
る。
FIG. 2 is a plan view showing a schematic equipment configuration of a rotary hearth furnace.

【符号の説明】 1…回転炉床炉、2…炉床、3…装入装置、4…固着抑
制材添加装置(切り出しホッパー)、5…乾燥機、6…
ベルトコンベア、7…受入れホッパー、11…バーナ、
12…冷却器、13…排出装置、14…炉体、P…塊成
化物(乾燥ペレット)、Q…固着抑制材、R…還元鉄 a…液状またはスラリー状固着抑制材添加位置
[Description of Signs] 1 ... Rotating hearth furnace, 2 ... Heart floor, 3 ... Charging device, 4 ... Fixation inhibitor addition device (cutting hopper), 5 ... Dryer, 6 ...
Belt conveyor, 7: receiving hopper, 11: burner,
12: cooler, 13: discharge device, 14: furnace body, P: agglomerate (dry pellets), Q: sticking inhibitor, R: reduced iron a ... liquid or slurry sticking inhibitor adding position

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 脩 大阪市中央区備後町4丁目1番3号 株式 会社神戸製鋼所大阪支社内 (72)発明者 田中 英年 大阪市中央区備後町4丁目1番3号 株式 会社神戸製鋼所大阪支社内 Fターム(参考) 4K001 AA10 BA14 CA18 GA07 HA01 4K012 DE03 DE06 4K050 AA00 BA02 CA09 CG22  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Tsuchiya 4-3-1 Bingo-cho, Chuo-ku, Osaka-shi Kobe Steel, Ltd. Osaka branch office (72) Inventor Hidetoshi Tanaka 4-chome, Bingo-cho, Chuo-ku, Osaka-shi No. 1-3 Co., Ltd. Kobe Steel, Osaka Branch F-term (reference) 4K001 AA10 BA14 CA18 GA07 HA01 4K012 DE03 DE06 4K050 AA00 BA02 CA09 CG22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粉状金属酸化物と粉状炭素質物質を含む
塊成化物を加熱、還元して還元金属を製造する回転炉床
式還元炉の操業方法であって、前記塊成化物を前記回転
炉床式還元炉に装入するに際し、前記塊成化物に、予め
固着抑制材を添加しておくことを特徴とする回転炉床式
還元炉の操業方法。
1. A method for operating a rotary hearth reduction furnace for heating and reducing an agglomerate containing a powdery metal oxide and a pulverulent carbonaceous substance to produce a reduced metal, wherein the agglomerate is produced. A method for operating a rotary hearth-type reduction furnace, characterized in that a sticking inhibitor is added to the agglomerate in advance when charging the rotary hearth-type reduction furnace.
【請求項2】 前記固着抑制材は、炭素質物質を含むも
のである請求項1に記載の回転炉床式還元炉の操業方
法。
2. The method for operating a rotary hearth-type reduction furnace according to claim 1, wherein the adhesion suppressing material contains a carbonaceous substance.
【請求項3】 下式で定義される発生粉余剰C%が3.
8質量%以上となるように、前記固着抑制材の添加量を
調整することを特徴とする請求項2に記載の回転炉床式
還元炉の操業方法。 式 〔発生粉余剰C%〕=〔前記塊成化物に含まれる炭
素の質量%〕−〔前記塊成化物に含まれる、鉄および亜
鉛と結合している酸素の質量%〕×12/16+〔前記
塊成化物装入質量に対する前記固着抑制材の添加質量の
割合〕×〔前記固着抑制材に含まれる炭素の質量%〕。
3. The generated powder surplus C% defined by the following equation is 3.
The method for operating a rotary hearth-type reduction furnace according to claim 2, wherein the amount of the adhesion inhibitor added is adjusted so as to be 8% by mass or more. Formula [Excess powder C%] = [mass% of carbon contained in the agglomerate] − [mass% of oxygen combined with iron and zinc contained in the agglomerate] × 12/16 + [ Ratio of the added mass of the adhesion inhibitor to the mass of the agglomerate charged] × [% by mass of carbon contained in the adhesion inhibitor].
JP2001045287A 2001-02-21 2001-02-21 Rotary hearth type reducing furnace operating method Withdrawn JP2002249813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045287A JP2002249813A (en) 2001-02-21 2001-02-21 Rotary hearth type reducing furnace operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045287A JP2002249813A (en) 2001-02-21 2001-02-21 Rotary hearth type reducing furnace operating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011200107A Division JP5368522B2 (en) 2011-09-14 2011-09-14 Operation method of rotary hearth reduction furnace

Publications (1)

Publication Number Publication Date
JP2002249813A true JP2002249813A (en) 2002-09-06

Family

ID=18907111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045287A Withdrawn JP2002249813A (en) 2001-02-21 2001-02-21 Rotary hearth type reducing furnace operating method

Country Status (1)

Country Link
JP (1) JP2002249813A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020987A1 (en) * 2001-09-03 2003-03-13 Nippon Steel Corporation Method of treating steelmaking waste, and movable hearth furnace therefor
JP2009137197A (en) * 2007-12-07 2009-06-25 Canon Inc Inkjet recording head and inkjet recording device
WO2012029670A1 (en) 2010-08-30 2012-03-08 株式会社神戸製鋼所 Granular metal iron production method
JP2017036472A (en) * 2015-08-10 2017-02-16 住友金属鉱山株式会社 Process for smelting nickel oxide ore
JP2019007064A (en) * 2017-06-28 2019-01-17 住友金属鉱山株式会社 Refining method of oxide ore
JP2019019389A (en) * 2017-07-19 2019-02-07 住友金属鉱山株式会社 Method for smelting oxide ore

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251723A (en) * 1997-03-13 1998-09-22 Sumitomo Metal Ind Ltd Production of reduced iron
JPH1150119A (en) * 1997-07-29 1999-02-23 Sumitomo Metal Ind Ltd Production of reduced iron
JPH1161216A (en) * 1997-08-28 1999-03-05 Kobe Steel Ltd Production of reduced iron
JP2001294921A (en) * 2000-04-10 2001-10-26 Midrex Internatl Bv Method for producing granular metallic iron
JP2002129218A (en) * 2000-10-27 2002-05-09 Nippon Steel Corp Method for producing reduced iron with rotary hearth furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251723A (en) * 1997-03-13 1998-09-22 Sumitomo Metal Ind Ltd Production of reduced iron
JPH1150119A (en) * 1997-07-29 1999-02-23 Sumitomo Metal Ind Ltd Production of reduced iron
JPH1161216A (en) * 1997-08-28 1999-03-05 Kobe Steel Ltd Production of reduced iron
JP2001294921A (en) * 2000-04-10 2001-10-26 Midrex Internatl Bv Method for producing granular metallic iron
JP2002129218A (en) * 2000-10-27 2002-05-09 Nippon Steel Corp Method for producing reduced iron with rotary hearth furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020987A1 (en) * 2001-09-03 2003-03-13 Nippon Steel Corporation Method of treating steelmaking waste, and movable hearth furnace therefor
JP2009137197A (en) * 2007-12-07 2009-06-25 Canon Inc Inkjet recording head and inkjet recording device
WO2012029670A1 (en) 2010-08-30 2012-03-08 株式会社神戸製鋼所 Granular metal iron production method
US9180521B2 (en) 2010-08-30 2015-11-10 Kobe Steel, Ltd. Method for producing granular metallic iron
JP2017036472A (en) * 2015-08-10 2017-02-16 住友金属鉱山株式会社 Process for smelting nickel oxide ore
JP2019007064A (en) * 2017-06-28 2019-01-17 住友金属鉱山株式会社 Refining method of oxide ore
JP2019019389A (en) * 2017-07-19 2019-02-07 住友金属鉱山株式会社 Method for smelting oxide ore
JP7052239B2 (en) 2017-07-19 2022-04-12 住友金属鉱山株式会社 Oxidized ore smelting method

Similar Documents

Publication Publication Date Title
RU2254376C2 (en) Method of iron pellets production
US7674316B2 (en) Method for producing metallic iron
EP1185714B1 (en) Method for producing reduced iron
RU2544979C2 (en) Method for obtaining granulated metal
RU2004110038A (en) BATTERY MELTING FURNACE AND METHOD OF ITS APPLICATION FOR THE PRODUCTION OF IRON OR STEEL
KR19990076960A (en) Method and apparatus for producing reduced iron
JP5368522B2 (en) Operation method of rotary hearth reduction furnace
US7846235B2 (en) Method for producing metallic iron
JP2010111941A (en) Method for producing ferrovanadium
JP4214157B2 (en) Molten iron manufacturing method and molten iron manufacturing apparatus
US20130055853A1 (en) Method for producing metallic iron
JP5420935B2 (en) Manufacturing method of granular metallic iron
JP2002249813A (en) Rotary hearth type reducing furnace operating method
WO1996015277A1 (en) Method of operating blast furnace
JP2006152432A (en) Method for producing molten iron
JP2003239008A (en) Method for operating movable type hearth furnace and solid reducing material for protecting furnace hearth refractory
JP5494071B2 (en) Method for producing reduced iron
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP3756754B2 (en) Repair method for reduced iron rotary hearth
JP5042203B2 (en) Production of granular metallic iron
JP4341138B2 (en) Method for producing reduced metal from metal-containing material
KR20120056291A (en) Molten metal producing device
JP6250482B2 (en) Manufacturing method of granular metallic iron
JPH1129807A (en) Production of molten iron
JP2004263263A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110916