JP2001294921A - Method for producing granular metallic iron - Google Patents

Method for producing granular metallic iron

Info

Publication number
JP2001294921A
JP2001294921A JP2000108590A JP2000108590A JP2001294921A JP 2001294921 A JP2001294921 A JP 2001294921A JP 2000108590 A JP2000108590 A JP 2000108590A JP 2000108590 A JP2000108590 A JP 2000108590A JP 2001294921 A JP2001294921 A JP 2001294921A
Authority
JP
Japan
Prior art keywords
iron
compacted
metallic iron
reduction
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000108590A
Other languages
Japanese (ja)
Inventor
Shoichi Kikuchi
晶一 菊池
Takaya Kitajima
貴哉 北島
Osamu Tsuchiya
脩 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIDREX INTERNATL BV
Original Assignee
MIDREX INTERNATL BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIDREX INTERNATL BV filed Critical MIDREX INTERNATL BV
Priority to JP2000108590A priority Critical patent/JP2001294921A/en
Priority to TW090107939A priority patent/TW562860B/en
Priority to KR1020017015898A priority patent/KR100549892B1/en
Priority to EP01947219A priority patent/EP1185714B1/en
Priority to PCT/EP2001/004124 priority patent/WO2001077395A1/en
Priority to US09/828,950 priority patent/US6602320B2/en
Priority to DE60116009T priority patent/DE60116009T2/en
Priority to AU68966/01A priority patent/AU6896601A/en
Priority to CNB018007007A priority patent/CN1294281C/en
Priority to ES01947219T priority patent/ES2255562T3/en
Priority to CA002372378A priority patent/CA2372378C/en
Publication of JP2001294921A publication Critical patent/JP2001294921A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a method for stably and efficiently producing granular iron by forming of raw material body, drying, heat-reducing, melting and agglomerating, solving such problems caused by using the large diameter body as the non-uniform forming and drying the low strength, and the shortage of heat- transfer at the heating, and reducing time, when a metallic iron is produced by heating and reducing the mixture containing iron oxide and carbonaceous reducing agent. SOLUTION: The raw material body with the small agglomerate desirably about 3-7 mm diameter, is used. The bodies are charged into a heating and reducing furnace so as to mutually stack at the thickness having 10-30 mm. After performing the solid-reduction of the bodies, the granular metallic iron is produced by further heating, melting and agglomerating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鉱石等の酸化鉄
をコークス等の炭素質還元剤により加熱還元して粒状の
金属鉄を得る技術の改良に関し、より詳細には、鉄鉱石
等に含まれる酸化鉄を簡単な処理で金属鉄にまで効率よ
く還元すると共に、脈石成分などとして含まれるスラグ
形成成分をスラグとして金属鉄から効率よく分離し、高
純度の粒状金属鉄を生産性良く製造し得る様に改善され
た方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a technique for obtaining granular metallic iron by heating and reducing iron oxide such as iron ore with a carbonaceous reducing agent such as coke or the like. The iron oxide contained is efficiently reduced to metallic iron by a simple treatment, and the slag forming components contained as gangue components are efficiently separated from the metallic iron as slag to produce highly pure granular metallic iron with good productivity. It relates to an improved method so that it can be manufactured.

【0002】[0002]

【従来の技術】本件発明に類似した金属鉄または還元鉄
の製法としては、次に示す如く多くの方法が知られてい
る。
2. Description of the Related Art As methods for producing metallic iron or reduced iron similar to the present invention, many methods are known as follows.

【0003】特開平11−337264号公報:この公
報には、鉄鉱石等の酸化鉄源とコークスを含む原料粉末
をペレット状に成形し、該生ペレットを加熱還元するこ
とにより還元鉄を製造する方法が開示されている。しか
しこの方法で得られる還元鉄には、原料鉄鉱石等に脈石
成分として混入してくるスラグ成分が多量含まれている
ためFe純度が低く、次工程の精錬処理等でスラグ成分
の除去処理が不可欠の工程として加重される。しかも、
この方法で得られる還元鉄はスポンジ状で破損し易いた
め、鉄源として商品化する際の取扱い性に欠ける。そこ
でこうした欠点を改善するには、スポンジ状還元鉄をブ
リケット状に圧縮成形体などに加工しなければならず、
余分の設備が必要となる。
JP-A-11-337264 discloses that reduced iron is produced by forming a raw material powder containing an iron oxide source such as iron ore and coke into pellets, and heating and reducing the raw pellets. A method is disclosed. However, the reduced iron obtained by this method contains a large amount of slag components mixed as gangue components in the raw iron ore, etc., so that the Fe purity is low, and the slag components are removed by refining in the next step. Is weighted as an essential step. Moreover,
The reduced iron obtained by this method is spongy and easily broken, and thus lacks in handleability when commercialized as an iron source. Therefore, in order to remedy these drawbacks, sponge-like reduced iron must be processed into a briquette-like compression molded body,
Extra equipment is required.

【0004】またこの公報には、酸化鉄源とコークスを
含む原料粉末を成形し、得られる原料成形体を未乾燥状
態のままで加熱還元炉へ装入し、乾燥と加熱還元を引き
続いて行なう方法が開示されている。この方法は、原料
成形体の乾燥に要する設備や時間が省略されるといった
利点は得られるものの、加熱還元領域の前に乾燥を兼ね
た予熱帯が必要になるので、炉全体が大きくならざるを
得ない。しかも、加熱還元帯から予熱帯方向への高温ガ
スの流れを阻止するため、例えばカーテンウオールなど
の遮蔽部材を設けなけれならず、炉の構造が複雑となっ
て設備コストが増大するといった問題を生じる。
This publication also discloses that a raw material powder containing an iron oxide source and coke is formed, and the obtained raw material compact is charged in an undried state into a heating reduction furnace, and drying and heating reduction are subsequently performed. A method is disclosed. Although this method has the advantage of omitting the equipment and time required for drying the raw material molded body, it requires a pre-tropical zone that also serves as drying before the heat reduction zone, so the entire furnace must be large. I can't get it. Moreover, in order to prevent the flow of the high-temperature gas from the heating reduction zone in the pre-tropical direction, for example, a shielding member such as a curtain wall must be provided, which causes a problem that the structure of the furnace becomes complicated and the equipment cost increases. .

【0005】特開平10−30106号公報:この公報
には、炉床上に装入された原料層の表面を畝状に整形
し、原料層の表面積を拡大することにより加熱効率を高
める方法が開示されている。ところがこの公報に開示さ
れた原料ペレットは、直径が10〜20mmの中〜大粒
径のものであって、バーナー加熱や輻射熱のペレット内
部への伝熱速度が遅く、また畝を形成するといっても、
該ペレットを数層に重ねる程度であって必ずしも十分な
伝熱効果を得ることはできない。またこの公報では、加
熱還元の途中で上記畝を鋤き返すことにより加熱効率を
高めることを推奨しているが、中〜大粒径ペレットの積
層部を鋤き返すことは該ペレットの破損を招き、Fe歩
留まりの低下をもたらす。
Japanese Patent Laid-Open Publication No. Hei 10-30106 discloses a method in which the surface of a raw material layer charged on a hearth is shaped like a ridge and the surface area of the raw material layer is increased to increase the heating efficiency. Have been. However, the raw material pellets disclosed in this publication have medium to large diameters of 10 to 20 mm in diameter, have a low rate of heat transfer to the inside of the pellets for burner heating and radiant heat, and form ridges. Also,
The pellets are stacked in several layers, and a sufficient heat transfer effect cannot always be obtained. This publication also recommends that the ridge be plowed in the middle of the heat reduction to increase the heating efficiency, but plowing the laminated portion of the medium to large particle size pellets may damage the pellets. To lower the Fe yield.

【0006】特開平10−306304号公報:この公
報には、原料粉末を炉床上に凹凸を形成しながら供給す
る方法を開示している。しかしこの方法では、原料の最
大堆積厚さが120mmと非常に厚く、また原料粉末は
酸化鉄源と炭材が混合されただけのもので両者が密に接
触している訳ではないので、伝熱性や加熱還元反応性は
成形体を使用する場合に比べるとかなり劣る。
JP-A-10-306304: This publication discloses a method of supplying raw material powder while forming irregularities on a hearth. However, according to this method, the maximum deposition thickness of the raw material is very thick, 120 mm, and the raw material powder is only a mixture of the iron oxide source and the carbonaceous material. The heat property and the heat reduction reactivity are considerably inferior to the case where a molded article is used.

【0007】更に上記特開平10−30106号や同1
0−306304号公報に開示されている方法は、何れ
も還元鉄の製法であって、還元鉄を更に加熱し溶融させ
て粒状の金属鉄を製造する方法とは区別される。これに
対し特開平9−256017号公報には、加熱還元に引
き続いて生成した金属鉄を溶融させ、副生するスラグ成
分と分離しつつ溶融金属鉄を凝集させて粒状金属鉄を得
る方法が開示されている。しかしこの公報にも、原料成
形体のサイズなども加味した上で粒状金属鉄を如何に効
率よく製造するかといった点については、必ずしも十分
な検討は為されていない。
Further, Japanese Patent Application Laid-Open No. 10-30106 and
Each of the methods disclosed in Japanese Patent Application No. 0-306304 is a method for producing reduced iron, which is distinguished from a method for producing granular metallic iron by further heating and melting the reduced iron. On the other hand, Japanese Patent Application Laid-Open No. 9-256017 discloses a method of melting metallic iron formed following heat reduction and aggregating the molten metallic iron while separating it from by-product slag components to obtain granular metallic iron. Have been. However, even in this publication, sufficient consideration has not always been made on how to efficiently produce granular metallic iron in consideration of the size of the raw material molded body and the like.

【0008】何れにしても前述した様な技術を含めて公
知の方法では、原料混合物を直径で約10〜20mm程
度の大きさの成形体とし、これを加熱還元炉の炉床上に
供給して加熱還元する方法が採用されているが、この様
な大径の原料成形体を、高レベルの還元反応が保証され
る1400℃程度以上の高温に曝すと、内部に含まれる
水分や揮発性成分の影響で成形体が破裂を起こし易いた
め、大抵の場合は、原料成形体を予備乾燥してから加熱
還元炉へ装入する方法が採用されている。
In any case, in a known method including the above-described technique, the raw material mixture is formed into a compact having a size of about 10 to 20 mm in diameter, and the compact is supplied to the hearth of a heating and reducing furnace. A method of reducing by heating is adopted. However, when such a large-diameter raw material compact is exposed to a high temperature of about 1400 ° C. or more at which a high-level reduction reaction is ensured, moisture and volatile components contained therein are reduced. In many cases, a method of preliminarily drying a raw material molded body and then charging the raw material molded body into a heating reduction furnace is adopted because the molded body is easily ruptured due to the influence of the above.

【0009】また、大径の原料成形体は概して造粒が難
しく、造粒設備や乾燥設備に要する費用が嵩むばかりで
なく、製造コストも高くなる。また、乾燥後の形状を安
定に維持するためバインダーが使用されるが、バインダ
ーの配合量を多くし過ぎると成形体中の酸化鉄源と炭材
の均一分散が阻害される傾向があり、加熱還元反応の効
率に悪影響を及ぼす恐れも生じてくる。また前述した通
り一部では、乾燥を省略し生ペレット状態で加熱還元炉
へ供給する方法もあるが、生ペレットは強度が低いばか
りでなく、ペレット同士の付着や供給装置のホッパーな
どへの付着によって詰まりを起こし易く取扱い性が悪い
ため、工業的規模での実用性に適した方法とは言えな
い。
In addition, large-diameter raw material compacts are generally difficult to granulate, which increases not only the costs required for granulating equipment and drying equipment, but also increases manufacturing costs. Also, a binder is used to maintain the shape after drying stably, but if the blending amount of the binder is too large, the uniform dispersion of the iron oxide source and the carbon material in the formed body tends to be hindered, and heating is performed. There is a risk that the efficiency of the reduction reaction may be adversely affected. As described above, in some cases, drying may be omitted and the raw pellets may be supplied to the heating and reducing furnace in a raw pellet state. However, the raw pellets are not only low in strength, but also adhere to each other and adhere to a hopper of a supply device. Therefore, it is not a method suitable for practical use on an industrial scale because clogging is likely to occur and handling is poor.

【0010】上記の様に、酸化鉄源と炭素質還元剤を含
む原料成形体を加熱還元して還元鉄あるいは金属鉄を製
造する際には、成形体が大径であるが故の様々な問題が
あるが、公知の方法の殆どは直径で10〜30mmの原
料成形体を使用しており、前述した様な大径であるが故
の難点を課題として掲げ、その課題を解決しようとする
積極的な研究はなされていない。
As described above, when producing a reduced iron or metallic iron by heating and reducing a raw material compact containing an iron oxide source and a carbonaceous reducing agent, various processes are required because the compact has a large diameter. Although there is a problem, most of the known methods use a raw material molded body having a diameter of 10 to 30 mm, and list the difficulties due to the large diameter as described above, and try to solve the problem. No active research has been done.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、酸化
鉄源と炭素質還元剤を含む原料成形体を加熱還元して粒
状の金属鉄を製造する際に、特に原料成形体のサイズに
由来する前述した様な難点、特に大径であるが故の成形
乃至乾燥上の問題、成形体強度の問題、加熱還元時にお
ける伝熱不足による還元効率の問題などを一挙に解決
し、原料成形体の成形から乾燥、加熱還元および溶融・
凝集による粒状化を安定して効率よく遂行することので
きる方法を確立することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to heat and reduce a raw material compact containing an iron oxide source and a carbonaceous reducing agent. When manufacturing granular metallic iron, particularly the above-mentioned difficulties derived from the size of the raw material molded body, particularly the problem of molding or drying due to the large diameter, the problem of the strength of the molded body, The problem of reduction efficiency due to lack of heat transfer is solved at once, and the raw material compact is formed, dried, reduced by heating and melted.
An object of the present invention is to establish a method capable of stably and efficiently performing granulation by aggregation.

【0012】[0012]

【課題を解決するための手段】上記課題を解決すること
のできた本発明にかかる粒状金属鉄の製法は、炭素質還
元剤と酸化鉄含有物質を含む原料混合物を小塊成体に成
形し、該小塊成体を還元溶融炉内で加熱して該小塊成体
中の酸化鉄を固体還元し、該固体還元により生成する金
属鉄を溶融させ、溶融した該金属鉄を、前記小塊成体中
に含まれる脈石成分を分離しながら凝集させて粒状の金
属鉄を得るところに要旨を有している。
In order to solve the above-mentioned problems, a method for producing granular metallic iron according to the present invention is to form a raw material mixture containing a carbonaceous reducing agent and a substance containing iron oxide into a small compacted compact. The compacted compact is heated in a reduction melting furnace to solid-reduce the iron oxide in the compacted compact, melt the metallic iron generated by the solid reduction, and melt the molten metallic iron in the compacted compact. The gist lies in obtaining granular metallic iron by separating and aggregating the contained gangue components.

【0013】上記小塊成体としては、粒径が3〜7mm
のものを主体とするものが好ましく、この様な小塊成体
を原料として用いて加熱還元を行なう際には、還元溶融
炉の炉床上に、該小塊成体が10〜30mmの厚さ(約
3〜10層程度)で重なり合う様に装入すれば、粒状金
属鉄の生産性を更に高めることができるので好ましい。
また、上記小塊成体層の表面に山部と谷部を形成して凹
凸状となる様に炉床上に装入すれば、伝熱有効表面積の
拡大により加熱効率が高められると共に、積層下層部の
小塊成体の加熱速度も高めることができ、全体の固体還
元と溶融を一層効率よく進めることができるので好まし
い。
[0013] The above compact agglomerates have a particle size of 3 to 7 mm.
Preferably, when heat reduction is performed using such a compacted compact as a raw material, the compacted compact has a thickness of about 10 to 30 mm (about 10 to 30 mm) on a hearth of a reduction melting furnace. It is preferable to charge them so that they are overlapped with each other (about 3 to 10 layers) because the productivity of granular metallic iron can be further increased.
Also, if the small ingot layer is formed on the hearth so that peaks and valleys are formed on the surface of the small-lumped adult layer so as to be uneven, the heat transfer efficiency is increased by increasing the effective heat transfer surface area, and the lower layer portion of the laminate is formed. It is preferable because the heating rate of the compacted compact can be increased, and the whole solid reduction and melting can be more efficiently advanced.

【0014】また本発明の方法を実施するに当たって
は、前記炉床上に粉状炭素質物質を敷いてから前記小塊
成体を装入、あるいは該小塊成体の表面に炭素質粉を付
着させてから炉床上に装入する方法を採用すれば、それ
らの炭素質が固体還元により生成した金属鉄に浸炭して
その融点を低下させるので、金属鉄の溶融を一層効率よ
く進めることができるばかりでなく、溶融によって生成
する溶融金属鉄の炉床表面への付着も抑制されて溶融金
属鉄の凝集による粒状化を促進することができ、更に
は、特に小塊成体を炉床上に積層載置したときの最下層
部で還元不足によって生じ易いFeOリッチ溶融スラグ
による炉床耐火物の溶損も抑えることができるので好ま
しい。
In carrying out the method of the present invention, the powdered carbonaceous material is laid on the hearth and then the small compacted material is charged, or the carbonaceous powder is adhered to the surface of the small compacted material. If the method of charging on the hearth is adopted, the carbonaceous material is carburized into the metallic iron generated by the solid reduction to lower the melting point, so that the melting of the metallic iron can be advanced more efficiently. In addition, the adhesion of the molten metal iron generated by melting to the hearth surface is also suppressed, and the granulation due to the aggregation of the molten metal iron can be promoted.Furthermore, in particular, small compacted compacts are stacked and mounted on the hearth. It is preferable because melting of the hearth refractory due to FeO-rich molten slag, which is likely to occur due to insufficient reduction in the lowermost layer, can be suppressed.

【0015】また該小塊成体の少なくとも表面を乾燥し
てから前記炉床上に装入する方法を採用すれば、小塊成
体を炉内へ装入する際のホッパー部等での塊成体同士の
付着による供給不良や装入後の積層荷重による塊成体の
圧潰などを更に抑制できるので推奨される。
Further, if a method is adopted in which at least the surface of the compacted compact is dried and then placed on the hearth, the compacted compact in the hopper or the like when the compacted compact is loaded into the furnace is adopted. It is recommended because it can further suppress the supply failure due to adhesion and the crushing of compacted iron due to the lamination load after loading.

【0016】[0016]

【発明の実施の形態】上記の様に本発明では、鉄鉱石や
酸化鉄またはその部分還元物などの酸化鉄源(以下、鉄
鉱石等ということがある)と、コークスや石炭などの炭
素質還元剤(以下、炭材ということがある)を含む原料
成形体を還元溶融して粒状の金属鉄を製造する際に、特
に原料成形体として小塊成体を使用することにより、造
粒を容易にして造粒設備コストの低減を図ると共に、造
粒歩留まりの向上や造粒時間の短縮を図ることができ、
更には、小塊成体とすることで、次に示す様な多くの利
点を享受できる。
DETAILED DESCRIPTION OF THE INVENTION As described above, in the present invention, an iron oxide source such as iron ore or iron oxide or a partially reduced product thereof (hereinafter sometimes referred to as iron ore or the like) and a carbonaceous material such as coke or coal are used. When reducing and melting a raw material compact containing a reducing agent (hereinafter sometimes referred to as a carbon material) to produce granular metallic iron, granulation is facilitated, particularly by using small agglomerates as the raw material compact. In addition to reducing the cost of granulation equipment, it is possible to improve the granulation yield and shorten the granulation time,
Furthermore, by using a compact compact, a number of advantages as described below can be enjoyed.

【0017】i)内部までの伝熱性を高めることができる
ので、固体還元およびその後の溶融をより短時間で効率
よく進めることができ、粒状金属鉄の生産性が高められ
る、 ii)小塊成体とすることでバインダーの配合量を低減す
ることができ、それにより該塊成体内における酸化鉄源
と炭材の均一分散を進めることができ、これも還元率や
溶融速度の向上に有効に作用する、 iii)小塊成体とすることで、大塊成体に比べて個々の圧
潰強度を高めることができ、特に固体還元時における塊
成体の崩壊や粉化を抑制できるので、粒状金属鉄の生産
歩留まりを向上できる。また炉床部への積層装入厚さを
高めることができるので、これも生産性の向上に寄与す
る。
I) Since the heat transfer to the inside can be enhanced, the solid reduction and the subsequent melting can be efficiently advanced in a shorter time, and the productivity of granular metallic iron can be increased. Ii) Small compacted iron By doing so, it is possible to reduce the compounding amount of the binder, thereby promoting the uniform dispersion of the iron oxide source and the carbonaceous material in the agglomerate, which also effectively improves the reduction rate and the melting rate. Iii) By using small compacted iron, individual crushing strength can be increased as compared with large compacted iron, and particularly, collapse and powdering of compacted iron at the time of solid reduction can be suppressed. The yield can be improved. In addition, since the thickness of the stack charged into the hearth can be increased, this also contributes to an improvement in productivity.

【0018】小塊成体を使用することによる上記作用効
果を有効に発揮させるには、該小塊成体の粒径を7mm
以下、より好ましくは6mm以下にすることが望まし
く、これ以上の大径塊成体が多数存在すると、上記作用
効果が有効に発揮され難くなる。しかし粒径が2mm以
下、特に1mm以下の細径塊成体では、篩などによる選
別で目詰まりを起こし易くなって取扱い性が悪くなるば
かりでなく、最終的に得られる粒状金属鉄も細径となっ
てその後の取り扱いが煩雑になるなどの障害が生じてく
るので、好ましくは3mm以上、より好ましくは4mm
以上にすることが望ましい。但し本発明を実施する際に
は、全ての塊成体が上記好適粒径範囲内でなければなら
ない訳ではなく、上記範囲内の粒径のものが約70%以
上を占めておれば、該範囲を外れる微細塊成体や大径塊
成体が少量(好ましくは質量比率で20%程度以下)含
まれていても、全体として上記作用効果は有効に発揮さ
れる。
In order to effectively exert the above-mentioned effects by using the compacted compact, the particle size of the compacted compact is 7 mm.
Below, more preferably, it is desirable to be 6 mm or less, and if there are a large number of large-diameter agglomerates, it is difficult to effectively exert the above-mentioned effects. However, in the case of small-diameter compacted iron having a particle diameter of 2 mm or less, particularly 1 mm or less, clogging is likely to occur due to selection using a sieve or the like, and not only the handleability is deteriorated, but also the finally obtained granular metallic iron has a small diameter. And the subsequent handling becomes complicated, so that it is preferably 3 mm or more, and more preferably 4 mm or more.
It is desirable to make the above. However, in practicing the present invention, not all agglomerates need to be within the above-mentioned preferred particle size range. Even if a small amount of compacted compact or large-diameter compacted steel (preferably about 20% or less in mass ratio) is contained, the above-described effects can be effectively exhibited as a whole.

【0019】なお本発明で言う小塊成体とは、酸化鉄源
と炭素質還元剤を含む混合物を凝集させたものや、ペレ
ット、ブリケットなどを総称するもので、その名称には
一切拘らず、またそれらの単体は勿論のことそれらの混
合物、あるいは移送工程などで破損した少量の破片や粉
末が含まれていても構わない。また小塊成体の製法にも
格別の制限はなく、パン型造粒機、ディスク型造粒機、
ドラム型造粒機などを用いる通常の成形法を採用すれば
よい。
The small agglomerates referred to in the present invention are a general term for agglomerates of a mixture containing an iron oxide source and a carbonaceous reducing agent, pellets, briquettes, etc., regardless of their names. In addition, not only a simple substance thereof, but also a mixture thereof, or a small amount of debris or powder broken in a transfer step or the like may be contained. There is also no particular limitation on the method of producing compact agglomerates, and bread-type granulators, disk-type granulators,
A normal molding method using a drum type granulator or the like may be employed.

【0020】また該小塊成体の原料となる酸化鉄源は、
鉄鉱石の他、ミルスケールなどを含む広い概念であり、
例えば高炉ダストや電炉ダスト、製鋼ダストなどを含む
ものであっても勿論構わない。また炭素質還元剤の種類
も特に制限がなく、最も一般的な石炭粉やコークス粉以
外に木炭粉などを使用することも可能である。必要によ
り配合することのあるバインダーとしては、ベントナイ
トやデンプンなどが例示されるが、勿論これらに制限さ
れる理由はない。更に原料混合物中に、スラグ形成成分
の塩基度調整用として適量のCaO源(生石灰、消石
灰、炭酸カルシウムなど)を含有させれば、これらが脱
硫剤として作用し、原料混合物中に含まれるSをCaS
としてスラグ側に固定し、S含有率の低い粒状金属鉄を
得ることができるので好ましい。
The iron oxide source used as a raw material for the compacted compact is
It is a broad concept including iron ore, mill scale, etc.
For example, it is of course possible to include blast furnace dust, electric furnace dust, steelmaking dust, and the like. The type of the carbonaceous reducing agent is not particularly limited, and charcoal powder and the like can be used in addition to the most common coal powder and coke powder. Examples of the binder that may be added as necessary include bentonite and starch, but of course there is no reason to be limited to these. Furthermore, if an appropriate amount of CaO source (quick lime, slaked lime, calcium carbonate, etc.) is contained in the raw material mixture for adjusting the basicity of the slag forming component, these act as desulfurizing agents, and S contained in the raw material mixture is reduced. CaS
Is fixed to the slag side to obtain a granular metallic iron having a low S content.

【0021】この様な小塊成体を使用すれば、還元溶融
炉の炉床上にこれを単層状態で装入し常法に従って固体
還元と溶融・凝集を効率よく実施し得るばかりでなく、
その優れた圧潰強度特性を活かし、炉床上に多層に重ね
て装入することにより単位炉床面積当たりの生産性を高
めることが可能となる。このときの積層厚さは、小塊成
体の積層数にして3〜10層、厚さで10〜30mmの
範囲が好ましく、3層未満では積層装入による生産性向
上効果がやや不十分であり、10層を超えて過度に積層
装入厚さを厚くすると、積層下層側の小塊成体が加熱不
足となって固体還元および溶融凝集の効率が悪くなる傾
向が生じてくる。
When such a compact compact is used, not only can it be charged in the form of a single layer on the hearth of a reduction melting furnace, and solid reduction and melting / agglomeration can be efficiently carried out according to a conventional method,
By taking advantage of the excellent crushing strength characteristics, it is possible to increase the productivity per unit hearth area by stacking multiple layers on the hearth. The lamination thickness at this time is preferably in the range of 3 to 10 laminations in the number of small agglomerates, and in the range of 10 to 30 mm in thickness, and if less than 3 laminations, the effect of improving productivity by laminating is somewhat insufficient. If the lamination charging thickness is excessively increased beyond 10 layers, the small compacted body on the lower layer side of the lamination will be insufficiently heated, and the efficiency of solid reduction and melt aggregation will tend to deteriorate.

【0022】炉床面への小塊成体の供給には格別特殊な
方法が採用される訳ではなく、例えばホッパーや振動フ
ィーダー、ドラムフィーダーなどによって切出し、ガイ
ド用の樋やパイプ、傾斜板を用いて供給する方法などを
採用すればよい。
A special method is not always adopted for supplying small-sized compacts to the hearth surface. For example, cutting is performed by a hopper, a vibration feeder, a drum feeder, or the like, and a gutter, a pipe, or an inclined plate for guiding is used. It is sufficient to adopt a method of supplying by feeding.

【0023】また小塊成体を多層積層状態で装入する際
には、積層表面に縦方向及び/又は横に任意の形状の山
部と谷部を形成して凹凸状とし、表面積を拡大すること
によって上方からのバーナ加熱や輻射熱による加熱効率
高めることが望ましい。この様に積層表面に凹凸を形成
しておけば、積層下層部の小塊成体に対する伝熱効率も
高められるので有効である。該凹凸の好ましい形状や大
きさ、ピッチ等は、積層厚さによっても変わってくるの
で一律に規定することはできないが、好ましくは高さ
(山頂部と谷底部との間隔)で5〜30mm、より好ま
しくは10〜30mmの範囲であり、好ましいピッチ
(隣り合った山頂部間の幅)は10〜100mm、より
好ましくは10〜70mmの範囲である。該凹凸の形成
法にも格別の制限はなく、例えば炉床幅方向に複数の供
給口から装入量を変えて装入する方法、炉幅方向に延長
して設けた凹凸状ホッパーから装入厚さを変えて装入す
る方法、ほぼ水平に装入した後凹凸を有する表面整形部
材でなぞって凹凸を形成する方法等を任意に選択して適
用できる。
When the compacted compact is charged in a multi-layered state, peaks and valleys of an arbitrary shape are formed in the laminating surface in the vertical and / or horizontal direction to form irregularities, thereby increasing the surface area. Accordingly, it is desirable to increase the heating efficiency by burner heating from above or radiant heat. It is effective to form irregularities on the surface of the laminate, since the heat transfer efficiency of the lower layer of the laminate to the compacted compact can be increased. The preferred shape, size, pitch and the like of the irregularities cannot be uniformly defined because they vary depending on the lamination thickness, but are preferably 5 to 30 mm in height (interval between the top and the bottom), It is more preferably in the range of 10 to 30 mm, and the preferred pitch (width between adjacent peaks) is in the range of 10 to 100 mm, more preferably 10 to 70 mm. There is no particular limitation on the method of forming the irregularities, for example, a method of changing the charging amount from a plurality of supply ports in a width direction of the hearth, a charging method, a method of charging from an irregular hopper extending in the furnace width direction. A method in which the thickness is changed and a method in which the unevenness is formed by tracing with a surface shaping member having the unevenness after being substantially horizontally inserted can be arbitrarily selected and applied.

【0024】なお本発明で使用する小塊成体は、前述の
如く小径であるが故に個々の塊成体の圧潰強度は相対的
に強く、積層装入しても積層圧で潰れる可能性は少な
く、また熱伝達が速いこともあって、初期の加熱で速や
かに乾燥されるので未乾燥状態のままで炉床上に供給す
ることも可能であるが、装入時の衝撃や積層荷重による
破損をより確実に防止するには、該小塊成体の少なくと
も表層側を予め乾燥してから装入することが好ましく、
そうすれば、小塊成体の付着による装入用ホッパーなど
での詰まりも防止できるので好ましい。
Since the compacted compact used in the present invention has a small diameter as described above, the crushing strength of each compacted article is relatively strong, and the compacted compact is less likely to be crushed by the laminating pressure even when charged in a laminate. In addition, because heat transfer is fast, it is quickly dried by initial heating, so it is possible to supply it on the hearth in an undried state, but damage due to impact at the time of charging and lamination load is more. In order to surely prevent, it is preferable to charge at least the surface layer side of the small compacted body before drying,
This is preferable because clogging in a charging hopper or the like due to the attachment of the compacted compact can be prevented.

【0025】更に本発明を実施するに当たり、炉床上に
粉状炭素質物質を敷いてから小塊成体を装入し、あるい
は該小塊成体の表面に炭素質物質を付着させてから炉床
上に装入する方法を採用すれば、例えばイ )上記炭素質物質が固体還元時における小塊成体近傍の
雰囲気ガスの還元度を高めて固体還元をより効率よく進
行させる、ロ )該炭素質物質が固体還元を終えた金属鉄に浸炭してそ
の融点を降下させ、溶融・凝集を促進させる、ハ )該炭素質物質が炉床表面への溶融金属鉄の付着を抑え
て粒状化を促進する、ニ )小塊成体を積層装入したときに起こりがちな下層側の
還元不足が該炭素質物質によって補われ、全体の固体還
元率を高める、ホ )該下層側の還元不足によって生じがちなFeOに作用
してこれを速やかに還元するので、炉床耐火物を著しく
溶損させるFeO含有溶融スラグの生成も抑えられ、炉
床寿命の延長が図られる、ヘ )小塊成体の表面に炭素質物質をまぶす様に付着させて
おけば、相互の付着や装入用ホッパーなどへの付着も防
止されるので、小塊成体を未乾燥状態で装入することも
可能となる。
Further, in carrying out the present invention, the powdered carbonaceous material is laid on the hearth and then the compacted iron is charged, or the carbonaceous material is adhered to the surface of the compacted iron and then placed on the hearth. If the charging method is adopted, for example, a) the carbonaceous substance enhances the degree of reduction of the atmospheric gas near the small compacted body during the solid reduction to promote the solid reduction more efficiently. Carburizing metal iron after solid reduction to lower its melting point and promote melting and agglomeration; c) the carbonaceous substance suppresses adhesion of molten metal iron to the hearth surface and promotes granulation; D) Insufficient reduction in the lower layer, which tends to occur when small compacted compacts are stacked and charged, is supplemented by the carbonaceous substance to increase the overall solid reduction rate. E) FeO, which is likely to be generated due to insufficient reduction in the lower layer To reduce this quickly, The formation of FeO-containing molten slag, which significantly damages the fire, is also suppressed, and the life of the hearth is extended. F) If the carbonaceous material is adhered to the surface of the small agglomerate, the mutual adhesion will occur. It is also possible to prevent the small compacted body from being charged in an undried state, since it is prevented from adhering to the hopper and the charging hopper.

【0026】ここで用いられる炭素質物質としては、石
炭粉、コークス粉、木炭粉などが任意に選択して使用さ
れる。なお炉床上面に敷く粉状炭素質物質として上記作
用をより有効に発揮させるための好ましい粒径は、平均
粒径で2mm以下、より好ましくは1.5mm以下のも
のである。また、小塊成体の表面に炭素質物質を付着さ
せる場合は、平均粒径が0.3mm程度以下のものを表
面にまぶす様に付着させる方法、炭素質物質を水などの
分散媒に分散させてスプレー付着させる方法などを採用
すればよい。
As the carbonaceous substance used here, coal powder, coke powder, charcoal powder and the like are arbitrarily selected and used. The preferred particle size for more effectively exhibiting the above-described effects as a powdery carbonaceous material spread on the upper surface of the hearth is an average particle size of 2 mm or less, more preferably 1.5 mm or less. When the carbonaceous material is to be adhered to the surface of the compacted compact, a method of attaching a material having an average particle size of about 0.3 mm or less so as to cover the surface is performed by dispersing the carbonaceous material in a dispersion medium such as water. A method of spray attachment may be employed.

【0027】次に、前記小塊成体を原料として固体還元
および溶融・凝集を行なって粒状金属鉄を製造する際の
具体的な装置について簡単に説明する。
Next, a specific apparatus for producing granular metallic iron by performing solid reduction, melting and agglomeration using the above compacted compact as a raw material will be briefly described.

【0028】図1〜3は本発明が適用される本発明者ら
自身が開発した移動床型還元溶融炉の一例を示す該略説
明図で、ドーナツ状の回転移動床を有するドーム型構造
のものを示しており、図1は概略見取図、図2は図1に
おけるA−A線断面相当図、図3は、理解の便のため図
1における回転移動床の回転移動方向に展開して示す概
略断面説明図であり、図中1は回転炉床、2は該回転炉
床をカバーする炉体であり、回転炉床1は、図示しない
駆動装置により適当な速度で回転駆動できる様に構成さ
れている。
FIGS. 1 to 3 are schematic illustrations showing an example of a moving bed type reduction melting furnace developed by the present inventors to which the present invention is applied, and which has a dome-shaped structure having a donut-shaped rotating moving bed. FIG. 1 is a schematic view, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is developed in the direction of rotation of the rotary moving floor in FIG. FIG. 1 is a schematic cross-sectional explanatory view, in which 1 is a rotary hearth, 2 is a furnace body that covers the rotary hearth, and the rotary hearth 1 is configured to be rotatable at an appropriate speed by a driving device (not shown). Have been.

【0029】炉体2の壁面適所には複数の燃焼バーナ3
が設けられており、該燃焼バーナ3の燃焼熱およびその
輻射熱を回転炉床1上の小塊成体に伝えることにより、
該塊成体の加熱還元が行われる。図示する炉体2は好ま
しい例を示したもので、炉体2内部は1枚の仕切壁Kで
還元溶融ゾーンZ1と冷却ゾーンZ2に仕切られており、
該炉体2の回転方向最上流側には回転炉床1を臨んで原
料および副原料装入手段4が配置されると共に、回転方
向最下流側(回転構造であるため、実際には装入手段4
の直上流側にもなる)には排出手段6が設けられてい
る。
A plurality of combustion burners 3 are provided at appropriate places on the wall of the furnace body 2.
The combustion heat of the combustion burner 3 and the radiant heat thereof are transmitted to the compacted compact on the rotary hearth 1,
Heat reduction of the agglomerates is performed. Furnace body 2 the illustrated shows a preferred example, the furnace body 2 inside is partitioned into the reduction melting zone Z 1 and the cooling zone Z 2 in one partition wall K,
The raw material and auxiliary raw material charging means 4 are arranged on the most upstream side in the rotational direction of the furnace body 2 facing the rotary hearth 1, and the most downstream side in the rotational direction (because of the rotating structure, charging is actually performed). Means 4
The discharge means 6 is provided immediately upstream of the discharge means.

【0030】該加熱還元溶融炉の熱源としては、ガスや
重油、微粉炭、廃プラスチックなどを燃料として用いた
バーナ加熱、あるいは炉内に生成する可燃性ガスを有効
利用し酸素や空気を供給してこれを燃焼させるタイプ、
更には蓄熱型の炉を使用することも可能である。また生
成した粒状金属鉄の排出には、スクリューやスクレパー
の如き任意の排出装置、あるいはガスの吹付けもしくは
吸引を利用して排出させる方法を採用することも可能で
ある。
As a heat source of the heating reduction melting furnace, a burner heating using gas, heavy oil, pulverized coal, waste plastic, or the like as a fuel, or oxygen or air is supplied by effectively using a combustible gas generated in the furnace. Type that burns this,
Furthermore, it is also possible to use a regenerative furnace. Further, for discharging the generated granular metallic iron, an arbitrary discharging device such as a screw or a scraper, or a method of discharging by using gas blowing or suction can be adopted.

【0031】この還元溶融炉を稼動するに当たっては、
回転炉床1を所定の速度で回転させておき、該回転炉床
1上に、主原料となる小塊成体を装入装置4から振動フ
ィーダー5などを用いて適当な厚さとなる様に供給して
いく。該小塊成体の装入に当たっては、これを単層とな
る様に装入することも可能であるが、前述の如く好まし
くは炉床上に3〜10層、より好ましくは3〜6層、厚
さにして10〜30mm、より好ましくは20〜30m
mの範囲となる様に装入すれば、単位炉床面積当たりの
原料装入量を増大することができ、それにより生産性を
高めることができるので好ましい。
In operating this reduction melting furnace,
The rotary hearth 1 is rotated at a predetermined speed, and the compacted compact as the main raw material is supplied onto the rotary hearth 1 from the charging device 4 by using a vibration feeder 5 or the like so as to have an appropriate thickness. I will do it. When charging the compacted compact, the compacted compact can be charged into a single layer, but as described above, preferably 3 to 10 layers, more preferably 3 to 6 layers, 10-30mm, more preferably 20-30m
It is preferable to charge the raw materials in the range of m since the amount of raw materials charged per unit hearth area can be increased, thereby increasing productivity.

【0032】また小塊成体を積層状態で装入する際に
は、該積層体の表面に任意の大きさの凹凸を形成すれ
ば、積層表面の伝熱有効面積が拡大され、装入された小
塊成体に対する加熱効率を一層高め得ると共に、積層下
層側の小塊成体に対する加熱効率も高められるので好ま
しい。該凹凸の形成は、前述した如く例えば炉床幅方向
に複数の供給口から装入量を変えて装入する方法、炉幅
方向に延長して設けた凹凸状ホッパーから装入厚さを変
えて装入する方法、ほぼ水平に装入した後凹凸を有する
表面整形部材でなぞって凹凸を形成する方法などを採用
すればよい。
When the compacted compacts are charged in a laminated state, if the surface of the laminated body is formed with irregularities of an arbitrary size, the heat transfer effective area of the laminated surface is enlarged and the compacted compact is charged. This is preferable because the heating efficiency for small compacted iron can be further increased, and the heating efficiency for small compacted iron on the lower layer side can be increased. As described above, for example, as described above, the charging method is performed by changing the charging amount from a plurality of supply ports in the furnace floor width direction, and the charging thickness is changed from the uneven hopper provided extending in the furnace width direction. And a method of forming the concavities and convexities by tracing with a surface shaping member having concavities and convexities after being substantially horizontally inserted.

【0033】炉床1上に装入された小塊成体は、還元溶
融ゾーンZ1を移動する過程で燃焼バーナ3による燃焼
熱及び輻射熱を受け、小塊成体内に含まれる酸化鉄と炭
素質還元剤との反応で生成する一酸化炭素により酸化鉄
は還元され、生成した金属鉄は更に炭素リッチ雰囲気下
で加熱されることにより浸炭して溶融し、副生するスラ
グと分離しながら凝集して粒状の溶融金属鉄となった
後、冷却ゾーンZ2で任意の冷却手段Cで冷却されて固
化し、その下流側に設けられた排出手段6によって順次
掻き出される。この時、副生したスラグも同時に排出さ
れるが、これらはホッパーHを経た後、任意の分離手段
(篩目や磁選装置など)により粒状金属鉄とスラグの分
離が行われ、最終的に鉄分純度が95%程度以上、より
好ましくは98%程度以上でスラグ成分含量の極めて少
ない粒状金属鉄として得ることができる。
The compacted compact charged on the hearth 1 receives combustion heat and radiant heat from the combustion burner 3 in the process of moving through the reduction melting zone Z 1 , and the iron oxide and carbonaceous material contained in the compacted compact are received. Iron oxide is reduced by carbon monoxide generated by the reaction with the reducing agent, and the generated metallic iron is further heated in a carbon-rich atmosphere to be carburized and melted, and aggregated while being separated from by-product slag. after a molten metallic iron particulate Te is cooled in any cooling means C in the cooling zone Z 2 is solidified, sequentially scraped out by the discharging means 6 provided on the downstream side. At this time, slag by-produced is also discharged at the same time. After passing through the hopper H, the slag is separated from granular metallic iron and slag by an arbitrary separating means (a sieve or a magnetic separation device, etc.), and finally the iron content is reduced. Purity can be obtained as granular metallic iron having a purity of about 95% or more, more preferably about 98% or more, and extremely low slag content.

【0034】なお上記還元・溶融工程で、還元時(固体
還元期)の雰囲気温度が高すぎる場合、具体的には還元
過程のある時期に、雰囲気温度が原料中の脈石成分や未
還元酸化鉄等からなるスラグ組成の融点を超えて高温に
なると、これら低融点のスラグが溶融して移動炉床を構
成する耐火物と反応して溶損させ、平滑な炉床を維持で
きなくなる。また、固体還元期に酸化鉄の還元に必要と
される以上の熱が加わると、小塊成体中の鉄酸化物であ
るFeOが還元される前に溶融し、該溶融FeOが炭材
中の炭素(C)と反応する所謂溶融還元(溶融状態で還
元が進行する現象で、固体還元とは異なる)が急速に進
行する。該溶融還元によっても金属鉄は生成するが、該
溶融還元が起こると、流動性の高いFeO含有スラグが
炉床耐火物を著しく溶損させるので、実用炉としての連
続操業が困難になる。
In the above-mentioned reduction / melting step, if the ambient temperature during the reduction (solid reduction period) is too high, specifically, during a certain period of the reduction process, the ambient temperature is changed to the gangue component or the unreduced oxidized material in the raw material. When the temperature of the slag is higher than the melting point of the slag composition composed of iron or the like, the slag having a low melting point melts and reacts with the refractory constituting the moving hearth to be melted, so that a smooth hearth cannot be maintained. Further, when heat more than required for the reduction of iron oxide is applied during the solid reduction period, FeO, which is an iron oxide in small compacted iron, is melted before being reduced, and the molten FeO is contained in the carbonaceous material. So-called smelting reduction (a phenomenon in which reduction proceeds in a molten state, which is different from solid state reduction) that reacts with carbon (C) proceeds rapidly. Although metallic iron is also generated by the smelting reduction, when the smelting reduction occurs, the highly fluid FeO-containing slag remarkably dissolves the hearth refractory, making continuous operation as a practical furnace difficult.

【0035】こうした現象は、小塊成体を構成する鉄鉱
石や炭材、或いは更にバインダー等に含まれるスラグ形
成成分の組成などによって変わってくるが、固体還元時
の雰囲気温度が約1400℃を超えると、上記の様な低
融点スラグの滲み出しが起こって炉床耐火物が溶損さ
れ、1500℃を超えると原料鉄鉱石等の銘柄に関わり
なく、好ましくない上記溶融還元反応が進行して炉床耐
火物の溶損が顕著になるので、固体還元期の温度は15
00℃以下、より好ましくは1450℃程度以下に抑え
ることが望ましい。なお該固体還元期の温度は低すぎる
と固体還元が効率よく進み難くなるので、好ましくは1
200℃以上、更に好ましくは1300℃以上とするこ
とが望ましい。
Such a phenomenon varies depending on the iron ore and the carbonaceous material constituting the small agglomerate or the composition of the slag forming component contained in the binder, etc., but the ambient temperature during the solid reduction exceeds about 1400 ° C. As described above, the low-melting point slag oozes out and the hearth refractory is eroded. If the temperature exceeds 1500 ° C., regardless of the brand of the raw material iron ore, the undesired smelting reduction reaction proceeds and the furnace Since the erosion of floor refractories becomes remarkable, the temperature during the solid reduction period is 15
It is desirable to suppress the temperature to 00 ° C. or lower, more preferably to about 1450 ° C. or lower. If the temperature during the solid reduction period is too low, it is difficult for the solid reduction to proceed efficiently.
It is desirable that the temperature be 200 ° C. or higher, more preferably 1300 ° C. or higher.

【0036】固体還元の後は、引き続いて雰囲気温度を
好ましくは50〜200℃程度昇温させて1350〜1
500℃に高め、固体還元により生成した金属鉄を溶融
させ、溶融した金属鉄を凝集させる。このとき、溶融金
属鉄は相互に凝集して粗大化していくが、この間、副生
した溶融スラグを排斥しつつ凝集していくので、凝集金
属鉄はスラグを殆ど含まないFe純度の高いものとな
り、これを冷却凝固してから粒状金属鉄とスラグを篩や
磁選などにより分離することにより、Fe純度の高い粒
状金属鉄を得ることができる。
After the solid reduction, the ambient temperature is preferably raised to about 50 to 200 ° C. to 1350 to 1
The temperature is raised to 500 ° C., the metallic iron generated by the solid reduction is melted, and the molten metallic iron is aggregated. At this time, the molten metallic irons are mutually aggregated and coarsened, but during this time, the molten metallic slag is eliminated while being agglomerated, so that the aggregated metallic iron has a high Fe purity containing almost no slag. After cooling and solidifying this, the granular metallic iron and the slag are separated by a sieve, magnetic separation, or the like, whereby a granular metallic iron with high Fe purity can be obtained.

【0037】なお、固体還元により生成した金属鉄の溶
融は、該金属鉄の融点以上に雰囲気温度を高めることに
よって進行するが、該溶融開始時の金属鉄の近傍にCや
COを存在させておけば、これらによって金属鉄が浸炭
を受けて融点降下を起こすので、金属鉄の溶融をより低
温且つ短時間で進めることができるので好ましい。即ち
この溶融を速やかに進めるには、固体還元を終えた粒子
内に上記浸炭に十分な量の炭素を残存させておくことが
好ましく、この残留炭素量は、原料となる小塊成体を製
造する際の鉄鉱石等と炭材の配合割合によって調整すれ
ばよい。そして本発明者らが実験により確認したところ
によると、固体還元期における最終還元率がほぼ100
%に達した状態、即ち金属化率が100%に達した状態
で、該固体還元物中の残留炭素量(即ち余剰炭素量)が
1.5%以上となる様に当初の炭材配合量を確保してお
けば、還元鉄を速やかに浸炭させて低融点化させること
ができ、1300〜1500℃の温度域で速やかに溶融
させ得ることが確認された。ちなみに上記残留炭素量が
1.5%未満では、浸炭のための炭素量不足により還元
鉄の融点が十分に降下せず、加熱溶融のための温度を1
500℃以上に高めなねばならなくなる。
The melting of the metallic iron produced by the solid reduction proceeds by raising the ambient temperature to a temperature higher than the melting point of the metallic iron. However, C and CO are present near the metallic iron at the start of the melting. This is preferable because the metal iron is carburized to cause a decrease in melting point, and the melting of the metal iron can be performed at a lower temperature and in a shorter time. That is, in order to accelerate this melting, it is preferable to leave a sufficient amount of carbon for the carburization in the particles after the solid reduction, and this residual carbon amount is used to produce a small compact as a raw material. What is necessary is just to adjust according to the mixing ratio of the iron ore and the carbon material at the time. The present inventors have confirmed through experiments that the final reduction rate in the solid reduction phase is almost 100%.
%, Ie, when the metallization ratio has reached 100%, the initial carbon material blending amount such that the amount of residual carbon (that is, the amount of excess carbon) in the solid reduced product becomes 1.5% or more. It has been confirmed that if the temperature is maintained, the reduced iron can be rapidly carburized to lower the melting point, and can be quickly melted in a temperature range of 1300 to 1500 ° C. If the residual carbon content is less than 1.5%, the melting point of the reduced iron does not drop sufficiently due to a shortage of carbon due to carburization, and the temperature for heating and melting is reduced to 1%.
The temperature must be raised to 500 ° C. or higher.

【0038】なお浸炭量がゼロの場合、即ち純鉄の溶融
温度は1537℃であり、この温度よりも高温に加熱し
てやれば還元鉄を溶融させることができるが、実用炉に
おいては炉床耐火物にかかる熱負荷を軽減するため操業
温度はできるだけ低温に抑えることが望ましく、また副
生するスラグの融点を考慮すると、操業温度は1500
℃程度以下に抑えることが望ましい。
When the amount of carburizing is zero, that is, the melting temperature of pure iron is 1537 ° C., the reduced iron can be melted by heating to a temperature higher than this temperature. It is desirable to keep the operating temperature as low as possible in order to reduce the thermal load on the slag.
It is desirable to keep the temperature below about ° C.

【0039】そして、炉内に装入された原料塊成体を、
固体状態を保ちつつ、該塊成体中に含まれるスラグ成分
の部分的な溶融を引き起こすことなく還元率を効率よく
進めるには、炉内温度を1200〜1500℃、より好
ましくは1200〜1400℃の範囲に保って固体還元
を行ない、引き続いて炉内温度を1350〜1500℃
に高めて、一部残された酸化鉄を還元すると共に生成し
た金属鉄を溶融させて凝集させる2段加熱方式を採用す
ることが望ましく、こうした条件設定により粒状の金属
鉄を安定して効率よく製造することができ、通常は10
分から13分程度で酸化鉄の固体還元と溶融および凝集
を完了させることができる。
Then, the raw material compacted in the furnace is
In order to efficiently promote the reduction rate without causing partial melting of the slag component contained in the agglomerate while maintaining the solid state, the furnace temperature is set to 1200 to 1500 ° C, more preferably 1200 to 1400 ° C. Solid reduction is performed while keeping the temperature within the range, and subsequently, the furnace temperature is set to 1350 to 1500 ° C.
It is desirable to adopt a two-stage heating method for reducing the remaining iron oxide and melting and aggregating the generated metallic iron, and by setting these conditions, the granular metallic iron can be stably and efficiently used. Can be manufactured, usually 10
The solid reduction, melting, and aggregation of the iron oxide can be completed in about 13 minutes to about 13 minutes.

【0040】ところで本発明の実施に用いられる還元溶
融炉では、原料小塊成体の加熱にバーナー加熱を採用す
ることが多い。この場合、固体還元期には、炉内に装入
された小塊成体中の酸化鉄源と炭材との反応により大量
のCOガスが発生するので、原料塊成体近傍は自から放
出する上記COガスのシールド効果によって十分な還元
性雰囲気に保たれる。
By the way, in the reduction melting furnace used for carrying out the present invention, burner heating is often used for heating the compacted raw material compact. In this case, in the solid reduction period, a large amount of CO gas is generated by the reaction between the iron oxide source and the carbon material in the small compacted iron charged in the furnace, so that the vicinity of the raw compacted iron is released from itself. A sufficient reducing atmosphere is maintained by the shielding effect of the CO gas.

【0041】ところが、固体還元期の後半から末期にか
けては、上記COガスの発生量が急速に減少するため自
己シールド作用が低下し、バーナ加熱によって生じる燃
焼排ガス(CO2やH2O等の酸化性ガス)の影響を受け
易くなり、折角還元された金属鉄が再酸化を受け易くな
る。また、固体還元の終了後は、小塊成体中の残留炭素
による還元鉄の浸炭による融点降下によって微小還元鉄
の溶融と凝集が進行するが、この段階でも前記自己シー
ルド作用は乏しいので、還元鉄は再酸化を受け易い。
However, from the latter half of the solid reduction period to the end of the solid reduction period, the amount of generated CO gas is rapidly reduced, so that the self-shielding effect is reduced, and the combustion exhaust gas (oxidation of CO 2 , H 2 O, etc.) generated by burner heating is reduced. ), And the reduced metallic iron is susceptible to re-oxidation. Further, after completion of the solid reduction, melting and agglomeration of the fine reduced iron proceed due to the melting point drop due to the carburization of the reduced iron due to the residual carbon in the small agglomerate, but the self-shielding action is poor even at this stage. Are susceptible to re-oxidation.

【0042】従って、この様な再酸化を可及的に抑えつ
つ固体還元後の溶融・凝集を効率よく進めるには、溶融
領域の雰囲気ガス組成を適切に制御することが望まし
い。そのための好ましい手段としては、前述した通り原
料となる小塊成体を炉床上に装入するに先立って、炉床
上に粉状炭素質物質を装入し、あるいは小塊成体の表面
に予め炭素質粉を付着させておく方法が挙げられる。即
ち、この様に炉床面に粉状炭素質物質を装入しておき、
あるいは小塊成体の表面に炭素質物質を付着させておく
と、これらが固体還元完了後、溶融開始期に、バーナ燃
焼により生成した酸化性ガス(CO2やH2O)と直ちに
反応してこれらのガスをCOやH2などの還元性ガスに
変えるので、固体還元を受けた塊成物の近傍を高還元性
雰囲気に保つことができ、金属鉄の再酸化を可及的に防
止できる。しかもこれらの炭素質還元剤は、生成した金
属鉄に対して浸炭源となり、金属鉄の浸炭・溶融に要す
る時間を更に短縮する作用も発揮するので好ましい。
Therefore, in order to efficiently promote the melting and agglomeration after the solid reduction while suppressing such reoxidation as much as possible, it is desirable to appropriately control the atmosphere gas composition in the melting region. As a preferable means for this, as described above, prior to charging the compacted compact as a raw material on the hearth, a powdery carbonaceous substance is charged on the hearth, or the carbonaceous material is previously placed on the surface of the compacted compact. There is a method of keeping the powder adhered. That is, the powdery carbonaceous material is charged into the furnace floor in this way,
Alternatively, if carbonaceous substances are adhered to the surface of small agglomerates, they immediately react with oxidizing gas (CO 2 or H 2 O) generated by burner combustion at the beginning of melting after solid reduction is completed. Since these gases are converted into reducing gases such as CO and H 2 , the vicinity of the agglomerates subjected to solid reduction can be kept in a highly reducing atmosphere, and reoxidation of metallic iron can be prevented as much as possible. . In addition, these carbonaceous reducing agents are preferable because they serve as a carburizing source for the produced metallic iron, and also exhibit the effect of further reducing the time required for carburizing and melting the metallic iron.

【0043】上記炭素質物質の作用効果を有効に発揮さ
せるには、炉床上に予め装入される上記粉状炭素質物質
として、粒径が3mm以下、より好ましくは2mm以
下、特に好ましくは0.3〜1.5mmの範囲の微細化
物を使用し、これを、好ましくは2〜7mm程度、より
好ましくは3〜6mm程度の厚さに装入しておくのがよ
く、また小塊成体の表面に付着させておく場合は、その
付着量を小塊成体に対して1〜10質量%、より好まし
くは3〜7質量%の範囲に設定することが望ましい。
In order to effectively exert the function and effect of the carbonaceous substance, the powdery carbonaceous substance previously charged on the hearth has a particle size of 3 mm or less, more preferably 2 mm or less, and particularly preferably 0 mm or less. It is preferable to use a finely divided material in the range of 3 to 1.5 mm, which is preferably charged to a thickness of about 2 to 7 mm, more preferably about 3 to 6 mm. When it is attached to the surface, it is desirable to set the amount of attachment to 1 to 10% by mass, more preferably 3 to 7% by mass, based on the compacted compact.

【0044】上記方法によって得られる粒状金属鉄は、
副生するスラグを排斥しつつ凝集したもので、スラグ成
分を殆ど含んでおらずFe純度の非常に高いものであ
り、この金属鉄は電気炉や転炉の如き既存の製鋼設備へ
送り鉄源として使用されるが、これらを製鋼原料として
使用するには、硫黄[S]の含有量をできるだけ低減す
ることが望ましい。そこで、前記金属鉄の製造工程で、
鉄鉱石や炭材中に含まれるS成分を可及的に除去して低
[S]の金属鉄を得るべく研究を行なったところ、前記
鉄鉱石や炭材を配合して小塊成体を製造する際に、該原
料中にCaO源(生石灰の他、消石灰や炭酸カルシウム
などを含む)を積極的に配合し、鉄鉱石等に含まれる脈
石成分などのスラグ形成成分も加味した原料小塊成体中
に含まれる全スラグ形成成分の塩基度(即ちCaO/S
iO2比)が0.6〜1.8、より好ましくは0.9〜
1.5の範囲となる様に成分調整してやれば、最終的に
得られる金属鉄中のS含有量を0.10%以下、更には
0.05%程度以下にまで低減し得ることが確認され
た。
The granular metallic iron obtained by the above method is
It is agglomerated while excluding slag by-produced and contains very little slag components and has a very high Fe purity. This metallic iron is sent to existing steelmaking facilities such as electric furnaces and converters to send iron sources. However, in order to use these as steelmaking raw materials, it is desirable to reduce the content of sulfur [S] as much as possible. Therefore, in the manufacturing process of the metallic iron,
Research was conducted to obtain low [S] metallic iron by removing as much as possible the S component contained in iron ore and carbonaceous material. In doing this, a CaO source (including slaked lime and calcium carbonate, etc., in addition to quick lime) is positively blended into the raw material, and the raw material lumps in which slag forming components such as gangue components contained in iron ore and the like are added. The basicity (ie, CaO / S) of all slag forming components contained in the adult
iO 2 ratio) is 0.6 to 1.8, more preferably 0.9 to 1.8.
It has been confirmed that by adjusting the components so as to be in the range of 1.5, the S content in the finally obtained metallic iron can be reduced to 0.10% or less, and further to about 0.05% or less. Was.

【0045】ちなみに、炭素質還元剤として最も一般的
に用いられるコークスや石炭には通常0.2〜1.0%
程度のSが含まれており、これら[S]の大部分は金属
鉄中に取り込まれる。一方、CaO源の積極添加による
塩基度調整を行なわない場合、鉄鉱石の銘柄などによっ
てかなりの違いはあるものの、原料塊成体中に含まれる
スラグ形成成分から算出される塩基度は大抵の場合0.
3以下であり、この様な低塩基度のスラグでは、固体還
元あるいはその後の溶融・凝集過程で金属鉄へのSの混
入(加硫)が避けられず、原料塊成体中に含まれる全
[S]のうち概略85%程度が金属鉄中に取り込まれ
る。その結果として、金属鉄の[S]量は0.1〜0.
2%の非常に高い値となり、粒状金属鉄としての品質を
損なう。
Incidentally, coke and coal, which are most commonly used as carbonaceous reducing agents, usually contain 0.2 to 1.0%
To the extent that most of these [S] are incorporated into metallic iron. On the other hand, when the basicity is not adjusted by the active addition of the CaO source, the basicity calculated from the slag-forming component contained in the raw material agglomeration is usually 0, although there are considerable differences depending on the brand of iron ore. .
In such a low basicity slag, incorporation (vulcanization) of S into metallic iron during solid reduction or subsequent melting / aggregation process is unavoidable, and the total amount of [ About 85% of [S] is taken into metallic iron. As a result, the [S] amount of metallic iron is 0.1 to 0.5.
A very high value of 2% impairs the quality as granular metallic iron.

【0046】ところが、上記の様に原料塊成体の製造段
階でCaO源の積極添加によりスラグ形成成分の組成を
塩基度が0.6〜1.8の範囲となる様に調整してやれ
ば、固体還元および浸炭・溶融・凝集の際に副生するス
ラグ中に上記[S]が固定され、その結果として粒状金
属鉄の[S]量を例えば0.050〜0.080%レベ
ルまで大幅に低減できる。該低S化の機構は、原料塊成
体中に含まれる[S]がCaOと反応し(CaO+S=
CaS)、CaSとして固定されるためと考えられる。
However, if the composition of the slag-forming component is adjusted so that the basicity is in the range of 0.6 to 1.8 by the active addition of a CaO source during the production stage of the raw material compact as described above, the solid reduction [S] is fixed in slag by-produced during carburization, melting, and agglomeration, and as a result, the [S] amount of granular metallic iron can be significantly reduced to, for example, a 0.050 to 0.080% level. . The mechanism for lowering S is that [S] contained in the raw material compacted reacts with CaO (CaO + S =
It is considered that CaS) is fixed as CaS.

【0047】[0047]

【実施例】以下、実施例を挙げて本発明の構成および作
用効果を具体的に説明するが、本発明はもとより下記実
施例によって制限を受けるものではなく、前・後記の趣
旨に適合し得る範囲で適当に変更して実施することも可
能であり、それらはいずれも本発明の技術的範囲に含ま
れる。
EXAMPLES Hereinafter, the structure, operation, and effects of the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and can be adapted to the above and following points. The present invention can be implemented by appropriately changing the scope, and all of them are included in the technical scope of the present invention.

【0048】実施例1 鉄源としての鉄鉱石(主要成分:T.Fe;69.2
%,Al23;0.51%,SiO2;1.81%)、
炭素質還元剤として石炭粉(主要成分:固定炭素;7
1.6%、灰分;8.8%、揮発分;19.6%)、バ
インダーとして生石灰を使用し、これらを78.54:
20.46:1.00の質量比で均一に混合した後、ミ
キサーを用いて散水しながら約15分間攪拌することに
より疑似粒子状の小塊成体(水分含有率:12.9%)
を得た。この小塊成体を乾燥して水分含量を約6%とし
た後、篩分けして1.0mm以下、1.0〜3.35m
m、3.35〜5.6mmおよび5.6〜6.7mmの
4種の粒径群に分離した。
Example 1 Iron ore as iron source (main component: T.Fe; 69.2)
%, Al 2 O 3; 0.51 %, SiO 2; 1.81%),
Coal powder as carbonaceous reducing agent (major component: fixed carbon; 7
1.6%, ash content: 8.8%, volatile content: 19.6%), and quicklime was used as a binder.
After mixing uniformly at a mass ratio of 20.46: 1.00, the mixture was stirred for about 15 minutes while sprinkling water with a mixer to form pseudo-agglomerated small agglomerates (water content: 12.9%).
I got After drying this small agglomerate to a water content of about 6%, it is sieved to 1.0 mm or less, 1.0 to 3.35 m.
m, 3.35 to 5.6 mm and 5.6 to 6.7 mm.

【0049】上記で得た疑似炭材粒子を耐火物製平板状
皿の底面に敷き詰めた後、その上に上記で篩分けした各
小塊成体を高さが約12mmとなる様に積層して装入
し、これを小型電気炉内へ入れて、100%窒素ガスを
流しながら1440℃で12分間(粒度が1mm未満の
ものを使用した場合は15分間)加熱して還元溶融を行
ない、粒状金属鉄の製造実験を行なった。得られた粒状
金属鉄の重見掛け密度の平均値と、粒径3mm以上の粒
状金属鉄のFe歩留まりは下記の通りであった。また比
較のため、塊成体の平均粒径を18.5mmに代え、加
熱条件を1430℃×12分間に変更した以外は上記と
同様にして粒状金属鉄の製造を行なった結果も併記し
た。 小塊成体粒度 粒状金属鉄の見掛け密度 Fe歩留まり 1.0mm未満 7.56g/cm3 73.8% 1.0〜3.35mm 6.87g/cm3 83.0% 3.35〜5.6mm 7.37g/cm3 87.2% 5.6〜6.7mm 7.35g/cm3 87.4% 18.5mm 7.38g/cm3 89.7%
After the pseudo carbon material particles obtained above were spread on the bottom of a refractory flat plate, each of the small agglomerates sieved as described above was laminated to a height of about 12 mm. The mixture was placed in a small electric furnace, and heated at 1440 ° C. for 12 minutes (15 minutes when a particle having a particle size of less than 1 mm was used) while flowing 100% nitrogen gas to reduce and melt the particles. An experiment on the production of metallic iron was performed. The average value of the apparent density of the obtained granular metallic iron and the Fe yield of the granular metallic iron having a particle size of 3 mm or more were as follows. For comparison, the results of the production of granular metallic iron in the same manner as described above except that the average particle size of the compacted iron was changed to 18.5 mm and the heating conditions were changed to 1430 ° C. for 12 minutes are also shown. Small compacted irons granularity apparent density of less than Fe yield 1.0mm metallic iron nuggets 7.56g / cm 3 73.8% 1.0~3.35mm 6.87g / cm 3 83.0% 3.35~5.6mm 7.37g / cm 3 87.2% 5.6~6.7mm 7.35g / cm 3 87.4% 18.5mm 7.38g / cm 3 89.7%

【0050】酸化鉄源と炭素質還元剤を含む成形体を加
熱還元して粒状金属鉄を製造する場合、一般的には、原
料成形体のサイズが大きいほど粒径の大きい粒状金属鉄
が得られると考えられている。事実、上記実験でも、原
料塊成体の粒径が大きいほど得られる粒状金属鉄の粒径
は相対的に大きくなる傾向が認められる。しかしその傾
向は極僅かであり、本発明で好ましく用いられる粒径が
約3〜7mmの小塊成体を原料として使用した場合で
も、得られる粒状鉄の粒径は、一般的な粒径18mm程
度の成形体を使用した場合に得られる粒状鉄の粒径と殆
ど差がみられない。従って本発明によれば、小塊成体を
使用することによる前述した利点を、粒状金属鉄の品質
低下を殆ど生じることなく有効に享受し得ることが分か
る。
In the case of producing granular metallic iron by heating and reducing a compact containing an iron oxide source and a carbonaceous reducing agent, in general, the larger the size of the raw material compact, the larger the granular metallic iron obtained. Is believed to be. In fact, even in the above experiment, it is recognized that the larger the particle size of the raw material compacted iron, the larger the particle size of the obtained granular metallic iron. However, the tendency is very slight, and even when a small compacted compact having a particle size of about 3 to 7 mm, which is preferably used in the present invention, is used as a raw material, the particle size of the obtained granular iron is about 18 mm, which is a general particle size. Hardly any difference from the particle size of the granular iron obtained when using the molded body of the above. Therefore, according to the present invention, it can be seen that the above-mentioned advantages of using the compacted compact can be effectively enjoyed with almost no deterioration in the quality of the granular metallic iron.

【0051】なお上記実験では、何れもコークス粉を床
敷きしたので、生成する粒状金属鉄はその全てが該コー
クス粉の表面で凝集しており、皿底面の侵食は殆ど認め
られず、側壁面で僅かな侵食が認められたに過ぎなかっ
た。
In each of the above experiments, coke powder was laid on the floor, so that all of the granular metallic iron produced was agglomerated on the surface of the coke powder, and almost no erosion was observed on the bottom of the dish. Only slight erosion was noted.

【0052】また、原料として前記と同じ組成の酸化鉄
源と炭素質還元剤を使用し、塊成化処理を全く行なって
いない乾燥粉を使用した以外は上記と全く同じ条件で加
熱還元を行なったところ、加熱温度を1480℃に高め
ても溶融金属鉄の生成は起こらないことが確認された。
これは、酸化鉄源と炭素質還元剤が何れも密に接してい
ないため固体還元が進行し難く、1440℃レベルでは
金属鉄にまで還元されなかったためと思われる。
Further, the heat reduction was carried out under the same conditions as above except that the raw material used was an iron oxide source and a carbonaceous reducing agent having the same composition as described above, and a dry powder not subjected to any agglomeration treatment was used. As a result, it was confirmed that even when the heating temperature was increased to 1480 ° C., the formation of molten metallic iron did not occur.
This is presumably because the iron oxide source and the carbonaceous reducing agent were not in close contact with each other, so that solid reduction hardly proceeded, and the metal oxide was not reduced to metallic iron at the 1440 ° C level.

【0053】実施例2 鉄源として鉄鉱石(実施例1と同じ)、炭素質還元剤と
して石炭粉(実施例1と同じ)を使用し、両者を79.
3:20.7%(質量%)の比率で均一に混合した後、
これに水10%を加えてパン型造粒機によって造粒を行
ない、粒径が3〜5mmの小塊成体を製造した。この小
塊成体を、乾燥することなく、耐火物製平板状皿に約3
0mmの厚に充填し、その表面に、幅約30mmの間隔
で高さが20mmまたは30mmの3筋の畝を形成し、
これを箱型電気炉へ装入して1425℃で12分間加熱
することにより固体還元と溶融・凝集を行ない、粒状金
属鉄の生成状況(直径3.35mm以上の粒状金属鉄の
歩留まり)を比較した。結果を次に示す。 畝高さ 直径3.35mm以上の粒状金属鉄の歩留まり 20mm 93.0% 30mm 94.7%
Example 2 Iron ore (same as in Example 1) was used as an iron source, and coal powder (same as in Example 1) was used as a carbonaceous reducing agent.
After uniformly mixing at a ratio of 3: 20.7% (% by mass),
10% of water was added thereto, and the mixture was granulated by a bread granulator to produce a compact compact having a particle size of 3 to 5 mm. This compacted compact is placed on a refractory plate without drying for about 3
Filled to a thickness of 0 mm, on the surface of which are formed three ridges 20 mm or 30 mm in height at intervals of about 30 mm in width,
This is charged into a box-type electric furnace and heated at 1425 ° C. for 12 minutes to perform solid reduction and melting / aggregation, and compare the production state of granular metallic iron (yield of granular metallic iron with a diameter of 3.35 mm or more). did. The results are shown below. Ridge height Yield of granular metallic iron with a diameter of 3.35mm or more 20mm 93.0% 30mm 94.7%

【0054】上記実験で、固体還元後の加熱により生成
する溶融金属鉄の流れ状況を覗き窓から観察したとこ
ろ、畝山部で生成した溶融金属鉄は谷に沿って流下し、
谷底部で凝集して粒状化する現象が認められ、畝高さを
高くするほど得られる粒状金属鉄の粒径は大きくなるこ
とが確認された。但し、畝間隔が広くなり過ぎると上記
凝集の効果が有効に発揮され難くなる。そして、該畝間
隔を10mm程度にすれば、粒径が3mm程度以上の粒
状金属鉄を効率よく製造し得ることが確認された。
In the above experiment, when the flow state of the molten metal iron generated by the heating after the solid reduction was observed through a viewing window, the molten metal iron generated at the ridge portion flowed down along the valley.
The phenomenon of agglomeration and granulation at the bottom of the valley was observed, and it was confirmed that as the ridge height was increased, the particle size of the granular metallic iron obtained increased. However, if the ridge spacing is too wide, it becomes difficult to effectively exert the above-described aggregation effect. Then, it was confirmed that when the ridge interval was set to about 10 mm, granular metallic iron having a particle size of about 3 mm or more could be efficiently produced.

【0055】[0055]

【発明の効果】本発明は以上の様に構成されており、酸
化鉄源と炭素質還元剤を含む混合物を成形してこれを加
熱還元して粒状金属鉄を製造する際に、成形体として小
塊成体、好ましくは粒径が3〜7mm程度の小塊成体を
使用することにより、原料塊成体のサイズに由来する前
述した様な難点、特に大径であるが故の成形乃至乾燥上
の問題、成形体強度の問題、加熱還元時における伝熱不
足の問題などを一挙に解決し、原料塊成体の成形から乾
燥、加熱還元および溶融・凝集による粒状化に亘る一連
の工程を安定して効率よく遂行し得ることになった。
The present invention is constituted as described above. When a mixture containing an iron oxide source and a carbonaceous reducing agent is formed and reduced by heating to produce granular metallic iron, it is used as a compact. By using small compacted irons, preferably small compacted irons having a particle size of about 3 to 7 mm, the above-mentioned disadvantages derived from the size of the raw material compacted irons, especially molding or drying due to the large diameter. Problem, strength of molded body, problem of insufficient heat transfer at the time of heat reduction, etc., and stabilize a series of processes from molding of raw material agglomerate to drying, heat reduction and granulation by melting and agglomeration. It was able to perform efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる還元溶融設備を例示する説
明図である。
FIG. 1 is an explanatory view illustrating a reduction melting facility used in the present invention.

【図2】図1におけるA−A線断面相当図である。FIG. 2 is a sectional view corresponding to the line AA in FIG.

【図3】図1を回転型炉床の回転方向に展開して示す断
面説明図である。
FIG. 3 is an explanatory cross-sectional view showing FIG. 1 developed in a rotation direction of a rotary hearth.

【符号の説明】[Explanation of symbols]

1 回転型炉床 2 炉体 3 燃焼バーナ 4 原料および副原料装入手段 5 振動フィーダー 6 排出手段 K 仕切壁 C 冷却ゾーン H ホッパー DESCRIPTION OF SYMBOLS 1 Rotary hearth 2 Furnace 3 Combustion burner 4 Raw material and auxiliary raw material charging means 5 Vibration feeder 6 Discharge means K Partition wall C Cooling zone H Hopper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 脩 大阪市中央区備後町4丁目1番3号 株式 会社神戸製鋼所 大阪支社内 Fターム(参考) 4K001 AA10 BA02 CA18 CA20 CA21 CA23 GA12 HA01 4K012 DE03 DE06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Osamu Tsuchiya 4-3-1 Bingocho, Chuo-ku, Osaka-shi Kobe Steel, Ltd. Osaka branch office F term (reference) 4K001 AA10 BA02 CA18 CA20 CA21 CA23 GA12 HA01 4K012 DE03 DE06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炭素質還元剤と酸化鉄含有物質を含む原
料混合物を小塊成体に成形し、該小塊成体を還元溶融炉
内で加熱して該小塊成体中の酸化鉄を固体還元し、該固
体還元により生成する金属鉄を溶融させ、溶融した該金
属鉄を、前記小塊成体中に含まれるスラグ成分を分離し
ながら凝集させて粒状の金属鉄を得ることを特徴とする
粒状金属鉄の製法。
1. A raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance is formed into a compacted compact, and the compacted compact is heated in a reduction melting furnace to reduce the iron oxide in the compacted compact into a solid. And melting the metallic iron generated by the solid reduction, and aggregating the molten metallic iron while separating the slag component contained in the small compacted iron to obtain granular metallic iron. Manufacturing method of metallic iron.
【請求項2】 前記小塊成体は、粒径が3〜7mmのも
のを主体とするものである請求項1に記載の製法。
2. The method according to claim 1, wherein the compacted compact mainly has a particle size of 3 to 7 mm.
【請求項3】 前記炉床上に、前記小塊成体が10〜3
0mmの厚さで重なり合う様に装入する請求項1または
2に記載の製法。
3. The method according to claim 3, wherein the compacted compact is 10 to 3 pieces on the hearth.
3. The method according to claim 1, wherein the parts are charged so as to overlap each other at a thickness of 0 mm.
【請求項4】 前記炉床上に装入された小塊成体層の表
面に山部と谷部を形成する請求項3に記載の製法。
4. The method according to claim 3, wherein peaks and valleys are formed on the surface of the compacted adult layer charged on the hearth.
【請求項5】 前記炉床上に粉状炭素質物質を敷いてか
ら前記小塊成体を装入する請求項1〜4のいずれかに記
載の製法。
5. The method according to claim 1, wherein the powdered carbonaceous material is laid on the hearth and the compacted compact is charged.
【請求項6】 前記小塊成体の表面に炭素質粉を付着さ
せて前記炉床上に装入する請求項1〜5のいずれかに記
載の製法。
6. The method according to claim 1, wherein a carbonaceous powder is attached to a surface of the compacted compact and charged on the hearth.
【請求項7】 前記小塊成体の少なくとも表面を乾燥し
てから前記炉床上に装入する請求項1〜6のいずれかに
記載の製法。
7. The method according to claim 1, wherein at least the surface of the compacted compact is dried and then charged on the hearth.
JP2000108590A 2000-04-10 2000-04-10 Method for producing granular metallic iron Withdrawn JP2001294921A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000108590A JP2001294921A (en) 2000-04-10 2000-04-10 Method for producing granular metallic iron
TW090107939A TW562860B (en) 2000-04-10 2001-04-03 Method for producing reduced iron
KR1020017015898A KR100549892B1 (en) 2000-04-10 2001-04-10 Method for producing reduced iron
EP01947219A EP1185714B1 (en) 2000-04-10 2001-04-10 Method for producing reduced iron
PCT/EP2001/004124 WO2001077395A1 (en) 2000-04-10 2001-04-10 Method for producing reduced iron
US09/828,950 US6602320B2 (en) 2000-04-10 2001-04-10 Method for producing reduced iron
DE60116009T DE60116009T2 (en) 2000-04-10 2001-04-10 METHOD FOR PRODUCING REDUCED IRON
AU68966/01A AU6896601A (en) 2000-04-10 2001-04-10 Method for producing reduced iron
CNB018007007A CN1294281C (en) 2000-04-10 2001-04-10 Method for producing reduced iron
ES01947219T ES2255562T3 (en) 2000-04-10 2001-04-10 METHOD FOR PRODUCING REDUCED IRON.
CA002372378A CA2372378C (en) 2000-04-10 2001-04-10 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108590A JP2001294921A (en) 2000-04-10 2000-04-10 Method for producing granular metallic iron

Publications (1)

Publication Number Publication Date
JP2001294921A true JP2001294921A (en) 2001-10-26

Family

ID=18621402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108590A Withdrawn JP2001294921A (en) 2000-04-10 2000-04-10 Method for producing granular metallic iron

Country Status (1)

Country Link
JP (1) JP2001294921A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249813A (en) * 2001-02-21 2002-09-06 Kobe Steel Ltd Rotary hearth type reducing furnace operating method
JP2006258350A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Material charging device of movable hearth furnace
WO2011155417A1 (en) * 2010-06-07 2011-12-15 株式会社神戸製鋼所 Granular metal production method
JP2012017526A (en) * 2011-09-14 2012-01-26 Kobe Steel Ltd Method for operating rotary hearth type reducing furnace
WO2017183666A1 (en) * 2016-04-22 2017-10-26 住友金属鉱山株式会社 Method for smelting oxide ore
JP2017193769A (en) * 2016-04-22 2017-10-26 住友金属鉱山株式会社 Manufacturing method of pellet, purification method of nickel oxide ore
JP2017197814A (en) * 2016-04-27 2017-11-02 住友金属鉱山株式会社 Pellet production method, and method of refining nickel oxide ore
JP2018178219A (en) * 2017-04-18 2018-11-15 住友金属鉱山株式会社 Method for smelting oxide ore
JP2020084268A (en) * 2018-11-26 2020-06-04 住友金属鉱山株式会社 Smelting method of oxide ore
JP2020527192A (en) * 2017-07-10 2020-09-03 中冶南方工程技術有限公司 Method of manufacturing metallic iron
US11608543B2 (en) 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249813A (en) * 2001-02-21 2002-09-06 Kobe Steel Ltd Rotary hearth type reducing furnace operating method
JP2006258350A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Material charging device of movable hearth furnace
JP4506521B2 (en) * 2005-03-16 2010-07-21 Jfeスチール株式会社 Raw material charging method on moving floor in moving hearth furnace
WO2011155417A1 (en) * 2010-06-07 2011-12-15 株式会社神戸製鋼所 Granular metal production method
JP2011256414A (en) * 2010-06-07 2011-12-22 Kobe Steel Ltd Granular metal production method
AU2011262982B2 (en) * 2010-06-07 2014-02-20 Kabushiki Kaisha Kobe Seiko Sho Granular metal production method
JP2012017526A (en) * 2011-09-14 2012-01-26 Kobe Steel Ltd Method for operating rotary hearth type reducing furnace
JP2017193769A (en) * 2016-04-22 2017-10-26 住友金属鉱山株式会社 Manufacturing method of pellet, purification method of nickel oxide ore
WO2017183666A1 (en) * 2016-04-22 2017-10-26 住友金属鉱山株式会社 Method for smelting oxide ore
US11479832B2 (en) 2016-04-22 2022-10-25 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
JP2017197814A (en) * 2016-04-27 2017-11-02 住友金属鉱山株式会社 Pellet production method, and method of refining nickel oxide ore
US11608543B2 (en) 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method
JP2018178219A (en) * 2017-04-18 2018-11-15 住友金属鉱山株式会社 Method for smelting oxide ore
JP2020527192A (en) * 2017-07-10 2020-09-03 中冶南方工程技術有限公司 Method of manufacturing metallic iron
JP2020084268A (en) * 2018-11-26 2020-06-04 住友金属鉱山株式会社 Smelting method of oxide ore
JP7211031B2 (en) 2018-11-26 2023-01-24 住友金属鉱山株式会社 Method for smelting oxide ore

Similar Documents

Publication Publication Date Title
JP4757982B2 (en) Method for improving the yield of granular metallic iron
US6602320B2 (en) Method for producing reduced iron
RU2194771C2 (en) Method of metallic iron production and device for method embodiment
EP2189546B1 (en) Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
US6986801B2 (en) Method of producing reduced iron compacts in rotary hearth-type reducing furnace, reduced iron compacts, and method of producing molten iron using them
JP2004131753A (en) Method for producing slag containing titanium oxide
JP2002339009A (en) Granular metallic iron
JP2003073717A (en) Method for manufacturing metallic iron
JP2001294921A (en) Method for producing granular metallic iron
JP2007231418A (en) Method for producing reduced metal
JP3749710B2 (en) Method for producing high-strength iron-containing granular material
JP2003213312A (en) Method for manufacturing metallic iron
JP4572435B2 (en) Method for producing reduced iron from iron-containing material
JP5042203B2 (en) Production of granular metallic iron
JP2000045007A (en) Production of metallic iron and device therefor
JPH1112619A (en) Production of reduced iron
JPH1129806A (en) Production of molten iron
JP3355967B2 (en) Method for producing reduced iron
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JPH1129808A (en) Production of molten iron
JP2001294920A (en) Method for producing reduced iron
JPH1129807A (en) Production of molten iron
JPH1129809A (en) Production of molten iron

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703