JP2001294920A - Method for producing reduced iron - Google Patents

Method for producing reduced iron

Info

Publication number
JP2001294920A
JP2001294920A JP2000108589A JP2000108589A JP2001294920A JP 2001294920 A JP2001294920 A JP 2001294920A JP 2000108589 A JP2000108589 A JP 2000108589A JP 2000108589 A JP2000108589 A JP 2000108589A JP 2001294920 A JP2001294920 A JP 2001294920A
Authority
JP
Japan
Prior art keywords
raw material
compact
charged
hearth
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000108589A
Other languages
Japanese (ja)
Inventor
Koshiro Fuji
孝司朗 藤
Hidetoshi Tanaka
英年 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000108589A priority Critical patent/JP2001294920A/en
Priority to TW090107939A priority patent/TW562860B/en
Priority to AU68966/01A priority patent/AU6896601A/en
Priority to CNB018007007A priority patent/CN1294281C/en
Priority to CA002372378A priority patent/CA2372378C/en
Priority to PCT/EP2001/004124 priority patent/WO2001077395A1/en
Priority to EP01947219A priority patent/EP1185714B1/en
Priority to DE60116009T priority patent/DE60116009T2/en
Priority to KR1020017015898A priority patent/KR100549892B1/en
Priority to ES01947219T priority patent/ES2255562T3/en
Priority to US09/828,950 priority patent/US6602320B2/en
Publication of JP2001294920A publication Critical patent/JP2001294920A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a method for stably and efficiently performing the formation of a raw material body, a drying and a solid-reduction of the body by solving such problems caused by using the large diameter body as the non- uniform formation and drying of the body, the low strength, and the shortage of heat-transfer at the heating and reducing time, when a reduced iron is produced by heating and solid-reducing the mixture containing iron oxide and carbonaceous reducing agent. SOLUTION: The raw material body with the small diameter desirably <=10 mm and further, desirably <6 mm, is used and the solid-reduction is performed by charging the bodies on a shifting furnace hearth so as to be stacked as layers and heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鉱石等の酸化鉄
をコークス等の炭素質還元剤により加熱還元して固体還
元鉄を得る技術の改良に関し、より詳細には、鉄鉱石等
に含まれる酸化鉄を簡単な処理で効率よく固体還元して
固体還元鉄を生産性よく製造し得る様に改善された方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in technology for obtaining solid reduced iron by heating and reducing iron oxide such as iron ore with a carbonaceous reducing agent such as coke, and more particularly, to an improvement in the technology included in iron ore and the like. The present invention relates to an improved method for efficiently producing solid reduced iron by efficiently reducing solid oxide by simple treatment.

【0002】[0002]

【従来の技術】本件発明に類似した還元鉄の製法として
は、次に示す如く多くの方法が知られている。
2. Description of the Related Art As a method for producing reduced iron similar to the present invention, many methods are known as follows.

【0003】特開平11−337264号公報:この公
報には、鉄鉱石等の酸化鉄源とコークスを含む原料粉末
をペレット状に成形し、該生ペレットを加熱還元するこ
とにより還元鉄を製造する方法が開示されている。そし
てこの公報には、酸化鉄源とコークスを含む原料粉末を
成形し、これを加熱還元して還元鉄を製造する際に、原
料成形体を未乾燥状態のままで加熱還元炉へ装入し、乾
燥と加熱還元を引き続いて行なう方法を開示しており、
この方法は、原料成形体の乾燥に要する設備や時間が省
略されるといった利点は得られるものの、加熱還元領域
の前に乾燥を兼ねた予熱帯が必要になるので、炉全体が
大きくならざるを得ない。しかも、加熱還元帯から予熱
帯方向への高温ガスの流れを阻止するため、例えばカー
テンウオールなどの遮蔽部材を設けなけれならず、炉の
構造が複雑となって設備コストが増大するといった問題
を生じる。
JP-A-11-337264 discloses that reduced iron is produced by forming a raw material powder containing an iron oxide source such as iron ore and coke into pellets, and heating and reducing the raw pellets. A method is disclosed. According to this publication, a raw material powder containing an iron oxide source and coke is molded, and when the raw material powder is heated and reduced to produce reduced iron, the raw material compact is charged into a heating reduction furnace in an undried state. Discloses a method of performing successive drying and heat reduction,
Although this method has the advantage of omitting the equipment and time required for drying the raw material molded body, it requires a pre-tropical zone that also serves as drying before the heat reduction zone, so the entire furnace must be large. I can't get it. Moreover, in order to prevent the flow of the high-temperature gas from the heating reduction zone in the pre-tropical direction, for example, a shielding member such as a curtain wall must be provided, which causes a problem that the structure of the furnace becomes complicated and the equipment cost increases. .

【0004】特開平10−30106号公報:この公報
には、炉床上に装入された原料層の表面を畝状に整形
し、原料層の表面積を拡大することにより加熱効率を高
める方法が開示されている。ところがこの公報に開示さ
れた原料ペレットは、粒径が10〜20mmの中〜大粒
径のものであって、バーナー加熱や輻射熱のペレット内
部への伝熱速度が遅く、また畝を形成するといっても、
該ペレットを数層に重ねる程度であって必ずしも十分な
伝熱効果を得ることはできない。またこの公報では、加
熱還元の途中で上記畝を鋤き返すことにより加熱効率を
高めることを推奨しているが、中〜大粒径ペレットの積
層部を鋤き返すことは該ペレットの破損を招き、還元鉄
の歩留まり低下をもたらす。
Japanese Patent Laid-Open Publication No. Hei 10-30106 discloses a method in which the surface of a raw material layer placed on a hearth is shaped like a ridge and the surface area of the raw material layer is increased to increase the heating efficiency. Have been. However, the raw material pellets disclosed in this publication have a medium to large particle size of 10 to 20 mm, have a low rate of heat transfer of the burner heating or radiant heat to the inside of the pellet, and form ridges. Even
The pellets are stacked in several layers, and a sufficient heat transfer effect cannot always be obtained. This publication also recommends that the ridge be plowed in the middle of the heat reduction to increase the heating efficiency, but plowing the laminated portion of the medium to large particle size pellets may damage the pellets. And lower the yield of reduced iron.

【0005】特開平10−306304号公報:この公
報には、原料粉末を炉床上に凹凸を形成しながら供給す
る方法を開示している。しかしこの方法では、原料の最
大堆積厚さが120mmと非常に厚く、また原料粉末は
酸化鉄源と炭材が混合されただけのもので両者が密に接
触している訳ではないので、伝熱性や還元反応性は成形
体を使用する場合に比べるとかなり劣る。
Japanese Patent Laid-Open Publication No. Hei 10-306304 discloses a method of supplying raw material powder while forming irregularities on a hearth. However, according to this method, the maximum deposition thickness of the raw material is very thick, 120 mm, and the raw material powder is only a mixture of the iron oxide source and the carbonaceous material. The heat property and the reduction reactivity are considerably inferior to the case where a molded body is used.

【0006】特開平11−193423号公報:この公
報には、酸化鉄源と炭材を含むペレットを回転炉床型還
元炉へ供給して加熱還元し、還元鉄を製造する方法が開
示されている。そしてこの公報では、ペレット強度を保
つと共にハンドリング性を高めるため、粒径を6〜30
mmとし、水分量が1.0質量%以下となるまで乾燥し
た酸化鉄ペレットを開示すると共に、該酸化鉄ペレット
を回転炉床炉で1100〜1450℃に加熱することに
よって還元鉄ペレットを製造する方法を開示している。
JP-A-11-193423: This publication discloses a method for producing reduced iron by supplying pellets containing an iron oxide source and a carbon material to a rotary hearth-type reduction furnace and reducing them by heating. I have. In this publication, in order to maintain pellet strength and improve handling properties, the particle size is 6 to 30.
mm, and the iron oxide pellets dried until the water content becomes 1.0% by mass or less are disclosed, and reduced iron pellets are produced by heating the iron oxide pellets to 1100 to 1450 ° C. in a rotary hearth furnace. A method is disclosed.

【0007】特開平10−147806号公報:この公
報には、製鉄ダストを鉄源として使用し、これに炭材を
混練して直径6〜18mm(平均径で約10mm)の生
ペレットに成形し、これを回転炉床型還元炉により12
50〜1350℃で焼成して粒状還元鉄を製造する方法
が開示されている。
Japanese Patent Application Laid-Open No. 10-147806: In this publication, iron-made dust is used as an iron source, and carbonaceous material is kneaded to form a raw pellet having a diameter of 6 to 18 mm (average diameter of about 10 mm). , And this is reduced to 12 by a rotary hearth type reduction furnace.
A method for producing granular reduced iron by firing at 50 to 1350 ° C is disclosed.

【0008】上記特開平11−193423号や同10
−147806号公報では、ペレットやブリケットなど
の取扱い性や強度を考慮し、概して大径のものを高温に
曝したときに見られるペレット内部の水分や揮発成分の
急激な放散による破裂を防止するため、ペレットの直径
や予備乾燥状態などが工夫されている。
[0008] JP-A-11-193423 and 10
In Japanese Patent No. 147806, in consideration of handling and strength of pellets and briquettes, in order to prevent rupture due to rapid diffusion of moisture and volatile components inside the pellet, which is generally observed when a large diameter one is exposed to high temperature. The diameter of the pellet and the pre-dried state are devised.

【0009】何れにしても前述した様な技術を含めて公
知の方法では、原料混合物を直径で約6〜30mm程
度、一般的には10mm程度以上の大きさの成形体と
し、これを加熱還元炉の炉床上に供給して加熱還元する
方法を採用しているが、この様な大径の原料成形体を、
還元反応が効率よく進行する1300℃程度以上の高温
に曝すと、内部に含まれる水分や揮発性成分の影響で成
形体が破裂を起こし易いため、大抵の場合は、原料成形
体を予備乾燥してから加熱還元炉へ装入する方法が採用
されている。
In any case, in a known method including the above-mentioned technique, the raw material mixture is formed into a compact having a diameter of about 6 to 30 mm, generally about 10 mm or more, and this is heated and reduced. The method of heating and reducing by supplying it on the hearth of the furnace is adopted.
When exposed to a high temperature of about 1300 ° C. or higher at which the reduction reaction proceeds efficiently, the molded body is easily ruptured due to the effect of moisture and volatile components contained therein. After that, a method of charging into a heating reduction furnace is adopted.

【0010】また、大径の原料成形体は概して造粒が難
しく、造粒設備や乾燥設備に要する費用が嵩むばかりで
なく、製造コストも高くなる。また、乾燥後の形状を安
定に維持するためバインダーが使用されるが、バインダ
ーの配合量を多くし過ぎると成形体中の酸化鉄源と炭材
の均一分散が阻害される傾向があり、加熱還元反応の効
率に悪影響を及ぼす恐れも生じてくる。また前述した通
り一部では、乾燥を省略し生ペレット状態で加熱還元炉
へ供給する方法もあるが、生ペレットは強度が低いばか
りでなく、ペレット同士の付着や供給装置のホッパーな
どへの付着によって詰まりを起こし易く取扱い性が悪い
ため、工業的規模での実用性に適した方法とは言えな
い。
[0010] In addition, large-diameter raw material compacts are generally difficult to granulate, which increases not only the costs required for granulation equipment and drying equipment, but also increases the production cost. Also, a binder is used to maintain the shape after drying stably, but if the blending amount of the binder is too large, the uniform dispersion of the iron oxide source and the carbon material in the formed body tends to be hindered, and heating is performed. There is a risk that the efficiency of the reduction reaction may be adversely affected. As described above, in some cases, drying may be omitted and the raw pellets may be supplied to the heating and reducing furnace in a raw pellet state. However, the raw pellets are not only low in strength, but also adhere to each other and adhere to a hopper of a supply device. Therefore, it is not a method suitable for practical use on an industrial scale because clogging is likely to occur and handling is poor.

【0011】上記の様に、酸化鉄源と炭素質還元剤を含
む原料成形体を加熱還元して還元鉄を製造する際には、
成形体が大径であるが故の様々な問題があるが、公知の
方法の殆どは直径で10〜30mmの原料成形体を使用
しており、前述した様な大径であるが故の難点を課題と
して掲げ、その課題を解決しようとする積極的な研究は
なされていない。また前述した如く一部の公報では、粒
径が6〜18mmの範囲(平均径で10mm程度)の成
形体を使用する旨の記述も見られるが、前述の如く大径
であるがゆえの問題点に注目して粒径を6mm未満にま
で抑えるといったことまでの追求はなされていない。ま
た粒径が10mm程度までの小径に属する原料成形体を
使用した場合に、還元鉄を製造する際の条件をどの様に
制御すれば、安定した操業性の下で固体還元を効率よく
進めて還元鉄を生産性良く製造できるかといったことま
では、必ずしも十分な研究がなされているとは言えな
い。
As described above, when producing a reduced iron by heating and reducing a raw material compact containing an iron oxide source and a carbonaceous reducing agent,
Although the molded article has various problems due to its large diameter, most of the known methods use a raw material molded article having a diameter of 10 to 30 mm, which is a disadvantage due to the large diameter as described above. No active research has been done to solve the problem. In addition, as described above, some publications state that a molded article having a particle size in the range of 6 to 18 mm (average diameter of about 10 mm) is used, but as described above, a problem due to the large diameter is used. Attention has not been paid to reducing the particle diameter to less than 6 mm. In addition, when a raw material compact belonging to a small diameter of up to about 10 mm is used, how to control the conditions for producing reduced iron enables efficient solid reduction under stable operability. It cannot be said that sufficient research has been performed on whether reduced iron can be produced with high productivity.

【0012】[0012]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、酸化
鉄源と炭素質還元剤を含む原料成形体を加熱還元して固
体還元鉄を製造する際に、特に原料成形体のサイズに由
来する前述した様な難点、特に大径であるが故の成形乃
至乾燥上の問題、成形体強度の問題などを一挙に解決
し、原料成形体の成形から乾燥および加熱還元を安定し
て効率よく遂行することのできる方法を確立することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to heat and reduce a raw material compact containing an iron oxide source and a carbonaceous reducing agent. In the production of solid reduced iron, the above-mentioned difficulties particularly caused by the size of the raw material compact, particularly the problems of molding or drying due to the large diameter, the problem of the strength of the compact, and the like are solved at once. Another object of the present invention is to establish a method capable of stably and efficiently performing drying and heat reduction from molding of a raw material molded body.

【0013】[0013]

【課題を解決するための手段】上記課題を解決すること
のできた本発明にかかる第一の構成は、炭素質還元剤と
酸化鉄含有物質を含む原料混合物を成形し、該成形体を
加熱還元炉内で加熱することにより、該成形体中の酸化
鉄を固体還元して固体還元鉄を製造するに当たり、原料
成形体として、粒径が6mm未満の成形体を使用すると
ころに要旨を有している。
Means for Solving the Problems A first structure according to the present invention which can solve the above problems is to form a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance, and reduce the formed body by heating. By heating in a furnace to reduce solid oxides of the iron oxide in the molded body to produce solid reduced iron, the gist is that a molded body having a particle size of less than 6 mm is used as a raw material molded body. ing.

【0014】また本発明にかかる第二の構成は、同様に
炭素質還元剤と酸化鉄含有物質を含む原料混合物を成形
し、該成形体を加熱還元炉内で加熱することにより、該
成形体中の酸化鉄を固体還元して固体還元鉄を製造する
際に、原料成形体として、粒径が10mm以下の成形体
を使用すると共に、該成形体を前記加熱還元炉の炉床上
に、下記式[I]の関係を満たす積層数(H)となる様に
装入して加熱還元を行なうところに要旨を有している。 H=Z×[X×(G/P)]/[A×LOAD÷T]……[I] 式中、Hは装入される成形体の積層数、Xは加熱還元炉
固有の生産能力(kg/min)、Zは0.7〜1.3
の範囲の整数、Aは原料成形体が装入される炉床面積
(m2)、LOADは原料成形体を炉床上に1層敷き詰
めたときの単位面積当たりの質量(kg/m2)、G/
Pは原料成形体の装入量と、排出される還元鉄との質量
比 Tは、生産能力(X)の生産時間(min)をそれぞれ
表わす。
[0014] A second structure according to the present invention is that a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance is similarly formed, and the formed body is heated in a heating reduction furnace to thereby form the formed body. When producing solid reduced iron by solid-reducing the iron oxide therein, while using a compact having a particle size of 10 mm or less as a raw material compact, the compact is placed on the hearth of the heating reduction furnace, The gist lies in that the heating reduction is carried out by charging so that the number of layers (H) satisfies the relationship of the formula [I]. H = Z.times. [X.times. (G / P)] / [A.times.LOAD@T]... [I] In the formula, H is the number of stacked compacts to be charged, and X is the production capacity specific to the heating reduction furnace. (Kg / min), Z is 0.7 to 1.3.
A is the hearth area (m 2 ) in which the raw material compact is charged, LOAD is the mass per unit area (kg / m 2 ) when the raw material compact is laid one layer on the hearth, G /
P represents the mass ratio of the charged amount of the raw material compact to the discharged reduced iron. T represents the production time (min) of the production capacity (X).

【0015】上記第一の発明を実施するに当たっては、
原料成形体を、炉床上に2〜5層に積層して装入するこ
とにより、製品還元鉄としての生産性を十分に高めるこ
とができるので好ましい。この方法を実施する際により
好ましい成形体の粒径は3mm以上6mm未満のもので
あるが、操業条件によっては3mm未満の粒径のもので
あってもよく、この様に粒径の小さい原料成形体を使用
すれば、該原料成形体を乾燥せずに未乾燥状態もしくは
半乾燥状態で加熱還元炉へ装入した場合でも、成形体が
破裂したり圧潰する様なこともなく、安定した操業性の
下で効率よく還元鉄の製造を行なうことができる。また
3mm未満の粒径の原料成形体を使用する場合は、生産
性を高めるため該成形体を3層以上の積層数で装入する
ことが望ましい。
In practicing the first invention,
It is preferable to stack the raw material compacts in two to five layers on the hearth so that the productivity as product reduced iron can be sufficiently increased. More preferably, the particle size of the molded article when performing this method is 3 mm or more and less than 6 mm, but may be less than 3 mm depending on the operating conditions. If the green body is used, even if the raw material green body is not dried but is charged into a heating reduction furnace in an undried or semi-dry state, the green body does not burst or crush, and stable operation is possible. It is possible to efficiently produce reduced iron under the following conditions. When a raw material compact having a particle size of less than 3 mm is used, it is desirable to load the compact with three or more layers in order to enhance productivity.

【0016】また上記第二の発明では、前述の如く原料
成形体の粒径の上限を10mmに高めると共に、前記式
[I]の関係を満たす様に炉床上へ装入される原料成形体
の積層数(H)を特定するもので、この様な関係式を満
たす範囲では、原料成形体の粒径が6〜10mmの範囲
のものであっても、従来法に比べて還元鉄の生産性を有
意に高めることが可能となる。この場合、原料成形体は
粒度分布の狭いことが望ましく、好ましくは粒径が±3
mm、更に好ましくは±2mmの範囲内に収まるものを
使用することにより、操業安定性や還元鉄としての生産
性を更に高めることができるので好ましい。
In the second aspect of the present invention, as described above, the upper limit of the particle size of the raw material compact is increased to 10 mm, and
The number of layers (H) of the raw material compacts to be charged on the hearth so as to satisfy the relationship [I] is specified. As long as the relational expression is satisfied, the particle size of the raw material compacts is 6 to Even in the range of 10 mm, the productivity of reduced iron can be significantly increased as compared with the conventional method. In this case, the raw material compact preferably has a narrow particle size distribution, and preferably has a particle size of ± 3.
mm, more preferably ± 2 mm, since it is possible to further improve the operation stability and the productivity as reduced iron, and thus it is preferable.

【0017】また上記第一および第二の方法を実施する
際には、何れの場合も原料成形体を加熱還元炉内へ装入
した後、全還元時間の1/3の時間で表面温度を120
0℃以上にまで昇温させることにより、固体還元を短時
間で効率よく進めることができるので好ましく、また該
原料成形体の表面に炭素質粉を付着させて加熱還元炉内
へ装入する方法を採用すれば、原料中の脈石成分などに
由来して固体還元工程で生成する溶融スラグによる炉床
耐火物の溶損が抑えられると共に、固体還元の末期にお
ける還元鉄の再酸化も防止されるので好ましい。また本
発明では、大径成形体に比べて圧潰強度の高い小径の原
料成形体を使用することにより、該成形体を炉床上に積
層数で例えば3〜5層となる様に載置して一気に加熱還
元を進めることができ、それにより生産性を高めること
が可能となる。この時、炉床上に装入される原料成形体
層の表面に山部と谷部を形成して凹凸状にすれば、該成
形体層の有効伝熱表面積の拡大によって上方からの熱を
一層効率よく各原料成形体に伝えられると共に、下層側
の原料成形体に対する熱伝達も速めることができ、生産
性を更に高めることができるので好ましい。
In carrying out the first and second methods, in each case, after the raw material compact is charged into the heating reduction furnace, the surface temperature is reduced by 1 / of the total reduction time. 120
By raising the temperature to 0 ° C. or higher, solid reduction can be efficiently performed in a short time, which is preferable. Also, a method in which carbonaceous powder is adhered to the surface of the raw material compact and charged into a heating reduction furnace By adopting the method, the erosion of the hearth refractory due to the molten slag generated in the solid reduction process derived from the gangue components in the raw material is suppressed, and the reoxidation of the reduced iron in the final stage of the solid reduction is also prevented. This is preferred. Further, in the present invention, by using a small-diameter raw material compact having a higher crushing strength than a large-diameter compact, the compact is placed on the hearth so as to have, for example, 3 to 5 layers in number of layers. Heat reduction can be promoted at a stretch, thereby increasing productivity. At this time, by forming peaks and valleys on the surface of the raw material molded body layer charged on the hearth to form irregularities, heat from above is further increased by increasing the effective heat transfer surface area of the molded body layer. It is preferable because the heat can be efficiently transmitted to each raw material molded body, and heat transfer to the lower raw material molded body can be accelerated, so that productivity can be further increased.

【0018】[0018]

【発明の実施の形態】上記の様に本発明では、鉄鉱石や
酸化鉄またはその部分還元物などの酸化鉄源(以下、鉄
鉱石等ということがある)と、コークスや石炭などの炭
素質還元剤(以下、炭材ということがある)を含む原料
成形体を加熱還元して固形の還元鉄を製造する際に、特
に原料成形体として粒径が6mm未満、あるいは10m
m以下といった小径の成形体を使用することにより、造
粒を容易にして造粒設備コストの低減を図ると共に、造
粒歩留まりの向上や造粒時間の短縮を図ることができ、
更には、小径成形体とすることで、次に示す様な多くの
利点を享受できる。
DETAILED DESCRIPTION OF THE INVENTION As described above, in the present invention, an iron oxide source such as iron ore or iron oxide or a partially reduced product thereof (hereinafter sometimes referred to as iron ore or the like) and a carbonaceous material such as coke or coal are used. When a raw material compact containing a reducing agent (hereinafter sometimes referred to as a carbon material) is heated and reduced to produce solid reduced iron, the raw material compact particularly has a particle diameter of less than 6 mm or 10 m
By using a compact having a small diameter such as m or less, it is possible to facilitate granulation, reduce the cost of granulation equipment, improve the granulation yield and shorten the granulation time,
Furthermore, by using a small-diameter molded body, many advantages as described below can be enjoyed.

【0019】i)内部までの伝熱性を高めることができる
ので、固体還元をより短時間で効率よく進めることがで
き、還元鉄の生産性が高められる、 ii)小径成形体とすることでバインダーの配合量を低減
することができ、それにより該成形体内における酸化鉄
源と炭材の均一分散を進めることができ、これも還元効
率の向上に有効に作用する、 iii)小径成形体とすることで、大径成形体に比べて個々
の圧潰強度を高めることができ、特に固体還元時におけ
る成形体の崩壊や粉化を抑制できるので、還元鉄の生産
歩留まりを向上できる。また炉床部への積層装入厚さを
高めることができるので、これも生産性の向上に寄与す
る。
I) Since the heat transfer to the inside can be enhanced, the solid reduction can proceed efficiently in a shorter time and the productivity of reduced iron can be increased. Ii) The binder can be formed by forming a small-diameter molded body. Can be reduced, whereby the iron oxide source and the carbonaceous material can be evenly dispersed in the molded body, which also effectively works to improve the reduction efficiency. Iii) A small-diameter molded body Thereby, the crushing strength of each individual product can be increased as compared with the large-diameter molded product, and particularly, the collapse and powdering of the molded product during solid reduction can be suppressed, so that the production yield of reduced iron can be improved. In addition, since the thickness of the stack charged into the hearth can be increased, this also contributes to an improvement in productivity.

【0020】小径成形体を使用することによる上記作用
効果を有効に発揮させるには、該成形体の粒径を10m
m以下、より好ましくは6mm未満にすることが望まし
く、これ以上の大径成形体では上記作用効果が有効に発
揮され難くなる。しかし粒径が2mm未満、特に1mm
以下の細径成形体では、篩などによる選別で目詰まりを
起こし易くなって取扱い性が悪くなるばかりでなく、最
終的に得られる還元鉄も細径となってその後の取り扱い
が煩雑になるなどの障害が生じてくるので、好ましくは
2mm以上、より好ましくは3mm以上にすることが望
ましい。但し本発明を実施する際には、全ての成形体が
上記好適粒径範囲内でなければならない訳ではなく、上
記範囲内の好適粒径のものが60質量%以上を占めてお
れば、上記範囲を若干外れる細径成形体が少量(好まし
くは質量比率で40%程度以下)含まれていても、全体
として上記作用効果は有効に発揮される。
In order to effectively exert the above-mentioned effects by using a small-diameter compact, the particle size of the compact should be 10 m or more.
m or less, more preferably less than 6 mm, and it is difficult for a large-diameter molded body having a diameter larger than this to exhibit the above-mentioned effects effectively. However, the particle size is less than 2 mm, especially 1 mm
In the following small-diameter molded products, not only is it easy to cause clogging due to sorting by a sieve or the like and the handling property is deteriorated, but also the finally obtained reduced iron has a small diameter and the subsequent handling becomes complicated. Therefore, it is preferable that the distance be 2 mm or more, more preferably 3 mm or more. However, when practicing the present invention, not all the compacts need to be within the above-mentioned preferred particle size range. Even if a small-diameter molded product slightly out of the range is contained (preferably about 40% or less in mass ratio), the above-described effects can be effectively exhibited as a whole.

【0021】なお本発明で言う小径の成形体とは、酸化
鉄源と炭素質還元剤を含む混合物を凝集させたものや、
ペレット、ブリケットなどを総称するもので、その名称
には一切拘らず、またそれらの単体は勿論のことそれら
の混合物、あるいは移送工程などで破損した少量の破片
や粉末が含まれていても構わない。また小径成形体の製
法にも格別の制限はなく、パン型造粒機、ディスク型造
粒機、ドラム型造粒機などを用いる通常の成形法を採用
すればよい。
In the present invention, the small-diameter molded product is obtained by agglomerating a mixture containing an iron oxide source and a carbonaceous reducing agent,
It is a general term for pellets, briquettes, etc., regardless of their names, and may contain a mixture of them alone, or a small amount of debris or powder broken in the transfer process, etc. . There is no particular limitation on the method for producing the small-diameter molded product, and a normal molding method using a pan-type granulator, a disk-type granulator, a drum-type granulator, or the like may be employed.

【0022】また該成形体の原料となる酸化鉄源は、鉄
鉱石の他、ミルスケールなどを含む広い概念であり、例
えば高炉ダストや電炉ダスト、製鋼ダストなどを含むも
のであっても勿論構わない。また炭素質還元剤(炭材)
の種類も特に制限がなく、最も一般的な石炭粉やコーク
ス粉以外に木炭粉などを使用することも可能である。必
要により配合することのあるバインダーとしては、ベン
トナイトやデンプンなどが例示されるが、勿論これらに
制限される理由はない。
The iron oxide source used as a raw material of the compact has a broad concept including, for example, mill scale in addition to iron ore, and of course, may include blast furnace dust, electric furnace dust, steelmaking dust, and the like. Absent. In addition, carbonaceous reducing agent (carbon material)
There is no particular limitation on the type of coal powder, and it is also possible to use charcoal powder and the like in addition to the most common coal powder and coke powder. Examples of the binder that may be added as necessary include bentonite and starch, but of course there is no reason to be limited to these.

【0023】この様な小径成形体を使用すれば、加熱還
元炉の炉床上にこれを単層状態で装入し常法に従って固
体還元を効率よく実施し得るばかりでなく、その優れた
圧潰強度特性を活かし、炉床上に多層、好ましくは粒径
が3mm以上6未満の場合は2〜5層、3mm未満では
3層以上に重ねて装入することにより単位炉床面積当た
りの生産性を高めることが可能となる。但し、積層装入
厚さを過度に厚くすると、積層下層側の小径成形体が加
熱不足となって固体還元の効率が悪くなる傾向が生じて
くるので、粒径が3mm未満の場合は、積層数を10層
程度(厚さにして100mm程度)以下に抑えることが
望ましい。
If such a small-diameter compact is used, it is not only possible to efficiently perform solid reduction according to a conventional method by charging the compact in a single-layer state on the hearth of a heating and reducing furnace, but also to have excellent crushing strength. Taking advantage of the characteristics, the productivity per unit hearth area is increased by stacking multiple layers on the hearth, preferably 2 to 5 layers when the particle size is 3 mm or more and less than 6 and 3 or more layers when the particle size is less than 3 mm. It becomes possible. However, if the lamination charging thickness is excessively large, the small-diameter molded body on the lower layer side of the lamination tends to be insufficiently heated and the efficiency of solid reduction tends to deteriorate. It is desirable to suppress the number to about 10 layers or less (about 100 mm in thickness).

【0024】炉床面への小径成形体の供給には格別特殊
な方法が採用される訳ではなく、例えばホッパーや振動
フィーダー、ドラムフィーダーなどによって切出し、ガ
イド用の樋やパイプ、傾斜板を用いて供給する方法など
を採用すればよい。
The supply of the small-diameter compact to the hearth surface is not necessarily performed by a special method. For example, the compact is cut out by a hopper, a vibration feeder, a drum feeder, or the like, and a gutter, a pipe, or an inclined plate for guiding is used. It is sufficient to adopt a method of supplying by feeding.

【0025】また小径成形体を多層積層状態で装入する
際には、積層表面に縦方向及び/又は横に任意の形状の
山部と谷部を形成して凹凸状とし、伝熱有効表面積を拡
大することによって上方からのバーナ加熱や輻射熱によ
る加熱効率高めることが望ましい。この様に積層表面に
凹凸を形成しておけば、積層下層部の小径成形体に対す
る伝熱効率も高められるので有効である。該凹凸の好ま
しい形状や大きさ、ピッチ等は、積層厚さによっても変
わってくるので一律に規定することはできないが、好ま
しくは高さ(山頂部と谷底部との間隔)で5〜200m
m、より好ましくは10〜100mmの範囲である。該
凹凸の形成法にも格別の制限はなく、例えば炉床幅方向
に複数の供給口から装入量を変えて装入する方法、炉幅
方向に延長して設けた凹凸状ホッパーから装入厚さを変
えて装入する方法、ほぼ水平に装入した後に凹凸を有す
る表面整形部材でなぞって凹凸を形成する方法等を任意
に選択して適用できる。
When the small-diameter compact is charged in a multilayered state, peaks and valleys of an arbitrary shape are formed on the surface of the layer in the vertical and / or horizontal direction to form irregularities, and the heat transfer effective surface area is increased. It is desirable to increase the heating efficiency by burner heating from above or radiant heat by enlarging. It is effective to form irregularities on the surface of the laminate, since the heat transfer efficiency of the laminated lower layer portion to the small-diameter molded body can be increased. The preferred shape, size, pitch and the like of the irregularities cannot be uniformly defined because they vary depending on the thickness of the laminated layer, but are preferably 5 to 200 m in height (the distance between the top and bottom).
m, more preferably in the range of 10 to 100 mm. There is no particular limitation on the method of forming the irregularities, for example, a method of changing the charging amount from a plurality of supply ports in a width direction of the hearth, a charging method, a method of charging from an irregular hopper extending in the furnace width direction. It is possible to arbitrarily select and apply a method in which the thickness is changed and a method in which the unevenness is formed by tracing with a surface shaping member having the unevenness after being substantially horizontally inserted.

【0026】なお本発明で使用する小径成形体は、前述
の如く小径であるが故に個々の成形体の圧潰強度は相対
的に強く、積層装入しても積層圧で潰れる可能性は少な
く、また熱伝達が速いこともあって、初期の加熱で速や
かに乾燥されるので未乾燥状態のままで炉床上に供給す
ることも可能であるが、装入時の衝撃や積層荷重による
破損をより確実に防止するには、該小径成形体の少なく
とも表層側を予め乾燥してから装入することが好まし
く、そうすれば、小径成形体の付着による装入用ホッパ
ーなどでの詰まりも防止できるので好ましい。
Since the small-diameter compact used in the present invention has a small diameter as described above, the crushing strength of each compact is relatively high. In addition, because heat transfer is fast, it is quickly dried by initial heating, so it is possible to supply it on the hearth in an undried state, but damage due to impact at the time of charging and lamination load is more. To ensure prevention, it is preferable that at least the surface layer side of the small-diameter molded body is previously dried and then charged, so that clogging in a charging hopper or the like due to adhesion of the small-diameter molded body can be prevented. preferable.

【0027】更に本発明を実施するに当たり、小形成性
体の表面に炭素質粉を付着させてから炉床上に装入する
方法を採用すれば、例えばイ )上記炭素質粉が固体還元時における小径成形体近傍の
雰囲気ガスの還元度を高めて固体還元をより効率よく進
行させる、ロ )小径成形体を積層装入したときに起こりがちな下層側
の還元不足が該炭素質粉によって補われ、全体の固体還
元率を高める、ハ )該下層側の還元不足によって生じがちなFeOに作用
してこれを速やかに還元するので、炉床耐火物を著しく
溶損させるFeO含有溶融スラグの生成も抑えられ、炉
床寿命の延長が図られる、ニ )小径成形体の表面に炭素質粉をまぶす様に付着させて
おけば、相互の付着や装入用ホッパーなどへの付着も防
止されるので、小径成形体を未乾燥状態で装入する場合
に特に有効となる。
Further, in practicing the present invention, a method in which the carbonaceous powder is attached to the surface of the small forming body and then charged on the hearth may be employed. The degree of reduction of the atmosphere gas in the vicinity of the small-diameter compact is increased so that the solid reduction proceeds more efficiently.b) The insufficient carbonization of the lower layer, which tends to occur when small-diameter compacts are stacked and charged, is compensated by the carbonaceous powder. C) acts on FeO, which is likely to be caused by insufficient reduction in the lower layer, and reduces it promptly, so that the production of FeO-containing molten slag that significantly damages the hearth refractory is also reduced. (2) If the carbonaceous powder is adhered to the surface of the small-diameter molded body by dusting it, mutual adhesion and adhesion to the charging hopper etc. can be prevented. , The small-diameter compact in the undried state It is particularly useful for entering.

【0028】ここで用いられる炭素質粉としては、石炭
粉、コークス粉、木炭粉などが任意に選択して使用され
る。なお、小径成形体の表面に炭素質粉を付着させる場
合は、表面にまぶす様に付着させる方法、炭素質粉を水
などの分散媒に分散させてスプレー付着させる方法など
を採用すればよい。
As the carbonaceous powder used here, coal powder, coke powder, charcoal powder and the like are arbitrarily selected and used. When the carbonaceous powder is to be adhered to the surface of the small-diameter molded body, a method of attaching the carbonaceous powder to the surface, or a method of dispersing the carbonaceous powder in a dispersion medium such as water and spraying the dispersion may be adopted.

【0029】なお本発明で粒径が10mm以下、特に6
〜10mmの小径成形体を使用する場合に付加される前
記式[I]の要件は、使用する加熱還元炉に固有の生産能
力(X)を加味した上で、積層装入される原料成形体の
最適積層数(H)を定めたもので、該式[I]を定めた理
由は下記の通りである。
In the present invention, the particle size is 10 mm or less, especially 6 mm.
The requirement of the above-mentioned formula [I] added when a small-diameter compact of 10 mm to 10 mm is used is based on the production capacity (X) inherent in the heating reduction furnace to be used, and then the raw compact which is stacked and charged is taken into account. And the reason why the formula [I] is determined is as follows.

【0030】即ち還元鉄の生産量は、加熱還元炉固有の
単位時間当たりの生産能力(X:kg/min)は、炉
床面積(原料成形体が装入される部分の炉床面積:
2)を(A)、単位時間、単位面積当たりの原料成形
体の装入量(kg/min・m2)を(B)とすると、
下記式[II]によって表わされる。 X=A×B……[II] 但し、原料成形体中の酸化鉄は加熱還元によりFeに還
元されると共に、炭材は分解し、またZnやPb等の揮
発成分は気散し、更に粉化によっても飛散するので、上
記式[II]に、装入される原料成形体との質量比(G/
P)を加入して補正すると、下記式[III]が導かれる。 X=A×B/(G/P)……[III] ここで原料成形体の装入量(B)は、原料成形体を炉床
上に1層敷き詰めたときの単位面積当たりの質量(kg
/m2)を(LOAD)とし、積層数を(H)、生産能
力(X)の生産時間(min)を(T)とすると、下記
式[IV]によって表わすことができるので、これを前記式
[III]に代入すると、下記式[V]が導かれる。 B=LOAD×H÷T……[IV] X=[A×LOAD×H÷T]/(G/P)……[V] そして、上記式[V]を変形して積層数(H)の算出式に
変えると、下記式[VI]を導くことができる。 H=[X×(G/P)]/[A×LOAD÷T]……[VI]
That is, the production amount of reduced iron is determined by the production capacity per unit time (X: kg / min) specific to the heating reduction furnace, by the hearth area (the hearth area of the portion where the raw material compact is charged:
m 2 ) is (A), and the charged amount of the raw material compact per unit time and unit area (kg / min · m 2 ) is (B).
It is represented by the following formula [II]. X = A × B [II] However, the iron oxide in the raw material compact is reduced to Fe by heat reduction, the carbon material is decomposed, and volatile components such as Zn and Pb are diffused. Since the particles are also scattered by powdering, the mass ratio (G /
When P) is added and corrected, the following equation [III] is derived. X = A × B / (G / P) ... [III] Here, the charged amount (B) of the raw material molded body is the mass per unit area (kg) when the raw material molded body is laid one layer on the hearth.
/ M 2 ) is (LOAD), the number of layers is (H), and the production time (min) of the production capacity (X) is (T), which can be expressed by the following formula [IV]. formula
Substituting into [III], the following equation [V] is derived. B = LOAD × H ÷ T... [IV] X = [A × LOAD × H ÷ T] / (G / P)... [V] Then, the above formula [V] is modified to obtain the number of layers (H). The following formula [VI] can be derived by changing the calculation formula into H = [X × (G / P)] / [A × LOAD @ T]... [VI]

【0031】ここで、単位面積当たりの装入量として
は、理想的なものを考えると、原料成形体を1層敷き詰
めたときの単位面積当たりの重さとなり、(G/P)は
(原料成形体/製品還元鉄)の質量比であるから、これ
らの値から理想的な積層数(H)が求められる。しかし
ながら実際には、加熱還元炉固有の特性により加熱条件
や還元性雰囲気条件などにはかなりのバラツキがあるの
で、実用炉固有の生産条件を加味した補正が必要であ
り、該(H)のバラツキを実用炉で確認した結果、該バ
ラツキ(Z)は±30%の範囲、即ち0.7〜1.3の
範囲になり、前にも示した様に下記式[I]に示す通りと
なることが確認された。 H=Z×[X×(G/P)]/[A×LOAD÷T]……[I]
Here, assuming that the charging amount per unit area is ideal, the weight per unit area when one layer of the raw material molded article is laid, and (G / P) is (raw material) Since this is the mass ratio of the compact / product reduced iron), the ideal number of layers (H) is determined from these values. However, in practice, there are considerable variations in the heating conditions and reducing atmosphere conditions due to the characteristics specific to the heating and reducing furnace, and therefore, it is necessary to make corrections taking into account the production conditions specific to the practical furnace, and the (H) variation is required. Was confirmed in a practical furnace, the variation (Z) was in the range of ± 30%, that is, in the range of 0.7 to 1.3, and as shown before, it was as shown in the following formula [I]. It was confirmed that. H = Z × [X × (G / P)] / [A × LOAD @ T]... [I]

【0032】次に、前記小径成形体を原料として固体還
元を行なって還元鉄を製造する際の具体的な装置につい
て簡単に説明する。
Next, a specific apparatus for producing reduced iron by performing solid reduction using the small-diameter compact as a raw material will be briefly described.

【0033】図1は本発明が適用される移動炉床型(本
例は回転炉床型)還元炉の一例を示す概略平面であり、
炉体を覆うカバー部は図面上省略している。1はドーナ
ツ状の回転炉床、2は原料装入部、3は表面整形部材、
4は冷却部、5は還元鉄排出装置、6は加熱用のバーナ
をそれぞれ示している。
FIG. 1 is a schematic plan view showing an example of a moving hearth type (in this example, a rotary hearth type) reduction furnace to which the present invention is applied.
A cover for covering the furnace body is omitted in the drawing. 1 is a doughnut-shaped rotary hearth, 2 is a raw material charging section, 3 is a surface shaping member,
Reference numeral 4 denotes a cooling unit, 5 denotes a reduced iron discharging device, and 6 denotes a burner for heating.

【0034】この装置を用いて還元鉄の製造を行なう際
には、酸化鉄源と炭材を含む原料成形体を原料装入部2
から回転炉床1上に適当な厚さ(積層数)となる様に装
入していく。該原料成形体の装入には、例えばホッパー
や振動フィーダ、ドラムフィーダなどで原料成形体を切
り出し、ガイド用のパイプや傾斜板などを用いて装入量
の調整が行なわれる。そして、該原料装入部2の直下流
側で表面整形部材3により原料装入層の表面を平滑に均
すが、この時、表面整形部材3で原料装入層の表面に前
述した如く適当な高さとピッチの凹凸を形成すれば、原
料成形体層に対するバーナ加熱および輻射熱の伝熱効率
を高めることができるので好ましい。
When producing reduced iron using this apparatus, a raw material compact containing an iron oxide source and a carbon material is charged into the raw material charging section 2.
From above to the rotary hearth 1 so as to have an appropriate thickness (number of layers). For the charging of the raw material molded body, the raw material molded body is cut out with, for example, a hopper, a vibration feeder, a drum feeder, or the like, and the charging amount is adjusted using a guide pipe or an inclined plate. Then, the surface of the raw material charging layer is smoothed and smoothed by the surface shaping member 3 immediately downstream of the raw material charging section 2, but at this time, the surface of the raw material charging layer is appropriately adjusted by the surface shaping member 3 as described above. It is preferable to form irregularities with a proper height and pitch because the efficiency of heat transfer of burner heating and radiant heat to the raw material molded body layer can be increased.

【0035】装入された該原料成形体は、回転炉床1の
回転により矢印X方向に移動しながら、炉壁部に設けら
れたバーナ6による燃焼熱と輻射熱により加熱され、固
体還元が進められる。この加熱には、重油や微粉炭、廃
プラスチックなどを燃料とするバーナ加熱、あるいは固
体還元によって炉内に生成する可燃性ガス(COや
2)を有効利用し空気や酸素を供給して燃焼させるタ
イプ、更には蓄熱タイプの加熱を夫々単独であるいは適
宜組合わせて採用することができる。還元により生成し
たCO2や燃焼排ガスは、図示しないガス排気口から抜
出される。
The charged raw material compact is placed on the rotary hearth 1
While being moved in the direction of arrow X by rotation,
Heated by the combustion heat and radiant heat from the burner 6
Body reduction is promoted. This heating includes heavy oil, pulverized coal,
Burner heating using plastic or other fuel
Combustible gas (CO,
H Two) To combust air and oxygen by effectively utilizing
Heat, or heat storage type heating, either individually or appropriately.
Any combination can be adopted. Generated by reduction
COTwoAnd flue gas from the exhaust port (not shown).
Will be issued.

【0036】そして固体還元が完了(金属化率で90%
程度以上)した還元生成物は、冷却部4(例えば、炉床
下部に設けた水冷ジャケット或いは冷却用ガスの吹き付
けなど)で冷却された後、任意の排出装置5により逐次
炉外へ取り出される。排出装置の構成も特に制限がな
く、スクリューやスクレパーを利用する方法、更にはガ
スの吹付けもしくは吸引を利用して排出させる方法など
を任意に選択して採用することができる。
Then, the solid reduction is completed (90% by metallization ratio).
The reduced product thus cooled is cooled by a cooling unit 4 (for example, a water-cooled jacket provided at the lower part of the hearth or spraying a cooling gas), and is sequentially taken out of the furnace by an optional discharge device 5. The configuration of the discharge device is not particularly limited, and a method using a screw or a scraper, a method using gas blowing or suction to discharge, and the like can be arbitrarily selected and adopted.

【0037】なお上記加熱還元(固体還元)時の温度が
高すぎる場合、具体的には固体還元過程のある時期に、
雰囲気温度が原料中の脈石成分や未還元酸化鉄等からな
るスラグ組成の融点を超えて高温になると、これら低融
点のスラグが溶融して移動炉床を構成する耐火物と反応
して溶損させ、平滑な炉床を維持できなくなる。また、
固体還元期に酸化鉄の還元に必要とされる以上の熱が加
わると、小径成形体中の鉄酸化物であるFeOが還元さ
れる前に溶融し、該溶融FeOが炭材中の炭素(C)と
反応する所謂溶融還元(溶融状態で還元が進行する現象
で、固体還元とは異なる)が急速に進行する。該溶融還
元によっても金属鉄は生成するが、該溶融還元が起こる
と、流動性の高いFeO含有スラグが炉床耐火物を著し
く溶損させるので、実用炉としての連続操業が困難にな
る。
When the temperature at the time of the above-mentioned heat reduction (solid reduction) is too high, specifically, at a certain time during the solid reduction process,
When the ambient temperature becomes higher than the melting point of the slag composition composed of gangue components and unreduced iron oxide in the raw material, these low-melting slags melt and react with the refractories constituting the moving hearth to melt. Damage, and it becomes impossible to maintain a smooth hearth. Also,
When heat more than required for the reduction of iron oxide is applied during the solid reduction period, FeO which is an iron oxide in the small-diameter compact is melted before being reduced, and the molten FeO becomes carbon ( So-called smelting reduction (a phenomenon in which reduction proceeds in a molten state, which is different from solid reduction) that reacts with C) proceeds rapidly. Although metallic iron is also generated by the smelting reduction, when the smelting reduction occurs, the highly fluid FeO-containing slag remarkably dissolves the hearth refractory, making continuous operation as a practical furnace difficult.

【0038】こうした現象は、小径成形体を構成する鉄
鉱石や炭材、或いは更にバインダー等に含まれるスラグ
形成成分の組成などによって変わってくるが、固体還元
時の雰囲気温度が約1500℃を超えると原料鉄鉱石等
の銘柄に関わりなく、好ましくない上記溶融還元反応が
進行して炉床耐火物の溶損が顕著になるので、固体還元
の温度は1500℃以下、より好ましくは1450℃程
度以下に抑えることが望ましい。但し、加熱温度が低す
ぎると固体還元の進行が遅くなるので、好ましくは12
00℃以上、更に好ましくは1300℃以上とすること
が望ましい。
Such a phenomenon varies depending on the iron ore and the carbonaceous material constituting the small-diameter compact or the composition of the slag-forming component contained in the binder and the like. However, the ambient temperature at the time of solid reduction exceeds about 1500 ° C. Irrespective of brands such as raw iron ore and the like, the above-mentioned undesired smelting reduction reaction proceeds and the erosion of the hearth refractory becomes remarkable. It is desirable to suppress it. However, if the heating temperature is too low, the progress of solid reduction becomes slow.
The temperature is desirably set to 00 ° C. or higher, more preferably 1300 ° C. or higher.

【0039】そして、炉内に装入された原料成形体を、
固体状態を保ちつつ、該成形体中に含まれるスラグ成分
の部分的な溶融を引き起こすことなく還元率を効率よく
進めるには、炉内温度を1200〜1500℃、より好
ましくは1250〜1450℃の範囲に保って固体還元
を行ない、更に好ましくは、炉内における全還元所要時
間の約1/3の時間で1200℃の温度まで昇温させる
ことが望ましく、こうした条件設定により、通常は8分
から13分程度の加熱で固体還元をほぼ完了させること
ができる。
Then, the raw material compact charged in the furnace is
In order to efficiently promote the reduction rate without causing partial melting of the slag component contained in the molded body while maintaining the solid state, the furnace temperature is set to 1200 to 1500 ° C, more preferably 1250 to 1450 ° C. It is preferable to perform the solid reduction while keeping the temperature within the range, and more preferably to raise the temperature to 1200 ° C. in about 1/3 of the time required for the total reduction in the furnace. The solid reduction can be almost completed by heating for about a minute.

【0040】ところで本発明の実施に用いられる加熱還
元炉では、原料成形体の加熱にバーナー加熱を採用する
ことが多い。この場合、固体還元の初期段階では、炉内
に装入された原料成形体中の酸化鉄源と炭材との反応に
より大量のCOガスが発生するので、原料成形体近傍は
自から放出する上記COガスのシールド効果によって高
い還元性雰囲気に保たれる。
Incidentally, in the heating reduction furnace used in the practice of the present invention, burner heating is often employed for heating the raw material compact. In this case, in the initial stage of the solid reduction, a large amount of CO gas is generated due to the reaction between the iron oxide source and the carbon material in the raw material compact charged in the furnace, and the vicinity of the raw material compact is released from itself. A high reducing atmosphere is maintained by the shielding effect of the CO gas.

【0041】ところが、固体還元の後半から末期にかけ
ては、上記COガスの発生量が急速に減少するため自己
シールド作用が低下し、バーナ加熱によって生じる燃焼
排ガス(CO2やH2O等の酸化性ガス)の影響を受け易
くなり、折角還元された還元鉄が再酸化を受け易くな
る。この様な再酸化を可及的に抑えつつ固体還元を効率
よく進めるための好ましい手段としては、前述した様に
原料成形体面に予め炭素質粉を付着させておく方法が例
示される。即ち、この様に原料成形体の表面に炭素質粉
を付着させておくと、これらが固体還元の後半期ないし
末期に、バーナ燃焼により生成した酸化性ガス(CO2
やH2O)と直ちに反応してこれらのガスをCOやH2
どの還元性ガスに変えるので、固体還元を受けた還元生
成物の近傍を高還元性雰囲気に保つことができ、還元鉄
の再酸化を可及的に防止できる。こうした再酸化防止作
用を有効に発揮させる上でより好ましいのは、炭素質粉
として好ましくは2mm以下、特に好ましくは1.0m
m以下の微細炭素質粉を付着させておくことが望まし
い。該炭素質粉を付着させる方法としては、未乾燥状態
の原料成形体の表面に該炭素質粉をまぶす様に付着させ
る方法、あるいは水等の分散媒を用いてスプレー付着さ
せる方法などが例示されるが、勿論これらの方法に限定
される訳ではない。この様に原料成形体の表面に炭素質
粉を付着させれば、他の付加的効果として、該原料成形
体を未乾燥状態で炉床上に装入する際の該成形体同士の
付着や原料装入用ホッパー部への付着も抑えられ、原料
装入を円滑にするので好ましい。
However, during the latter half of the solid reduction, the self-shielding effect is reduced due to a rapid decrease in the amount of generated CO gas, and the combustion exhaust gas (oxidizing gas such as CO 2 or H 2 O) generated by the burner heating is reduced. Gas), and the reduced iron that has been reduced is more likely to be re-oxidized. As a preferable means for efficiently promoting the solid reduction while suppressing such re-oxidation as much as possible, there is exemplified a method in which carbonaceous powder is previously attached to the surface of the raw material compact as described above. That is, if the carbonaceous powder is attached to the surface of the raw material compact in such a manner, the carbonaceous powder may be oxidized gas (CO 2 CO 2) generated by burner combustion in the latter half or late stage of solid reduction.
And H 2 O) to convert these gases into reducing gases such as CO and H 2 , so that the vicinity of the reduction products that have undergone solid reduction can be maintained in a highly reducing atmosphere, and reduced iron Can be prevented as much as possible. In order to effectively exhibit such a reoxidation preventing effect, the carbonaceous powder is preferably 2 mm or less, more preferably 1.0 m or less.
It is desirable that fine carbonaceous powder of m or less be adhered. Examples of a method of attaching the carbonaceous powder include a method of attaching the carbonaceous powder to the surface of the raw material compact in an undried state, and a method of attaching the carbonaceous powder by spraying using a dispersion medium such as water. However, of course, it is not limited to these methods. If the carbonaceous powder is adhered to the surface of the raw material molded body in this way, as another additional effect, the adhesion between the molded bodies and the raw material when the raw material molded body is charged onto the hearth in an undried state. It is preferable because the adhesion to the charging hopper is also suppressed, and the raw material is smoothly charged.

【0042】[0042]

【実施例】以下、実施例を挙げて本発明の構成および作
用効果を具体的に説明するが、本発明はもとより下記実
施例によって制限を受けるものではなく、前・後記の趣
旨に適合し得る範囲で適当に変更して実施することも可
能であり、それらはいずれも本発明の技術的範囲に含ま
れる。
EXAMPLES Hereinafter, the structure, operation, and effects of the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and can be adapted to the above and following points. The present invention can be implemented by appropriately changing the scope, and all of them are included in the technical scope of the present invention.

【0043】実施例1 原料として下記2種類の混合物を使用し、それぞれをパ
ン型造粒機を用いて粒径の異なる数種類の成形体を製造
し、夫々について、目標粒径の±10%の範囲内の造粒
物の生産性を比較したところ、図2に示す結果が得られ
た。 原料1 酸化鉄源(鉄鉱石)組成:T.Fe;68.8%,Si
2;2.1%,Al23;0.6%、粒度;75μm
以下 炭材(石炭粉)組成:固定炭素;72.2%,揮発分;
18.4%,灰分;9.4%、粒度;75μm以下 鉄鉱石/石炭粉/バインダー配合比:78.3%/20
%/1.7% 原料2 酸化鉄源および炭材(高炉ダスト)組成:T.Fe;3
8.02%,SiO2;2.51%,Al23;1.0
3%、固定炭素;14.57%、粒度;75μm以下 高炉ダスト/バインダー配合比:98%/2%
Example 1 The following two types of mixtures were used as raw materials, and several types of compacts having different particle sizes were manufactured using a pan-type granulator, and each of them was ± 10% of the target particle size. When the productivity of the granulated product within the range was compared, the result shown in FIG. 2 was obtained. Raw material 1 Iron oxide source (iron ore) composition: Fe: 68.8%, Si
O 2 : 2.1%, Al 2 O 3 : 0.6%, particle size: 75 μm
The following carbon material (coal powder) composition: fixed carbon; 72.2%, volatile matter;
18.4%, ash content: 9.4%, particle size: 75 μm or less Iron ore / coal powder / binder mixing ratio: 78.3% / 20
% / 1.7% Raw material 2 Iron oxide source and carbon material (blast furnace dust) composition: Fe; 3
8.02%, SiO 2; 2.51% , Al 2 O 3; 1.0
3%, fixed carbon: 14.57%, particle size: 75 μm or less Blast furnace dust / binder mixing ratio: 98% / 2%

【0044】図2からも明らかな様に、原料の種類によ
って造粒生産性の絶対値はかなり違ってくるが、いずれ
の場合も造粒物の目標粒径が大きくなるほど造粒生産性
は低くなり、特に目標粒径が10mmを超えると、造粒
生産性は著しく低下する。そして、目標粒径が10mm
以下、特に6mm未満になると、安定して高い造粒生産
性が得られることを確認できる。即ち本発明で規定する
粒径10mm以下、より好ましくは6mm未満の小径成
形体は、従来一般的に使用されている大径成形体に比べ
て高い造粒生産性を得ることができ、原料成形体の製造
段階でその利点が有効に発揮される。
As is apparent from FIG. 2, the absolute value of the granulation productivity varies considerably depending on the type of the raw material. In any case, the larger the target particle size of the granulated product is, the lower the granulation productivity is. In particular, when the target particle size exceeds 10 mm, the granulation productivity is significantly reduced. And the target particle size is 10 mm
In the following, it can be confirmed that particularly when the thickness is less than 6 mm, a high granulation productivity can be stably obtained. That is, a small-diameter molded product having a particle diameter of 10 mm or less, more preferably less than 6 mm, as defined in the present invention, can obtain higher granulation productivity than a conventionally used large-diameter molded product, The advantage is exerted effectively in the body manufacturing stage.

【0045】実施例2 上記実施例1の原料1と同じ原料を用いて製造した粒径
5mmと18mmの2種の成形体について、それぞれ未
乾燥物と乾燥物を用意し、各々を実験炉に装入して昇温
速度1350℃/分で1350℃まで昇温した時の爆裂
の有無を比較した。なお爆裂の有無は、炉内で上記加熱
を行なった時に成形体の一部が破裂し、球状を半分以上
維持できなかったものを爆裂有りとした。
Example 2 For two types of compacts having a particle size of 5 mm and 18 mm produced using the same raw material as the raw material 1 of the above-mentioned Example 1, an undried product and a dried product were prepared, and each was placed in an experimental furnace. The presence or absence of explosion when the temperature was increased to 1350 ° C. at a rate of 1350 ° C./min after charging was compared. The presence or absence of explosion was determined by the fact that a part of the molded body burst when the above-mentioned heating was performed in the furnace and the spherical shape could not be maintained for more than half.

【0046】結果は下記の通りであり、乾燥成形体であ
れば、粒径が5mmおよび18mmのもののいずれにつ
いても爆裂は起こさなかったが、未乾燥成形体では粒径
による違いが顕著に現われ、5mmのものでは全く爆裂
を起こさないのに対し、18mmの大径成形体では9割
が爆裂を起こしており、固体還元に顕著な悪影響を及ぼ
すことが明白である。 成形体粒径 5mm 18mm 乾燥成形体 0/10 0/10 未乾燥成形体 0/10 9/10
The results are as follows. In the case of a dry molded article, no explosion occurred in any of the specimens having a particle size of 5 mm or 18 mm, but in the undried molded article, the difference depending on the particle size was remarkably exhibited. A 5 mm one does not explode at all, whereas a large diameter 18 mm molded article has exploded 90%, which is evident to have a significant adverse effect on solid reduction. Molded particle size 5mm 18mm Dry molded body 0/10 0/10 Undried molded body 0/10 9/10

【0047】実施例3 前記実施例で原料2として用いたダストを用いて種々の
粒径の成形体を製造し、各成形体について実験炉(箱型
電気炉)を用いて還元実験(試料成形体は耐火物製の平
板状皿に装入)を行ない、成形体の粒径とそれぞれの炉
内での積層数(1〜5層)が生産性に与える影響を調べ
た。なお生産性は、各試料成形体の還元率が90%に達
するまでに要する還元時間によって判断した。この実験
で採用した還元条件は、全て窒素ガス雰囲気とし温度は
約1300℃一定とした。
Example 3 Molds having various particle diameters were manufactured using the dust used as the raw material 2 in the above example, and each compact was subjected to a reduction experiment (sample molding) using an experimental furnace (box-type electric furnace). The body was placed in a flat plate made of refractory, and the effect of the particle size of the formed body and the number of layers (1 to 5 layers) in each furnace on productivity was examined. The productivity was determined based on the reduction time required until the reduction rate of each sample compact reached 90%. The reduction conditions employed in this experiment were all nitrogen gas atmosphere and the temperature was constant at about 1300 ° C.

【0048】結果は図3,4に示す通りであり、粒径が
6mmを超える成形体の層厚が生産性に与える影響は、
層厚が1,2層のグループと層厚が3〜5層のグループ
に分かれる。そして層厚が1,2層の場合は、成形体が
輻射熱を十分に受けて層全体が速やかに加熱昇温される
ため、各成形体の粒径を大きくするにつれて生産性は向
上している。これに対し層厚が3層以上になると、下層
側の成形体に対する輻射熱の伝達が遅れるため、全体と
しての生産性は頭打ち状態となっている。即ち、原料成
形体の粒径が6mm以上、特に10mmを超えると、多
層積層装入による下層側の伝熱不足による影響が顕著に
現われて生産性向上の障害となるが、原料成形体の粒径
を10mm以下に抑えてやれば、積層数の増大に伴う原
料成形体重量の増加によって生産性を明らかに高め得る
ことが分かる(図3)。
The results are shown in FIGS. 3 and 4. The effect of the layer thickness of the molded product having a particle size exceeding 6 mm on the productivity is as follows.
The layer thickness is divided into a group of 1 and 2 layers and a group of 3 to 5 layers. When the layer thickness is one or two, since the molded body receives sufficient radiant heat and the entire layer is quickly heated and heated, the productivity is improved as the particle diameter of each molded body is increased. . On the other hand, when the layer thickness is three or more, transmission of radiant heat to the lower-layer-side molded body is delayed, so that productivity as a whole has leveled off. That is, if the particle size of the raw material compact is 6 mm or more, especially more than 10 mm, the influence of insufficient heat transfer on the lower layer due to the multi-layer lamination is remarkably exhibited, which hinders the improvement of productivity. It can be seen that if the diameter is suppressed to 10 mm or less, productivity can be significantly increased by increasing the weight of the raw material molded body with the increase in the number of laminations (FIG. 3).

【0049】特に粒径が6mm未満の成形体を使用した
場合(図4)は、積層数が1,2層のグループよりも、
積層数を3〜5層に増大したグループの方が明らかに高
い生産性を示している。即ち積層数の増大による原料成
形体重量の増加によって生産性をより効率よく高める上
では、成形体の粒径を6mm未満にすることが極めて効
果的であることを確認できる。これは、成形体の粒径が
小さくなることで原料充填層の充填密度が高まり、伝熱
速度の差異が補われて下層部まで急速昇温が可能になっ
たためと思われる。よって小径成形体を使用すれば、単
位炉床面積当たりの装入量を積層数の増大によって生産
性を高めることが可能となる。
In particular, when a compact having a particle size of less than 6 mm is used (FIG. 4),
The group in which the number of layers is increased to 3 to 5 layers clearly shows higher productivity. That is, in order to more efficiently increase the productivity by increasing the weight of the raw material compact due to the increase in the number of layers, it can be confirmed that it is extremely effective to make the particle size of the compact less than 6 mm. This is presumably because the packing density of the raw material packed layer was increased by reducing the particle size of the compact, and the difference in heat transfer rate was compensated for, so that the temperature could be rapidly raised to the lower layer. Therefore, if a small-diameter molded body is used, the productivity can be increased by increasing the amount of charge per unit hearth area by increasing the number of layers.

【0050】また上記と同様の方法で、粒径の異なる成
形体をそれぞれ1〜5層に積層して加熱還元実験を行な
い、各成形体の金属化率が90%に達するまでの加熱開
始からの所要時間を測定することにより、成形体の粒径
に応じた最適層厚を調べた。その結果、粒径が10mm
の成形体では最適層厚が1.1層、粒径が8mmでは
2.0層、粒径が6mmでは1.7層、粒径が4mmで
は2.7層、粒径が3mmでは3.2層、粒径が2mm
では4.3層となることが確認された。
In the same manner as described above, heat reduction experiments were conducted by laminating 1 to 5 layers of molded articles having different particle diameters, from the start of heating until the metallization ratio of each molded article reached 90%. By measuring the required time, the optimum layer thickness according to the particle size of the molded article was examined. As a result, the particle size is 10 mm
In the molded article of No. 1, the optimum layer thickness is 1.1 layers, 2.0 layers when the particle diameter is 8 mm, 1.7 layers when the particle diameter is 6 mm, 2.7 layers when the particle diameter is 4 mm, and 3.0 layers when the particle diameter is 3 mm. 2 layers, particle size 2mm
Was confirmed to be 4.3 layers.

【0051】図5は上記実験結果をグラフ化して示した
ものであり、実用炉の特性や生産性のバラツキを考慮す
ると、図5の斜線で示す範囲内で成形体の粒径に応じた
最適の積層数を設定することにより、単位炉床面積当た
りの生産性を効果的に高めることができる。又このグラ
フからも明らかな様に、成形体の粒径を10mm以下、
より好ましくは6mm未満、特に2〜5mmの範囲に設
定すれば最適積層数を高めることができ、単位炉床面積
当たりの生産性を効果的に高め得ることが分かる。
FIG. 5 is a graph showing the results of the above experiment. In consideration of the characteristics of the practical furnace and the variation in productivity, the optimum value corresponding to the particle size of the compact within the shaded area in FIG. By setting the number of stacked layers, the productivity per unit hearth area can be effectively increased. Also, as is clear from this graph, the particle size of the molded product is 10 mm or less,
More preferably, when the thickness is set to less than 6 mm, particularly in the range of 2 to 5 mm, the optimum number of laminations can be increased, and the productivity per unit hearth area can be effectively increased.

【0052】なお、成形体の粒径をD(mm)として前
記式[I]におけるLOAD(kg/m2)を求めると下記
式の通りとなり、 LOAD(kg/m2)=見掛け密度(kg/m3)×3/4・π(D/2)2(m
3)÷D2 LOADは成形体の粒径(D)によりほぼ決まってくる
ので、結果的には、図5に示す如く原料成形体の粒径
(D)に応じて適正な積層数(H)を求めることができ
る。尚ここで粒径とは、原料成形体の粒径がほぼ均一で
ある場合はその直径を採用し、粒径が不均一であったり
ブリケットの如く形状も不均一である場合は、重量平均
または球に換算した平均直径を採用すればよい。
When LOAD (kg / m 2 ) in the above formula [I] is obtained by setting the particle size of the molded body to D (mm), the following formula is obtained. LOAD (kg / m 2 ) = apparent density (kg) / m 3 ) × 3/4 ・ π (D / 2) 2 (m
3 ) Since ΔD 2 LOAD is substantially determined by the particle size (D) of the compact, as a result, as shown in FIG. ). In addition, the particle diameter here, when the particle diameter of the raw material molded article is substantially uniform, adopts the diameter, when the particle diameter is non-uniform or the shape is also non-uniform like briquettes, weight average or The average diameter converted into a sphere may be used.

【0053】[0053]

【発明の効果】本発明は以上の様に構成されており、酸
化鉄源と炭素質還元剤を含む混合物を成形しこれを加熱
して固体還元することにより還元鉄を製造する際に、原
料成形体として10mm以下、より好ましくは6mm未
満の小径成形体を使用することにより、原料成形体のサ
イズに由来する前述した様な難点、特に大径であるが故
の成形乃至乾燥上の問題、成形体強度の問題、積層装入
による下層側の伝熱不足の問題などを一挙に解決し、原
料成形体の成形から乾燥、加熱による固体還元に亘る一
連の工程を安定して効率よく遂行し得ることになった。
The present invention is constituted as described above. When a mixture containing an iron oxide source and a carbonaceous reducing agent is formed, and the mixture is heated and solid-reduced to produce reduced iron, the raw material is reduced. By using a small-diameter molded body of 10 mm or less, more preferably less than 6 mm as a molded body, the above-mentioned difficulties derived from the size of the raw material molded body, particularly problems in molding or drying due to the large diameter, The problem of the strength of the molded body, the problem of insufficient heat transfer on the lower layer due to the charging of the laminated body, etc. are solved at once, and a series of processes from molding of the raw material molded body to drying and solid reduction by heating are stably and efficiently performed. I got it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる加熱還元設備を例示する説
明図である。
FIG. 1 is an explanatory diagram illustrating a heat reduction facility used in the present invention.

【図2】原料成形体の粒径と造粒生産性の関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the particle size of a raw material compact and granulation productivity.

【図3】原料成形体の粒径毎に積層数を変えたときの生
産性におよぼす影響を示すグラフである。
FIG. 3 is a graph showing the effect on productivity when the number of layers is changed for each particle size of a raw material compact.

【図4】図3における粒径6mm以下の小粒径側を拡大
して示すグラフである。
FIG. 4 is an enlarged graph showing a small particle size side having a particle size of 6 mm or less in FIG. 3;

【図5】原料成形体の粒径に応じた最適積層数の関係を
示すグラフである。
FIG. 5 is a graph showing the relationship of the optimum number of layers according to the particle size of the raw material compact.

【符号の説明】[Explanation of symbols]

1 回転型炉床 2 原料装入部 3 表面整形部材 4 冷却部 5 排出装置 6 燃焼バーナ DESCRIPTION OF SYMBOLS 1 Rotary hearth 2 Raw material charging part 3 Surface shaping member 4 Cooling part 5 Discharge device 6 Combustion burner

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 1/245 C22B 1/245 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C22B 1/245 C22B 1/245

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 炭素質還元剤と酸化鉄含有物質を含む原
料混合物を成形し、該成形体を加熱還元炉内で加熱する
ことにより、該成形体中の酸化鉄を固体還元して固体還
元鉄を製造するに当たり、原料成形体として、粒径が6
mm未満の成形体を使用することを特徴とする還元鉄の
製法。
1. A raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance is formed, and the formed body is heated in a heating reduction furnace, whereby iron oxide in the formed body is solid-reduced. In producing iron, the raw material compact has a particle size of 6
A method for producing reduced iron, comprising using a molded product having a diameter of less than 1 mm.
【請求項2】 炭素質還元剤と酸化鉄含有物質を含む原
料混合物を成形し、該成形体を加熱還元炉内で加熱する
ことにより、該成形体中の酸化鉄を固体還元して固体還
元鉄を製造するに当たり、原料成形体として、粒径が1
0mm以下の成形体を使用すると共に、該成形体を前記
加熱還元炉の炉床上に、下記式[I]の関係を満たす積層
数(H)となる様に装入することを特徴とする還元鉄の
製法。 H=Z×[X×(G/P)]/[A×LOAD÷T]……[I] 式中、 Hは装入される成形体の積層数、 Xは加熱還元炉固有の生産能力(kg/min)、 Zは0.7〜1.3の範囲の正数、 Aは原料成形体が装入される炉床面積(m2)、 LOADは、原料成形体を炉床上に1層敷き詰めたとき
の単位面積当たりの質量(kg/m2)、 G/Pは、原料成形体の装入量と、排出される還元鉄と
の質量比Tは、生産能力(X)の生産時間(min)を
それぞれ表わす。
2. A raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance is formed, and the formed body is heated in a heating reduction furnace so that iron oxide in the formed body is solid-reduced. In producing iron, the raw material compact has a particle size of 1
Using a compact having a size of 0 mm or less and loading the compact on the hearth of the heating and reducing furnace so that the number of layers (H) that satisfies the relationship of the following formula [I] is obtained. Iron manufacturing method. H = Z × [X × (G / P)] / [A × LOAD @ T]... [I] In the formula, H is the number of stacked compacts to be charged, and X is the specific production capacity of the heating reduction furnace. (Kg / min), Z is a positive number in the range of 0.7 to 1.3, A is a hearth area (m 2 ) in which the raw material compact is charged, and LOAD is 1 The mass per unit area (kg / m 2 ) when the layers are spread, G / P is the charged amount of the raw material compact, and the mass ratio T of the reduced iron discharged is the production capacity (X) production capacity. Time (min) respectively.
【請求項3】 前記原料成形体の粒径が3mm以上6m
m未満である請求項1に記載の製法。
3. The raw material compact has a particle size of 3 mm or more and 6 m or more.
2. The method according to claim 1, wherein the number is less than m.
【請求項4】 前記原料成形体を、炉床上に2〜5層に
積層して装入する請求項3に記載の製法。
4. The method according to claim 3, wherein the raw material compacts are stacked and charged in two to five layers on a hearth.
【請求項5】 前記原料成形体の粒径が3mm未満であ
る請求項1に記載の製法。
5. The method according to claim 1, wherein the particle size of the raw material compact is less than 3 mm.
【請求項6】 前記原料成形体を、炉床上に3層以上に
積層して装入する請求項5に記載の製法。
6. The method according to claim 5, wherein the raw material compacts are stacked and charged in three or more layers on a hearth.
【請求項7】 前記原料成形体を乾燥することなく加熱
還元炉内へ装入する請求項1,3〜6のいずれかに記載
の製法。
7. The method according to claim 1, wherein the raw material compact is charged into a heating reduction furnace without drying.
【請求項8】 前記原料成形体の粒径が6〜10mmで
あり、該成形体を炉床上に1〜3層に装入する請求項2
に記載の製法。
8. The raw material molded body has a particle size of 6 to 10 mm, and the molded body is charged on a hearth in one to three layers.
Production method described in 1.
【請求項9】 前記原料成形体の粒径が±3mm以内に
均質化されている請求項8に記載の製法。
9. The method according to claim 8, wherein the particle size of the raw material compact is homogenized to within ± 3 mm.
【請求項10】 前記原料成形体を、加熱還元炉内へ装
入した後、全還元時間の1/3の時間で表面温度を12
00℃以上にまで昇温させる請求項1〜9のいずれかに
記載の製法。
10. After the raw material compact has been charged into a heating and reducing furnace, the surface temperature is reduced to 12/3 of the total reduction time.
The method according to any one of claims 1 to 9, wherein the temperature is raised to 00C or higher.
【請求項11】 前記原料成形体の表面に炭素質粉を付
着させて加熱還元炉内へ装入する請求項1〜10のいず
れかに記載の製法。
11. The method according to claim 1, wherein carbonaceous powder is attached to the surface of the raw material compact and charged into a heating reduction furnace.
【請求項12】 前記炉床上に装入した原料成形体を、
積層数が3〜5層となるように均す請求項1〜11のい
ずれかに記載の製法。
12. The raw material compact charged on the hearth,
The method according to any one of claims 1 to 11, wherein the number of layers is equalized so as to be 3 to 5 layers.
【請求項13】 前記炉床上に装入した原料成形体層の
表面に山部と谷部を形成する請求項1〜12のいずれか
に記載の製法。
13. The method according to claim 1, wherein peaks and valleys are formed on the surface of the raw material layer loaded on the hearth.
JP2000108589A 2000-04-10 2000-04-10 Method for producing reduced iron Withdrawn JP2001294920A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000108589A JP2001294920A (en) 2000-04-10 2000-04-10 Method for producing reduced iron
TW090107939A TW562860B (en) 2000-04-10 2001-04-03 Method for producing reduced iron
AU68966/01A AU6896601A (en) 2000-04-10 2001-04-10 Method for producing reduced iron
CNB018007007A CN1294281C (en) 2000-04-10 2001-04-10 Method for producing reduced iron
CA002372378A CA2372378C (en) 2000-04-10 2001-04-10 Method for producing reduced iron
PCT/EP2001/004124 WO2001077395A1 (en) 2000-04-10 2001-04-10 Method for producing reduced iron
EP01947219A EP1185714B1 (en) 2000-04-10 2001-04-10 Method for producing reduced iron
DE60116009T DE60116009T2 (en) 2000-04-10 2001-04-10 METHOD FOR PRODUCING REDUCED IRON
KR1020017015898A KR100549892B1 (en) 2000-04-10 2001-04-10 Method for producing reduced iron
ES01947219T ES2255562T3 (en) 2000-04-10 2001-04-10 METHOD FOR PRODUCING REDUCED IRON.
US09/828,950 US6602320B2 (en) 2000-04-10 2001-04-10 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108589A JP2001294920A (en) 2000-04-10 2000-04-10 Method for producing reduced iron

Publications (1)

Publication Number Publication Date
JP2001294920A true JP2001294920A (en) 2001-10-26

Family

ID=18621401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108589A Withdrawn JP2001294920A (en) 2000-04-10 2000-04-10 Method for producing reduced iron

Country Status (1)

Country Link
JP (1) JP2001294920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150565A (en) * 2017-03-09 2018-09-27 Jfeスチール株式会社 Method for use of fine particle material, and smelting method for molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150565A (en) * 2017-03-09 2018-09-27 Jfeスチール株式会社 Method for use of fine particle material, and smelting method for molten metal

Similar Documents

Publication Publication Date Title
TW562860B (en) Method for producing reduced iron
JP4757982B2 (en) Method for improving the yield of granular metallic iron
EP0924304B1 (en) Method of producing reduced iron pellets
RU2220208C2 (en) Method and apparatus for production of metallic iron
EP1338660B1 (en) Metal oxide-containing green pellet for reducing furnace and method for production thereof, method for reduction thereof
EP1808498A1 (en) Process for producing molten iron and apparatus therefor
JPH02228411A (en) Manufacture of iron
WO2001018256A1 (en) Method and facilities for metal smelting
US8277536B2 (en) Process for producing molten iron and apparatus for producing molten iron
JP2001294921A (en) Method for producing granular metallic iron
JP3403091B2 (en) Method for reducing wet pellets by rotary bed type reduction furnace and rotary bed type reduction furnace
JP2004218019A (en) Production method of high-strength, iron-containing particulate material
JP2001294920A (en) Method for producing reduced iron
JPH1112619A (en) Production of reduced iron
JPH10317033A (en) Production of reduced iron
JP2001247920A (en) Smelting reduction method and smelting reduction apparatus
JP5042203B2 (en) Production of granular metallic iron
JP2002194410A (en) Method for operating rotary furnace hearth type reducing furnace, method for producing pig iron and granular iron oxide-reduced material
JP3355967B2 (en) Method for producing reduced iron
TW522170B (en) A method for drying a molded material containing metal oxide and a method for reducing the metal oxide and a rotary hearth type metal reduction furnace
JP3301326B2 (en) Method for producing reduced iron
JPH1129807A (en) Production of molten iron
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JPH10204516A (en) Production of reduced iron and apparatus thereof
JPH10168508A (en) Production of molten iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703