JP2002246054A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JP2002246054A
JP2002246054A JP2001035935A JP2001035935A JP2002246054A JP 2002246054 A JP2002246054 A JP 2002246054A JP 2001035935 A JP2001035935 A JP 2001035935A JP 2001035935 A JP2001035935 A JP 2001035935A JP 2002246054 A JP2002246054 A JP 2002246054A
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
path
stack
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001035935A
Other languages
Japanese (ja)
Other versions
JP4857472B2 (en
Inventor
Tomonori Imamura
朋範 今村
Hirokuni Sasaki
佐々木  博邦
Haruhiko Kato
晴彦 加藤
Kunio Okamoto
邦夫 岡本
Naoto Hotta
直人 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001035935A priority Critical patent/JP4857472B2/en
Publication of JP2002246054A publication Critical patent/JP2002246054A/en
Application granted granted Critical
Publication of JP4857472B2 publication Critical patent/JP4857472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system which is used under a low-temperature environment, capable of removing water inside a fuel cell in a short time, when operation is stopped. SOLUTION: A cooling water path 40 for circulating cooling water in the fuel cell 10 is provided with cooling parts 42, 43 for cooling cooling water, when normal operation of the fuel cell 10 is performed and a heating part 44 for heating cooling water, when water removing operation is performed; and a flow passage of cooling water is constituted so as to switch to cooling part 42, 43 sides or a heating part 44 side. After normal operation of the fuel cell 10 is ended, prescribed dry air is supplied into an air path 20 and a hydrogen path 30, and the flow passage of cooling water is switched to the heating part 44 side so as to heat the fuel cell 10 up to a prescribed temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素と酸素との化
学反応により電気エネルギーを発生させる燃料電池から
なる燃料電池システムに関するもので、車両、船舶及び
ポータブル発電器等の移動体に適用して有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system comprising a fuel cell which generates electric energy by a chemical reaction between hydrogen and oxygen, and is applied to a moving body such as a vehicle, a ship and a portable generator. It is valid.

【0002】[0002]

【従来の技術】従来より、水素と酸素(空気)との電気
化学反応を利用して発電を行う燃料電池を備えた燃料電
池システムが知られている。例えば車両用等の駆動源と
して考えられている高分子電解質型燃料電池では、0℃
以下の低温状態では、電極近傍に存在している水分が凍
結して反応ガスの拡散を阻害したり、電解質膜の電気伝
導率が低下するという問題がある。
2. Description of the Related Art Conventionally, there has been known a fuel cell system including a fuel cell which generates electric power by utilizing an electrochemical reaction between hydrogen and oxygen (air). For example, in a polymer electrolyte fuel cell that is considered as a driving source for vehicles and the like, 0 ° C.
In the following low-temperature state, there is a problem that moisture existing in the vicinity of the electrode freezes to hinder the diffusion of the reaction gas and that the electric conductivity of the electrolyte membrane decreases.

【0003】このような低温環境下で燃料電池を起動す
る際、凍結による反応ガス経路の目詰まりあるいは電解
質膜への反応ガス(水素および空気)の進行・到達の阻
害により、燃料ガスを供給しても電気化学反応が進行せ
ず、燃料電池を起動できないという問題がある。さら
に、反応ガス経路内で結露した水分の凍結によるガス経
路の閉塞も生ずる。
When the fuel cell is started in such a low temperature environment, the fuel gas is supplied due to clogging of the reaction gas path due to freezing or hindering the progress and arrival of the reaction gas (hydrogen and air) to the electrolyte membrane. However, there is a problem that the electrochemical reaction does not proceed and the fuel cell cannot be started. In addition, blockage of the gas path due to freezing of water condensed in the reaction gas path occurs.

【0004】燃料電池内部での凍結を防止して低温起動
性を向上させるためには、低温環境下に凍結する水分を
予め燃料電池内部から除去しておくことが望まれる。こ
のために、燃料電池内に空気を供給することで、空気流
によって燃料電池内の水分を除去することが考えられ
る。
[0004] In order to prevent freezing inside the fuel cell and improve low-temperature startability, it is desirable to remove moisture that freezes in a low-temperature environment from the inside of the fuel cell in advance. To this end, it is conceivable to supply air into the fuel cell to remove moisture in the fuel cell by an air flow.

【0005】[0005]

【発明が解決しようとする課題】ところが、空気流によ
って燃料電池内の水分を除去する場合には、水分蒸発の
際に蒸発潜熱によって熱が奪われ、燃料電池内部の温度
が低下してしまうこととなる。これにより、水分の蒸発
量が低下して燃料電池内の水分除去に時間がかかるとい
う問題がある。
However, when water in the fuel cell is removed by an air flow, heat is taken away by the latent heat of evaporation during the evaporation of water, and the temperature inside the fuel cell decreases. Becomes As a result, there is a problem that the amount of evaporation of the water decreases and it takes time to remove the water from the fuel cell.

【0006】本発明は、上記問題点に鑑み、低温環境下
で使用される燃料電池システムにおいて、運転停止の
際、短時間で燃料電池内部の水分を除去できることが可
能な燃料電池システムを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a fuel cell system which can be used in a low-temperature environment and can remove moisture inside the fuel cell in a short time when operation is stopped. The purpose is to:

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明では、水素と酸素とを電気化
学反応させて電力を得る燃料電池(10)を備える燃料
電池システムであって、燃料電池(10)に供給される
酸素が通過する空気経路(20)と、燃料電池(10)
に供給される水素が通過する水素経路(30)と、燃料
電池(10)を加熱する加熱手段(44)とを備え、燃
料電池(10)の通常運転停止後、空気経路(20)お
よび水素経路(30)に所定の乾燥ガスを供給するとと
もに、加熱手段(44)により燃料電池(10)を所定
温度に加熱することを特徴としている。
According to the first aspect of the present invention, there is provided a fuel cell system including a fuel cell (10) for obtaining electric power by electrochemically reacting hydrogen and oxygen. An air path (20) through which oxygen supplied to the fuel cell (10) passes; and a fuel cell (10).
A hydrogen path (30) through which hydrogen supplied to the fuel cell passes; and a heating means (44) for heating the fuel cell (10). After normal operation of the fuel cell (10) is stopped, the air path (20) and the hydrogen A predetermined dry gas is supplied to the passage (30), and the fuel cell (10) is heated to a predetermined temperature by the heating means (44).

【0008】このようにガス供給と同時に燃料電池(1
0)を加熱することで、水分除去運転時において、水分
蒸発に伴い燃料電池温度が低下してしまうことを防止で
きる。これにより、燃料電池(10)内部の残留水分の
蒸発を促進することができ、短時間で燃料電池(10)
内部の水分除去を行い、燃料電池の凍結を回避して低温
下での燃料電池(10)の起動性を向上させることがで
きる。
As described above, the fuel cell (1) is simultaneously supplied with the gas.
By heating 0), it is possible to prevent the temperature of the fuel cell from decreasing due to the evaporation of water during the water removal operation. Thereby, the evaporation of the residual moisture inside the fuel cell (10) can be promoted, and the fuel cell (10) can be
It is possible to improve the startability of the fuel cell (10) at a low temperature by removing internal water and avoiding freezing of the fuel cell.

【0009】また、請求項2に記載の発明では、乾燥ガ
スは空気であることを特徴としている。このように空気
を用いることで、特別なガス供給装置を設けることなく
水分除去を行うことができる。また、乾燥した空気は、
通常運転時に行っている空気に対する加湿を行わないこ
とにより提供することができる。
Further, in the invention according to claim 2, the dry gas is air. By using air as described above, moisture can be removed without providing a special gas supply device. Also, the dry air
This can be provided by not humidifying the air that is performed during normal operation.

【0010】また、請求項3に記載の発明では、燃料電
池(10)に冷却水を循環させる冷却水循環経路(4
0)と、冷却水経路(40)に設けられ、燃料電池(1
0)の通常運転時に冷却水を冷却する冷却部(42、4
3)とを備え、加熱手段は、冷却水経路(40)におい
て冷却部(42、43)と並列的あるいは直列的に設け
られ、冷却水を加熱する加熱部(44)であって、冷却
水の流路は冷却部(42、43)側あるいは加熱部(4
4)側に切り替え可能に構成されており、燃料電池(1
0)の通常運転終了後、燃料電池(10)を加熱する際
に、冷却水の流路を加熱部(44)側に切り替えること
を特徴としている。
According to the third aspect of the present invention, the cooling water circulation path (4) for circulating the cooling water through the fuel cell (10).
0) and the cooling water path (40), and the fuel cell (1)
0) during the normal operation of the cooling unit (42, 4) for cooling the cooling water
3), and the heating means is a heating unit (44) provided in parallel or in series with the cooling units (42, 43) in the cooling water path (40) to heat the cooling water, The flow path of the cooling section (42, 43) or the heating section (4)
4) is configured to be switchable to the fuel cell (1).
After the normal operation of 0), when heating the fuel cell (10), the flow path of the cooling water is switched to the heating unit (44) side.

【0011】このような構成により、既存の燃料電池冷
却システムを利用し、これに冷却水の加熱部(44)を
追加するだけの簡易な構成で燃料電池(10)を加熱す
ることができる。
With such a configuration, the fuel cell (10) can be heated with a simple configuration using an existing fuel cell cooling system and adding a heating section (44) to the cooling water.

【0012】また、請求項4に記載の発明では、燃料電
池(10)の温度を検出する温度センサ(12)を備
え、温度センサ(12)により検出した温度に基づいて
加熱手段(44)による燃料電池(10)の加熱温度を
制御することを特徴としている。これにより、燃料電池
温度を燃料電池(10)の電解質膜等を破壊しない範囲
で効率よく残留水を蒸発させることができる温度に保つ
ことができる。
Further, in the invention according to claim 4, a temperature sensor (12) for detecting the temperature of the fuel cell (10) is provided, and the heating means (44) is used based on the temperature detected by the temperature sensor (12). It is characterized in that the heating temperature of the fuel cell (10) is controlled. Thereby, the temperature of the fuel cell can be maintained at a temperature at which the residual water can be efficiently evaporated within a range that does not destroy the electrolyte membrane or the like of the fuel cell (10).

【0013】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示すも
のである。
The reference numerals in parentheses of the above means indicate the correspondence with specific means described in the embodiments described later.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図1、
図2に基づいて説明する。本実施形態は、燃料電池シス
テムを燃料電池を電源として走行する電気自動車(燃料
電池車両)に適用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
A description will be given based on FIG. In this embodiment, the fuel cell system is applied to an electric vehicle (fuel cell vehicle) that runs using a fuel cell as a power source.

【0015】図1は、本実施形態の燃料電池システムの
全体構成を示している。図1に示すように、本実施形態
の燃料電池システムは、水素と酸素との電気化学反応を
利用して電力を発生する燃料電池(FCスタック)10
を備えている。FCスタック10は、車両走行用の電動
モータ(負荷)11や図示しない2次電池等の電気機器
に電力を供給するように構成されている。
FIG. 1 shows the overall configuration of a fuel cell system according to this embodiment. As shown in FIG. 1, the fuel cell system according to the present embodiment includes a fuel cell (FC stack) 10 that generates electric power using an electrochemical reaction between hydrogen and oxygen.
It has. The FC stack 10 is configured to supply electric power to an electric motor (load) 11 for driving the vehicle and electric equipment such as a secondary battery (not shown).

【0016】FCスタック10では、以下の水素と酸素
の電気化学反応が起こり電気エネルギが発生する。 (負極側)H2→2H++2e- (正極側)2H++1/2O2 +2e-→H2O 本実施形態ではFCスタック10として固体高分子電解
質型燃料電池を用いており、基本単位となるセルが複数
積層されて構成されている。各セルは、電解質膜が一対
の電極で挟まれた構成となっている。また、FCスタッ
ク10には、FCスタック本体の温度を検出するための
温度センサ12が設けられている。
In the FC stack 10, the following electrochemical reaction between hydrogen and oxygen occurs, and electric energy is generated. (Negative electrode side) H 2 → 2H + + 2e (positive electrode side) 2H + + 1 / 2O 2 + 2e → H 2 O In the present embodiment, a solid polymer electrolyte fuel cell is used as the FC stack 10 and the basic unit is Cells are stacked. Each cell has a configuration in which an electrolyte membrane is sandwiched between a pair of electrodes. Further, the FC stack 10 is provided with a temperature sensor 12 for detecting the temperature of the main body of the FC stack.

【0017】燃料電池システムには、FCスタック10
の酸素極(正極)10a側に空気(酸素)を供給するた
めの空気経路20と、FCスタック10の水素極(負
極)10b側に水素を供給するための水素経路30が設
けられている。空気経路20には空気供給用の空気圧送
用の送風機(ガス圧縮機)21が設けられている。水素
経路30には水素供給装置31より水素が供給される。
The fuel cell system includes an FC stack 10
An air path 20 for supplying air (oxygen) to the oxygen electrode (positive electrode) 10a side and a hydrogen path 30 for supplying hydrogen to the hydrogen electrode (negative electrode) 10b side of the FC stack 10 are provided. The air path 20 is provided with a blower (gas compressor) 21 for air supply for supplying air. Hydrogen is supplied to the hydrogen path 30 from a hydrogen supply device 31.

【0018】発電時における電気化学反応のために、F
Cスタック10内の電解質膜を水分を含んだ湿潤状態に
しておく必要がある。このため、通常運転時には、図示
しない加湿装置により空気経路20の空気および水素経
路30の水素に加湿が行われ、FCスタック10には加
湿された空気および水素が供給される。これにより、F
Cスタック10内部は湿潤状態で作動することとなる。
また、酸素極10a側では上記電気化学反応により水分
が生成する。
Due to the electrochemical reaction during power generation, F
It is necessary to keep the electrolyte membrane in the C stack 10 in a wet state containing water. Therefore, during normal operation, the humidifier (not shown) humidifies the air in the air path 20 and the hydrogen in the hydrogen path 30, and the humidified air and hydrogen are supplied to the FC stack 10. Thereby, F
The inside of the C stack 10 operates in a wet state.
On the oxygen electrode 10a side, water is generated by the above-mentioned electrochemical reaction.

【0019】また、後述の水分除去運転時には、FCス
タック10には、加湿されない乾燥空気と加湿されない
乾燥水素が供給される。これらの乾燥ガスは、FCスタ
ック10内に残留する水分を除去するために、できるだ
け低湿度であることが望ましく、少なくともFCスタッ
ク10内の湿度より低湿度である必要がある。
At the time of a moisture removal operation described later, the non-humidified dry air and the non-humidified dry hydrogen are supplied to the FC stack 10. It is desirable that these dry gases have as low a humidity as possible in order to remove moisture remaining in the FC stack 10, and it is necessary that the humidity be at least lower than the humidity in the FC stack 10.

【0020】空気経路20における両端部には、空気経
路20を遮断するためのシャットバルブ22、23が設
けられている。これらのシャットバルブ22、23を閉
じることで、FCスタック10内部および空気経路20
内部を外気から遮断することができる。水素経路30の
両端部にも、同様のシャットバルブ32、33が設けら
れている。
At both ends of the air path 20, shut valves 22 and 23 for shutting off the air path 20 are provided. By closing these shut valves 22, 23, the inside of the FC stack 10 and the air path 20 are closed.
The inside can be shut off from the outside air. Similar shut valves 32 and 33 are provided at both ends of the hydrogen path 30.

【0021】また、空気経路20と水素経路30は、F
Cスタック10の上流側において接続されている。水素
経路30における接続部には、水素経路切替弁35が設
けられている。水素経路切替弁35を切り替えることに
より、通常運転時には水素経路30に水素供給装置31
からの水素を流し、水分除去運転時には水素経路30に
空気経路20からの空気を流すことができる。
Further, the air path 20 and the hydrogen path 30
It is connected on the upstream side of the C stack 10. A hydrogen path switching valve 35 is provided at a connection portion in the hydrogen path 30. By switching the hydrogen path switching valve 35, the hydrogen supply device 31 is connected to the hydrogen path 30 during normal operation.
From the air path 20 and the air from the air path 20 to the hydrogen path 30 during the water removal operation.

【0022】FCスタック10には、FCスタック10
内部の酸素極10aおよび水素極10bに存在する残留
水分を検出するための水分センサ24、34が設けられ
ている。本実施形態では、水分センサ24、34として
湿度センサを用いている。湿度センサ24、34は、F
Cスタック10内部の湿度を適切に検出するために、酸
素極10aおよび水素極10bにおけるFCスタック1
0出口付近に設けることが望ましい。
The FC stack 10 includes the FC stack 10
Moisture sensors 24 and 34 for detecting residual moisture existing in the oxygen electrode 10a and the hydrogen electrode 10b are provided. In the present embodiment, humidity sensors are used as the moisture sensors 24 and 34. The humidity sensors 24, 34
To properly detect the humidity inside the C stack 10, the FC stack 1 at the oxygen electrode 10a and the hydrogen electrode 10b
It is desirable to provide it near the exit 0.

【0023】FCスタック10は発電に伴い発熱を生じ
る。このため、燃料電池システムには、FCスタック1
0を冷却して作動温度が電気化学反応に適温(80℃程
度)となるよう冷却システム40〜45が設けられてい
る。
The FC stack 10 generates heat with power generation. Therefore, the fuel cell system includes the FC stack 1
Cooling systems 40 to 45 are provided so as to cool 0 and bring the operating temperature to a suitable temperature (about 80 ° C.) for the electrochemical reaction.

【0024】冷却システムには、FCスタック10に冷
却水(熱媒体)を循環させる冷却水経路40、冷却水を
循環させるウォータポンプ41、ファン43を備えたラ
ジエータ42が設けられている。ラジエータ42および
ファン43で冷却部を構成している。
The cooling system is provided with a cooling water path 40 for circulating cooling water (heat medium) through the FC stack 10, a water pump 41 for circulating cooling water, and a radiator 42 having a fan 43. The radiator 42 and the fan 43 constitute a cooling unit.

【0025】FCスタック10で発生した熱は、冷却水
を介してラジエータ42で系外に排出される。このよう
な冷却系によって、ウォータポンプ41による流量制
御、ラジエータ42およびファン43による風量制御で
FCスタック10の冷却量制御を行うことができる。
The heat generated in the FC stack 10 is discharged outside the system by the radiator 42 via the cooling water. With such a cooling system, the cooling amount of the FC stack 10 can be controlled by the flow rate control by the water pump 41 and the air flow rate control by the radiator 42 and the fan 43.

【0026】また、本実施形態の冷却システムには、冷
却水を加熱するための加熱部(加熱手段)44がラジエ
ータ43と並列的に設けられている。加熱部43として
は、例えば電気式ヒータ、燃焼式ヒータ、触媒ヒータ等
を用いることができる。このような構成により、加熱部
44による冷却水の加熱量制御、ウォータポンプ41に
よる流量制御によって、FCスタック10の加熱量制御
を行うことができる。
Further, in the cooling system of this embodiment, a heating section (heating means) 44 for heating the cooling water is provided in parallel with the radiator 43. As the heating unit 43, for example, an electric heater, a combustion heater, a catalyst heater, or the like can be used. With such a configuration, the heating amount control of the cooling water by the heating unit 44 and the flow rate control by the water pump 41 can control the heating amount of the FC stack 10.

【0027】冷却水の流路は、冷却水切替弁45によっ
てラジエータ43側と加熱部44側に切り替えられる。
FCスタック10の通常運転時には、冷却水切替弁45
はラジエータ43側に切り替えられ、FCスタック10
は冷却される。一方、本実施形態におけるFCスタック
10の水分除去運転時には、冷却水切替弁45は加熱部
44側に切り替えられ、FCスタック10は加熱され
る。
The flow path of the cooling water is switched between the radiator 43 side and the heating section 44 side by a cooling water switching valve 45.
During normal operation of the FC stack 10, the cooling water switching valve 45
Is switched to the radiator 43 side and the FC stack 10
Is cooled. On the other hand, during the moisture removal operation of the FC stack 10 in the present embodiment, the cooling water switching valve 45 is switched to the heating unit 44 side, and the FC stack 10 is heated.

【0028】本実施形態の燃料電池システムには各種制
御を行う制御部(ECU)50が設けられている。制御
部50には、負荷11からの要求電力信号、温度センサ
12からの温度信号、水分センサ24、34からの残留
水分量信号等が入力される。また、制御部50は、2次
電池、送風機21、ウォータポンプ41、ラジエータフ
ァン43、加熱部44、冷却水切替弁45等に制御信号
を出力するように構成されている。
The fuel cell system of this embodiment is provided with a control unit (ECU) 50 for performing various controls. A required power signal from the load 11, a temperature signal from the temperature sensor 12, a residual moisture content signal from the moisture sensors 24 and 34, and the like are input to the control unit 50. The control unit 50 is configured to output control signals to the secondary battery, the blower 21, the water pump 41, the radiator fan 43, the heating unit 44, the cooling water switching valve 45, and the like.

【0029】次に、上記構成の燃料電池システムにおけ
る水分除去制御を図2に基づいて説明する。図2は燃料
電池システムの水分除去制御を示すフローチャートであ
る。
Next, water removal control in the fuel cell system having the above configuration will be described with reference to FIG. FIG. 2 is a flowchart showing the water removal control of the fuel cell system.

【0030】まず、通常運転停止後にFCスタック10
内の水分除去(水分パージ)が必要か否かを判定する
(ステップS10)。水分除去を行うか否かの判定は、
運転停止時の環境温度(外気温)や季節情報等を考慮し
て行う。すなわち、環境温度が0℃以下であるか、ある
いは冬季等であり気温の低下が予測されるいった条件に
基づいて水分除去運転の必要性についての判定を行う。
当然のことながら、夏場などの条件では凍結のおそれが
ないため、水分運転は必要とならない。
First, after the normal operation is stopped, the FC stack 10
It is determined whether or not moisture removal (moisture purge) is necessary (step S10). To determine whether or not to remove water,
This is performed in consideration of the environmental temperature (outside temperature) at the time of operation stop, seasonal information, and the like. That is, the necessity of the water removal operation is determined based on the condition that the environmental temperature is 0 ° C. or lower, or that the temperature is predicted to decrease in winter or the like.
Naturally, there is no danger of freezing in summer or other conditions, so no moisture operation is required.

【0031】また、FCスタック10の運転停止時に、
運転者によるFCスタック10停止時間の予想時間を入
力するように構成してもよい。これは、FCスタック1
0の停止時に環境温度が氷結点以下であったとしても、
FCスタック10の予熱が十分あるため、瞬時にFCス
タック10が氷結点以下とはならず、しばらくは高温が
維持されるためである。従って、10時間程度(一昼夜)
の停止時間内であれば、運転停止時の残留水除去を行う
必要がない。
When the operation of the FC stack 10 is stopped,
The configuration may be such that the estimated time of the FC stack 10 stop time by the driver is input. This is FC Stack 1
Even if the environmental temperature is below the freezing point at the stop of 0,
This is because the preheating of the FC stack 10 is sufficient, so that the FC stack 10 does not instantaneously fall below the freezing point, and the high temperature is maintained for a while. Therefore, about 10 hours (all day and night)
It is not necessary to remove the residual water at the time of operation stoppage within the stop time.

【0032】上記ステップS10で水分除去運転が必要
と判定された場合には、冷却水切替弁45を加熱部44
側に切り替える(ステップS11)。これにより、冷却
水が加熱部44により加熱されることとなる。なお、F
Cスタック10は既に発電を停止しているので、冷却水
切替弁45等は2次電池からの電力供給により作動す
る。
If it is determined in step S10 that the water removal operation is necessary, the cooling water switching valve 45 is switched to the heating section 44.
Side (step S11). Thereby, the cooling water is heated by the heating unit 44. Note that F
Since the C-stack 10 has already stopped generating power, the cooling water switching valve 45 and the like operate by power supply from the secondary battery.

【0033】次に、水素経路切替弁35を空気経路20
側に切り替え(ステップS12)、送風機21による送
風制御を行う(ステップS13)。これにより、空気経
路20および水素経路30に空気が供給される。このと
き空気に加湿は行われず、FCスタック10の酸素極1
0aおよび水素極10bには乾燥空気が供給される。こ
れにより、FCスタック10内に液滴として存在してい
る水分は、空気流によってFCスタック10外に吹き飛
ばされる。
Next, the hydrogen path switching valve 35 is connected to the air path 20.
Side (step S12), and the blower 21 performs blower control (step S13). Thereby, air is supplied to the air path 20 and the hydrogen path 30. At this time, the air was not humidified, and the oxygen electrode 1 of the FC stack 10 was not humidified.
Dry air is supplied to Oa and the hydrogen electrode 10b. As a result, water present as droplets in the FC stack 10 is blown out of the FC stack 10 by an air flow.

【0034】次に、水分センサ24、34にてFCスタ
ック10内の残留水分量を検出し(ステップS14)、
残留水分量が所定量より少なく凍結範囲を下回っている
か否かを判定する(ステップS15)。
Next, the remaining moisture content in the FC stack 10 is detected by the moisture sensors 24 and 34 (step S14).
It is determined whether the residual water content is smaller than the predetermined amount and is lower than the freezing range (step S15).

【0035】FCスタック10内の残留水分量が凍結範
囲を下回っている場合には、空気経路20および水素経
路30の両端部に設けられたシャットバルブ22、2
3、32、33を閉じる(ステップS16)。これによ
り、FCスタック10内部、空気経路20内部、水素経
路30内部が外気から遮断され、外部環境からの水分侵
入を防ぐことができる。
When the amount of residual moisture in the FC stack 10 is lower than the freezing range, the shut valves 22 and 2 provided at both ends of the air path 20 and the hydrogen path 30 are used.
3, 32 and 33 are closed (step S16). Thereby, the inside of the FC stack 10, the inside of the air path 20, and the inside of the hydrogen path 30 are cut off from the outside air, and the intrusion of moisture from the outside environment can be prevented.

【0036】この結果、FCスタック10内の残留水分
量が凍結範囲を超えている場合には、以下のステップS
17〜S21のFCスタック温度制御を行い、FCスタ
ック10を加熱して残留水分を蒸発除去する。
As a result, if the residual water content in the FC stack 10 exceeds the freezing range, the following step S
The FC stack temperature is controlled in steps 17 to S21, and the FC stack 10 is heated to evaporate and remove the residual moisture.

【0037】まず、温度センサ12によりFCスタック
10本体の温度Tを検出し(ステップS17)、FCス
タック温度Tが目標温度Trを上回っているか否かを判
定する(ステップS18)。目標温度Trは、FCスタ
ック10内の水分を蒸発させるためにできるだけ高い方
が好ましい。しかしながら、目標温度Trをあまり高温
に設定すると加熱部44の体格増大を招くとともに、F
Cスタック10内部の電解質膜が破壊される。従ってこ
れらの不具合を防止するために、目標温度Trは80〜
100℃に設定される。
First, the temperature T of the main body of the FC stack 10 is detected by the temperature sensor 12 (step S17), and it is determined whether or not the FC stack temperature T is higher than the target temperature Tr (step S18). The target temperature Tr is preferably as high as possible to evaporate the water in the FC stack 10. However, if the target temperature Tr is set too high, the physique of the heating unit 44 is increased, and F
The electrolyte membrane inside the C stack 10 is destroyed. Therefore, in order to prevent these problems, the target temperature Tr is set to 80 to
Set to 100 ° C.

【0038】FCスタック温度Tが目標温度Trを上回
っている場合には、加熱部44による冷却水加熱量をゼ
ロに設定し(ステップS19)、FCスタック温度Tが
目標温度を下回っている場合には、加熱部44による冷
却水加熱量をK(Tr−T)[K:比例定数]に設定す
る(ステップS20)。次に、ウォータポンプ41によ
り冷却水の循環量を制御する(ステップS21)。これ
により、FCスタック温度Tが目標温度Trとなるよう
に温度制御される。以上の温度制御の後、上記ステップ
S14に戻る。
If the FC stack temperature T is higher than the target temperature Tr, the cooling water heating amount by the heating unit 44 is set to zero (step S19), and if the FC stack temperature T is lower than the target temperature. Sets the cooling water heating amount by the heating unit 44 to K (Tr-T) [K: proportional constant] (step S20). Next, the circulation amount of the cooling water is controlled by the water pump 41 (step S21). Thereby, the temperature is controlled so that the FC stack temperature T becomes the target temperature Tr. After the above temperature control, the process returns to step S14.

【0039】以上のステップS17〜S21のFCスタ
ック温度制御を行うことにより、水分蒸発に伴って温度
低下することなく、FCスタック10内部を高温に保つ
ことができる。これにより、FCスタック10内部にお
いて残留水の蒸発が促進される。蒸発した残留水は、空
気経路20および水素経路30より供給される空気に含
まれた状態でFCスタック10の外部に排出される。こ
のとき、空気経路20および水素経路30より乾燥空気
を供給しているので、FCスタック10内を効率よく乾
燥させることができる。
By performing the FC stack temperature control in steps S17 to S21, the inside of the FC stack 10 can be kept at a high temperature without lowering the temperature due to evaporation of water. Thereby, evaporation of the residual water inside the FC stack 10 is promoted. The evaporated residual water is discharged to the outside of the FC stack 10 while being contained in the air supplied from the air path 20 and the hydrogen path 30. At this time, since the dry air is supplied from the air path 20 and the hydrogen path 30, the inside of the FC stack 10 can be efficiently dried.

【0040】(他の実施形態)なお、上記実施形態で
は、FCスタック10内の残留水分量を検出する水分セ
ンサ24、34として湿度センサを用いたが、これに限
らず、例えば水分センサとしてFCスタック10内部に
おける電解質膜の電気抵抗の変化を測定することによっ
ても、FCスタック10内部の残留水分量を検出するこ
とができる。
(Other Embodiments) In the above embodiment, the humidity sensors are used as the moisture sensors 24 and 34 for detecting the amount of residual moisture in the FC stack 10. However, the present invention is not limited to this. By measuring the change in the electric resistance of the electrolyte membrane inside the stack 10, the amount of residual moisture inside the FC stack 10 can also be detected.

【0041】また、FCスタック10を構成する個々の
セルにおいて、少なくとも一部が水分除去されていれば
よい。セルの一部が乾燥していれば、その乾燥部分に水
素および空気を供給することで発電を開始できる。セル
の一部にて発電が開始されれば、発電に伴う発熱により
他の部分を昇温させることができ、セル全体で発電を行
うことができるようになる。
Further, it is sufficient that at least a part of the individual cells constituting the FC stack 10 have been subjected to moisture removal. If a part of the cell is dry, power generation can be started by supplying hydrogen and air to the dry part. When power generation is started in a part of the cell, the temperature of the other part can be raised by the heat generated by the power generation, and power can be generated in the entire cell.

【0042】また、上記実施形態では、水分除去運転時
に空気経路20および水素経路30から乾燥空気を供給
したが、これに限らず、例えば窒素といった任意のガス
を供給するように構成してもよい。
In the above embodiment, the dry air is supplied from the air path 20 and the hydrogen path 30 during the water removal operation. However, the present invention is not limited to this, and an arbitrary gas such as nitrogen may be supplied. .

【0043】また、上記ステップS16で検出したFC
スタック温度Tが電解質膜を破壊する温度(例えば15
0℃)以上である場合には、冷却水切替弁45をラジエ
ータ側に切り替え、冷却水を積極的に冷却してFCスタ
ック10を冷却するように構成してもよい。
Also, the FC detected in step S16 is used.
The stack temperature T is a temperature at which the electrolyte membrane is broken (for example, 15
When the temperature is equal to or higher than 0 ° C.), the cooling water switching valve 45 may be switched to the radiator side to actively cool the cooling water to cool the FC stack 10.

【0044】また、上記実施形態では、冷却水を加熱す
る加熱部44をラジエータ43と並列的に設けたが、こ
れに限らず、冷却水経路40において加熱部44をラジ
エータ43と直列的に設けてもよい。この場合には、図
1の燃料電池システムの構成において、加熱部44側と
ラジエータ側との分岐点の上流側であってウォータポン
プ41の下流側に加熱部44を移動させればよい。この
ような構成の場合、加熱部44が設けられていた経路
は、冷却水をラジエータ42をバイパスさせるためのバ
イパス経路となる。このような構成により、通常運転終
了後の水分除去制御を行う際、加熱部44を通過して加
熱された冷却水は、バイパス通路を通過してラジエータ
42をバイパスする。
In the above embodiment, the heating section 44 for heating the cooling water is provided in parallel with the radiator 43. However, the present invention is not limited to this. The heating section 44 is provided in the cooling water path 40 in series with the radiator 43. You may. In this case, in the configuration of the fuel cell system shown in FIG. In the case of such a configuration, the path provided with the heating unit 44 becomes a bypass path for causing the cooling water to bypass the radiator 42. With such a configuration, when performing the water removal control after the end of the normal operation, the cooling water heated by passing through the heating unit 44 passes through the bypass passage and bypasses the radiator 42.

【図面の簡単な説明】[Brief description of the drawings]

【図1】上記実施形態の燃料電池システムの概略構成を
示す概念図である。
FIG. 1 is a conceptual diagram showing a schematic configuration of a fuel cell system according to the embodiment.

【図2】図1の燃料電池システムの水分除去制御を示す
フローチャートである。
FIG. 2 is a flowchart showing water removal control of the fuel cell system of FIG.

【符号の説明】[Explanation of symbols]

10…燃料電池(FCスタック)、10a…酸素極、1
0b…水素極、12…温度センサ、20…空気経路、2
2、23…シャットバルブ、30…水素経路、32、3
3…シャットバルブ、35…水素経路切替弁、42、4
3…冷却部、44…加熱部(加熱手段)、50…制御部
(ECU)。
10: fuel cell (FC stack), 10a: oxygen electrode, 1
0b: hydrogen electrode, 12: temperature sensor, 20: air path, 2
2, 23 ... shut valve, 30 ... hydrogen path, 32, 3
3 Shut valve, 35 Hydrogen path switching valve, 42, 4
3. Cooling unit, 44 heating unit (heating means), 50 control unit (ECU).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 晴彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 岡本 邦夫 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 堀田 直人 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 5H027 AA06 CC04 KK46  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Haruhiko Kato 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. (72) Inventor Naoto Hotta 1-1-1, Showa-cho, Kariya-shi, Aichi F-term (reference) in Denso Corporation 5H027 AA06 CC04 KK46

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素と酸素とを電気化学反応させて電力
を得る燃料電池(10)を備える燃料電池システムであ
って、 前記燃料電池(10)に供給される酸素が通過する空気
経路(20)と、 前記燃料電池(10)に供給される水素が通過する水素
経路(30)と、 前記燃料電池(10)を加熱する加熱手段(44)とを
備え、 前記燃料電池(10)の通常運転停止後、前記空気経路
(20)および前記水素経路(30)に所定の乾燥ガス
を供給するとともに、前記加熱手段(44)により前記
燃料電池(10)を所定温度に加熱することを特徴とす
る燃料電池システム。
1. A fuel cell system comprising a fuel cell (10) for obtaining electric power by electrochemically reacting hydrogen and oxygen, wherein an air path (20) through which oxygen supplied to the fuel cell (10) passes is provided. ), A hydrogen path (30) through which hydrogen supplied to the fuel cell (10) passes, and heating means (44) for heating the fuel cell (10). After the operation is stopped, a predetermined dry gas is supplied to the air path (20) and the hydrogen path (30), and the fuel cell (10) is heated to a predetermined temperature by the heating means (44). Fuel cell system.
【請求項2】 前記乾燥ガスは空気であることを特徴と
する請求項1に記載の燃料電池システム。
2. The fuel cell system according to claim 1, wherein the dry gas is air.
【請求項3】 前記燃料電池(10)に冷却水を循環さ
せる冷却水循環経路(40)と、 前記冷却水経路(40)に設けられ、前記燃料電池(1
0)の通常運転時に前記冷却水を冷却する冷却部(4
2、43)とを備え、 前記加熱手段は、前記冷却水経路(40)において前記
冷却部(42、43)と並列的あるいは直列的に設けら
れ、前記冷却水を加熱する加熱部(44)であって、 前記冷却水の流路は前記冷却部(42、43)側あるい
は前記加熱部(44)側に切り替え可能に構成されてお
り、 前記燃料電池(10)の通常運転終了後、前記燃料電池
(10)を加熱する際に、前記冷却水の流路を前記加熱
部(44)側に切り替えることを特徴とする請求項1ま
たは請求項2に記載の燃料電池システム。
3. A cooling water circulation path (40) for circulating cooling water through the fuel cell (10); and a cooling water circulation path (40) provided in the cooling water path (40).
0) during the normal operation of the cooling unit (4) for cooling the cooling water.
The heating unit is provided in the cooling water path (40) in parallel or in series with the cooling unit (42, 43), and heats the cooling water. The flow path of the cooling water is configured to be switchable to the cooling unit (42, 43) side or the heating unit (44) side, and after the normal operation of the fuel cell (10), 3. The fuel cell system according to claim 1, wherein when heating the fuel cell, the flow path of the cooling water is switched to the side of the heating unit. 4.
【請求項4】 前記燃料電池(10)の温度を検出する
温度センサ(12)を備え、 前記温度センサ(12)により検出した温度に基づいて
前記加熱手段(44)による前記燃料電池(10)の加
熱温度を制御することを特徴とする請求項1ないし3の
いずれか1つに記載の燃料電池システム。
4. A fuel cell (10) comprising a temperature sensor (12) for detecting a temperature of the fuel cell (10), and the heating means (44) based on the temperature detected by the temperature sensor (12). The fuel cell system according to any one of claims 1 to 3, wherein a heating temperature of the fuel cell is controlled.
JP2001035935A 2001-02-13 2001-02-13 Fuel cell system Expired - Fee Related JP4857472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035935A JP4857472B2 (en) 2001-02-13 2001-02-13 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035935A JP4857472B2 (en) 2001-02-13 2001-02-13 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2002246054A true JP2002246054A (en) 2002-08-30
JP4857472B2 JP4857472B2 (en) 2012-01-18

Family

ID=18899298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035935A Expired - Fee Related JP4857472B2 (en) 2001-02-13 2001-02-13 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4857472B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203665A (en) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd Fuel cell system
JP2005011779A (en) * 2003-06-23 2005-01-13 Toyota Motor Corp Fuel cell system and its control method
JP2005141940A (en) * 2003-11-04 2005-06-02 Denso Corp Fuel cell system
JP2005251517A (en) * 2004-03-03 2005-09-15 Nippon Soken Inc Fuel cell system
WO2005088754A1 (en) * 2004-03-17 2005-09-22 Toyota Jidosha Kabushiki Kaisha Control device for fuel cell system
JP2005285396A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell system
JP2006086015A (en) * 2004-09-16 2006-03-30 Nissan Motor Co Ltd Fuel cell system
JP2006134807A (en) * 2004-11-09 2006-05-25 Honda Motor Co Ltd Fuel cell system
WO2006057134A1 (en) 2004-11-29 2006-06-01 Nissan Motor Co., Ltd. Fuel cell system
JP2006156084A (en) * 2004-11-29 2006-06-15 Nissan Motor Co Ltd Fuel cell system
WO2006126740A1 (en) * 2005-05-26 2006-11-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2007026903A (en) * 2005-07-15 2007-02-01 Nissan Motor Co Ltd Fuel cell system
JP2008010347A (en) * 2006-06-30 2008-01-17 Honda Motor Co Ltd Fuel cell system
WO2008056617A1 (en) * 2006-11-06 2008-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2008166041A (en) * 2006-12-27 2008-07-17 Toyota Motor Corp Fuel cell system, and mobile unit loading fuel cell system
JP2008541337A (en) * 2005-07-14 2008-11-20 日産自動車株式会社 Fuel cell power plant and its control
JP2009212045A (en) * 2008-03-06 2009-09-17 Ebara Ballard Corp Fuel cell system and drainage method of fuel cell
US7670700B2 (en) 2003-09-05 2010-03-02 Denso Corporation Fuel cell system, related method and current measuring device for fuel cell system
JP2010146742A (en) * 2008-12-16 2010-07-01 Honda Motor Co Ltd Fuel cell system
US7883811B2 (en) 2002-09-18 2011-02-08 Honda Giken Koygo Kabushiki Kaisha Control apparatus for fuel cell stack
JP2012023054A (en) * 2011-09-29 2012-02-02 Nissan Motor Co Ltd Fuel cell system
FR2985611A1 (en) * 2012-01-11 2013-07-12 Air Liquide Method for interruption of operation of stack of proton exchange membrane fuel cell, involves providing air supply in cathode compartment with flow rate of air between specific percent during operation of stack of elementary cells
CN113299946A (en) * 2021-05-17 2021-08-24 北京格睿能源科技有限公司 Thermal management method and device for shutdown condition of fuel cell

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198058A (en) * 1986-02-25 1987-09-01 Fuji Electric Co Ltd Electric heat supply system of liquid cooling type fuel cell
JPH0244654A (en) * 1988-08-04 1990-02-14 Fuji Electric Co Ltd Gas replacement method for fuel cell
JPH0393166A (en) * 1989-09-06 1991-04-18 Yamaha Motor Co Ltd Fuel cell system
JPH06251787A (en) * 1993-02-25 1994-09-09 Toshiba Corp Phosphoric acid type fuel cell power generation plant
JPH07169476A (en) * 1993-12-17 1995-07-04 Toshiba Corp Heat retaining method for fuel cell
JPH08190929A (en) * 1995-01-10 1996-07-23 Toshiba Corp Fuel cell power generating plant
JPH09312165A (en) * 1996-05-23 1997-12-02 Aqueous Res:Kk Fuel cell generating device and operating method thereof
JP2000113900A (en) * 1998-10-09 2000-04-21 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system
JP2000164232A (en) * 1998-11-26 2000-06-16 Toshiba Corp Solid high molecular fuel cell system
JP2000164233A (en) * 1998-11-26 2000-06-16 Toshiba Corp Power generating system for solid high molecular fuel cell
JP2000512068A (en) * 1996-06-07 2000-09-12 バラード パワー システムズ インコーポレイティド Method and apparatus for starting operation of a fuel cell power generator at a temperature lower than the coagulation temperature of water
WO2000065676A1 (en) * 1999-04-23 2000-11-02 Energy Partners, L.C. Freeze tolerant fuel cell system and method
JP2001332281A (en) * 2000-05-24 2001-11-30 Fuji Electric Co Ltd Solid polyelectrolyte fuel cell power generation system and its operation method
JP2002208429A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP2002208421A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198058A (en) * 1986-02-25 1987-09-01 Fuji Electric Co Ltd Electric heat supply system of liquid cooling type fuel cell
JPH0244654A (en) * 1988-08-04 1990-02-14 Fuji Electric Co Ltd Gas replacement method for fuel cell
JPH0393166A (en) * 1989-09-06 1991-04-18 Yamaha Motor Co Ltd Fuel cell system
JPH06251787A (en) * 1993-02-25 1994-09-09 Toshiba Corp Phosphoric acid type fuel cell power generation plant
JPH07169476A (en) * 1993-12-17 1995-07-04 Toshiba Corp Heat retaining method for fuel cell
JPH08190929A (en) * 1995-01-10 1996-07-23 Toshiba Corp Fuel cell power generating plant
JPH09312165A (en) * 1996-05-23 1997-12-02 Aqueous Res:Kk Fuel cell generating device and operating method thereof
JP2000512068A (en) * 1996-06-07 2000-09-12 バラード パワー システムズ インコーポレイティド Method and apparatus for starting operation of a fuel cell power generator at a temperature lower than the coagulation temperature of water
JP2000113900A (en) * 1998-10-09 2000-04-21 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system
JP2000164232A (en) * 1998-11-26 2000-06-16 Toshiba Corp Solid high molecular fuel cell system
JP2000164233A (en) * 1998-11-26 2000-06-16 Toshiba Corp Power generating system for solid high molecular fuel cell
WO2000065676A1 (en) * 1999-04-23 2000-11-02 Energy Partners, L.C. Freeze tolerant fuel cell system and method
JP2002543566A (en) * 1999-04-23 2002-12-17 テレダイン エナジー システムズ インコーポレイテッド Freeze-resistant fuel cell system and method
JP2001332281A (en) * 2000-05-24 2001-11-30 Fuji Electric Co Ltd Solid polyelectrolyte fuel cell power generation system and its operation method
JP2002208429A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP2002208421A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203665A (en) * 2002-01-08 2003-07-18 Nissan Motor Co Ltd Fuel cell system
US7718289B2 (en) 2002-01-08 2010-05-18 Nissan Motor Co., Ltd. Fuel cell system and related method
US7883811B2 (en) 2002-09-18 2011-02-08 Honda Giken Koygo Kabushiki Kaisha Control apparatus for fuel cell stack
JP2005011779A (en) * 2003-06-23 2005-01-13 Toyota Motor Corp Fuel cell system and its control method
JP4654569B2 (en) * 2003-06-23 2011-03-23 トヨタ自動車株式会社 Fuel cell system and control method thereof
US7670700B2 (en) 2003-09-05 2010-03-02 Denso Corporation Fuel cell system, related method and current measuring device for fuel cell system
JP2005141940A (en) * 2003-11-04 2005-06-02 Denso Corp Fuel cell system
JP4513308B2 (en) * 2003-11-04 2010-07-28 株式会社デンソー Fuel cell system
JP2005251517A (en) * 2004-03-03 2005-09-15 Nippon Soken Inc Fuel cell system
US8420272B2 (en) 2004-03-17 2013-04-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system control device
KR100811806B1 (en) 2004-03-17 2008-03-10 도요다 지도샤 가부시끼가이샤 Control device for fuel cell system, fuel cell system, fuel cell hybrid vehicle
WO2005088754A1 (en) * 2004-03-17 2005-09-22 Toyota Jidosha Kabushiki Kaisha Control device for fuel cell system
JP2005285396A (en) * 2004-03-29 2005-10-13 Honda Motor Co Ltd Fuel cell system
JP4698965B2 (en) * 2004-03-29 2011-06-08 本田技研工業株式会社 Fuel cell system
JP2006086015A (en) * 2004-09-16 2006-03-30 Nissan Motor Co Ltd Fuel cell system
JP4699010B2 (en) * 2004-11-09 2011-06-08 本田技研工業株式会社 Fuel cell system
JP2006134807A (en) * 2004-11-09 2006-05-25 Honda Motor Co Ltd Fuel cell system
US7846596B2 (en) 2004-11-09 2010-12-07 Honda Motor Co., Ltd. Fuel cell system and method of discharging a reaction gas from the fuel cell system
EP1840995A1 (en) * 2004-11-29 2007-10-03 Nissan Motor Company Limited Fuel cell system
US8357473B2 (en) 2004-11-29 2013-01-22 Nissan Motor Co., Ltd. Fuel cell system
JP2006156085A (en) * 2004-11-29 2006-06-15 Nissan Motor Co Ltd Fuel cell system
EP1840995A4 (en) * 2004-11-29 2009-07-22 Nissan Motor Fuel cell system
WO2006057134A1 (en) 2004-11-29 2006-06-01 Nissan Motor Co., Ltd. Fuel cell system
JP2006156084A (en) * 2004-11-29 2006-06-15 Nissan Motor Co Ltd Fuel cell system
WO2006126740A1 (en) * 2005-05-26 2006-11-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8735011B2 (en) 2005-05-26 2014-05-27 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2006331868A (en) * 2005-05-26 2006-12-07 Toyota Motor Corp Fuel cell system
JP2012074385A (en) * 2005-07-14 2012-04-12 Nissan Motor Co Ltd Fuel cell power plant and control thereof
US8501359B2 (en) 2005-07-14 2013-08-06 Nissan Motor Co., Ltd. Fuel cell power plant and control method thereof
JP2008541337A (en) * 2005-07-14 2008-11-20 日産自動車株式会社 Fuel cell power plant and its control
JP2007026903A (en) * 2005-07-15 2007-02-01 Nissan Motor Co Ltd Fuel cell system
JP2008010347A (en) * 2006-06-30 2008-01-17 Honda Motor Co Ltd Fuel cell system
WO2008056617A1 (en) * 2006-11-06 2008-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR101099413B1 (en) 2006-11-06 2011-12-27 도요타 지도샤(주) Fuel cell system
US8182952B2 (en) 2006-11-06 2012-05-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system capable of drying a fuel cell in a short time after a system stop instruction is used
JP5093689B2 (en) * 2006-11-06 2012-12-12 トヨタ自動車株式会社 Fuel cell system
JP2008166041A (en) * 2006-12-27 2008-07-17 Toyota Motor Corp Fuel cell system, and mobile unit loading fuel cell system
US20100098979A1 (en) * 2006-12-27 2010-04-22 Tomonori Imamura Fuel cell system and moving body using the fuel cell system
US9368811B2 (en) 2006-12-27 2016-06-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system and moving body using the fuel cell system
JP2009212045A (en) * 2008-03-06 2009-09-17 Ebara Ballard Corp Fuel cell system and drainage method of fuel cell
JP2010146742A (en) * 2008-12-16 2010-07-01 Honda Motor Co Ltd Fuel cell system
US8900769B2 (en) 2008-12-16 2014-12-02 Honda Motor Co., Ltd Counter-freeze control method for fuel cell system
JP2012023054A (en) * 2011-09-29 2012-02-02 Nissan Motor Co Ltd Fuel cell system
FR2985611A1 (en) * 2012-01-11 2013-07-12 Air Liquide Method for interruption of operation of stack of proton exchange membrane fuel cell, involves providing air supply in cathode compartment with flow rate of air between specific percent during operation of stack of elementary cells
CN113299946A (en) * 2021-05-17 2021-08-24 北京格睿能源科技有限公司 Thermal management method and device for shutdown condition of fuel cell

Also Published As

Publication number Publication date
JP4857472B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4857472B2 (en) Fuel cell system
JP4759815B2 (en) Fuel cell system
JP4660927B2 (en) Fuel cell system
US6855444B2 (en) Fuel cell system
US8168343B2 (en) Humidification control during shutdown of a fuel cell system
JP2002208422A (en) Fuel cell system
JP4328324B2 (en) Fuel cell system
JP2002208429A (en) Fuel cell system
JP3537725B2 (en) Humidification system for fuel cells
JP2004139771A (en) Fuel cell system
JPH09312165A (en) Fuel cell generating device and operating method thereof
JP2004296351A (en) Fuel cell system
JP2003178778A (en) Fuel cell system
JP2007042375A (en) Fuel cell system
JP2002246052A (en) Fuel cell device and starting method therefor
JP2000030727A (en) Fuel cell system
JP2003168457A (en) Fuel cell system
JP2008218289A (en) Fuel cell system and cooling method for fuel cell
JP2006179199A (en) Fuel cell system
JP2007242547A (en) Fuel cell system
JP2002075421A (en) Humidifier for fuel cell
JP3743339B2 (en) Polymer electrolyte fuel cell and method of operating the same
JP2005050639A (en) Fuel cell system
JPH11317238A (en) Fuel cell system for vehicle
JP2010129529A (en) Fuel cell system and method of controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees