JPH0393166A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH0393166A
JPH0393166A JP1229375A JP22937589A JPH0393166A JP H0393166 A JPH0393166 A JP H0393166A JP 1229375 A JP1229375 A JP 1229375A JP 22937589 A JP22937589 A JP 22937589A JP H0393166 A JPH0393166 A JP H0393166A
Authority
JP
Japan
Prior art keywords
air
electrode
phosphoric acid
air supply
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229375A
Other languages
Japanese (ja)
Inventor
Masaru Osuga
勝 大須賀
Masaki Ito
雅樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP1229375A priority Critical patent/JPH0393166A/en
Publication of JPH0393166A publication Critical patent/JPH0393166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent a drop in concentration of phosphoric acid at the time of battery stop by heating and drying air for being fed to an electrode while closing the feeding and exhausting valves of the electrode in the state where dry air is filled inside the electrode after supply of fuel gas is stopped. CONSTITUTION:In a fuel battery system using a phosphoric acid electrolyte, after supply of fuel gas is stopped, air is heated for being dried to be supplied to the electrode 10 while closing the feeding and exhausting bulbs 18, 20 and 26 in a state where dried air is filled in the gas space inside the electrode 10. Accordingly, a temperature drop of the electrode is suppressed so as to continue moisture evaporation at the reaction time in the phosphoric acid electrolyte after a stop of reaction. A drop of concentration of the phosphoric acid electrolyte at the time of operation stop, thereby, is not generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リン酸型燃料電池システムに関するものであ
る. (発明の背景) リン酸型燃料電池は電極に反応気体を導入して、すなわ
ち負極に水素を、正極に酸素を導入して起電力を得る.
この反応により生じる水は高温(約200℃)運転時に
は水蒸気としで排気されるので運転中にはリン酸電解液
の濃度が低下することはない.しかし、電池の運転停止
により温度が低下すると、電解液内に溶存する水分は蒸
発せず電解液内に残ることになる.また電極のガススペ
ース内に留まっている水蒸気ち凝結してリン酸電解液に
混入する.このため電池停止時にリン酸濃度が低下し、
電池性能が低下するという問題があった. (従来技術) 電池停止時のリン酸濃度の低下を防止する方法として、
電池停止に際し、電極のガススペースに外部新鮮空気を
封入して保存する停止方法が提案されている(特開昭6
3−26962)。しかしこの場合でも吸湿性の高いリ
ン酸電解液は、この僅かな封入空気中の水分を吸収する
ことになり、頻繁に間欠運転を行なうタイプの燃料電池
ではリン酸電解液の濃度低下も無視できないものになる
という問題があった. また電極内部に吸湿剤を設けることも考えられるが、リ
ン酸電解液自体が吸湿性に富んでいるため、完全な吸湿
はできない。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a phosphoric acid fuel cell system. (Background of the Invention) Phosphoric acid fuel cells generate electromotive force by introducing reactive gases into the electrodes, that is, hydrogen into the negative electrode and oxygen into the positive electrode.
The water produced by this reaction is exhausted as steam during high-temperature (approximately 200°C) operation, so the concentration of the phosphoric acid electrolyte does not decrease during operation. However, when the temperature drops due to battery shutdown, the water dissolved in the electrolyte does not evaporate and remains in the electrolyte. Also, water vapor remaining in the gas space of the electrode condenses and mixes with the phosphoric acid electrolyte. Therefore, when the battery is stopped, the phosphoric acid concentration decreases,
There was a problem that battery performance deteriorated. (Prior art) As a method to prevent the concentration of phosphoric acid from decreasing when the battery is stopped,
When shutting down a battery, a method has been proposed in which outside fresh air is sealed in the gas space of the electrode to preserve it (Japanese Unexamined Patent Publication No. 6
3-26962). However, even in this case, the highly hygroscopic phosphoric acid electrolyte will absorb this small amount of moisture in the enclosed air, and in fuel cells that are frequently operated intermittently, the decrease in the concentration of the phosphoric acid electrolyte cannot be ignored. There was the problem of becoming a thing. It is also possible to provide a moisture absorbent inside the electrode, but since the phosphoric acid electrolyte itself is highly hygroscopic, complete moisture absorption is not possible.

(発明の目的) 本発明はこのような事情に鑑みなされたものであり、運
転停止時にリン酸電解液の濃度が低下することがない、
燃料電池システムの停止方法を提供することを第1の目
的とする. またその実施に使用する燃料電池システムを提供するこ
とを第2の目的とする。
(Objective of the Invention) The present invention has been made in view of the above circumstances, and is designed to prevent the concentration of the phosphoric acid electrolyte from decreasing when the operation is stopped.
The first purpose is to provide a method for stopping a fuel cell system. A second object of the present invention is to provide a fuel cell system for use in the implementation.

(発明の構成) 本発明のこの目的は、リン酸電解液を用いた燃料電池シ
ステムにおいて、燃料ガスの供給を停止した後、空気を
加熱するとと6に乾燥して電極に供給して、電極内のガ
ススペースに乾燥空気を充填した状態で電極の給・排バ
ルブを閉じることを特徴とする燃料電池システムの停止
方法6により達成される。
(Structure of the Invention) This object of the present invention is to provide a fuel cell system using a phosphoric acid electrolyte by heating and drying air after stopping the supply of fuel gas and supplying it to the electrodes. This is achieved by a method 6 for stopping a fuel cell system, which is characterized by closing the supply/discharge valves of the electrodes while the gas space inside the fuel cell system is filled with dry air.

また本発明の第2の目的は、リン酸電解液を用いた燃料
電池システムにおいて、電極と、電極へ空気を供給する
第1及び第2の給気ラインと、第2の給気ラインの途中
に設けられ低温時は空気中の水分を吸収し高温時は水分
を放出する吸湿手段と、この吸湿手段を直接或いは間接
的に加熱する加熱手段と、第1の給気ラインを遮断する
第1のバルブと、電極の排気ラインを遮断する第2のバ
ルブと、電極と吸湿手段の間で第2の給気ラインを遮断
する第3のバルブとを備えることを特徴・とする燃料電
池システム。
A second object of the present invention is to provide a fuel cell system using a phosphoric acid electrolyte, including an electrode, first and second air supply lines for supplying air to the electrode, and a fuel cell system in the middle of the second air supply line. a moisture absorbing means provided in the air that absorbs moisture in the air when the temperature is low and releases moisture when the temperature is high; a heating means that directly or indirectly heats the moisture absorbing means; and a first air supply line that cuts off the first air supply line. What is claimed is: 1. A fuel cell system comprising: a second valve for cutting off an electrode exhaust line; and a third valve for cutting off a second air supply line between the electrode and the moisture absorption means.

により達成される。This is achieved by

(実施例) 第1図は本発明の一実施例の電池システム概念図である
.この図において、符号10は電極である.この電極1
0はリン酸電解液を含浸させた電極マトリックスを挾ん
で、一方には空気電極(陽極)他方には水素電極(陰極
)が形成され、これを順次積み重ねたセルスタックとな
っている。第1図はこのうち、空気電極に給排される反
応空気の給排経路を示している。送気ブロワ12から送
られる空気は第1の給気ライン14を通って電極10の
空気ガススペースに給気され、電極10で反応した後は
排気ライン16により排気される.18は給気ライン1
4を遮断する第1のバルブ、20は排気ラインl6を遮
断する第2のバルブである. 第1の給気ライン14は途中で分岐して電極10の空気
電極のガススペースに入る第2の給気ライン22が配設
される。その途中には反応空気中の水分を除去する吸湿
手段24、さらに下流には第3のバルブが設けられてい
る。吸湿手段24は排気ライン16を覆う室を形成しそ
の中に吸湿剤を充填した熱交換器様の構造であり、第2
の給気ライン22を流れる反応空気はここで吸湿乾燥さ
れると共に、排気ライン16の排熱により加熱されて電
極10に供給される。すなわちこの実施例では、吸湿手
段24は、反応空気を加熱する加熱手段ともなっている
。吸湿手段24に充填される吸湿剤は、熱を加えること
により可逆的に再生されるものが好ましく、例えば、シ
リカゲル、アルミナ系、ゼオライト系の吸湿剤を用いる
ことができる。
(Example) Figure 1 is a conceptual diagram of a battery system according to an example of the present invention. In this figure, numeral 10 is an electrode. This electrode 1
0 sandwiching an electrode matrix impregnated with a phosphoric acid electrolyte, an air electrode (anode) is formed on one side, and a hydrogen electrode (cathode) is formed on the other side, forming a cell stack in which these electrodes are stacked one after another. FIG. 1 shows the supply/discharge route of reaction air supplied to and discharged from the air electrode. Air sent from the air blower 12 is supplied to the air gas space of the electrode 10 through a first air supply line 14, and after reacting at the electrode 10, is exhausted through an exhaust line 16. 18 is air supply line 1
The first valve 20 shuts off the exhaust line 16, and the second valve 20 shuts off the exhaust line 16. The first air supply line 14 is branched in the middle to provide a second air supply line 22 that enters the gas space of the air electrode of the electrode 10 . A moisture absorbing means 24 for removing moisture from the reaction air is provided in the middle, and a third valve is provided further downstream. The moisture absorbing means 24 has a heat exchanger-like structure in which a chamber covering the exhaust line 16 is filled with a moisture absorbing agent.
The reaction air flowing through the air supply line 22 absorbs moisture and dries there, is heated by exhaust heat from the exhaust line 16, and is supplied to the electrode 10. That is, in this embodiment, the moisture absorbing means 24 also serves as a heating means for heating the reaction air. The moisture absorbent filled in the moisture absorbing means 24 is preferably one that can be reversibly regenerated by applying heat, and for example, silica gel, alumina type, or zeolite type moisture absorbent can be used.

28は第2の給気ラインを吸湿千段24の上流で遮断す
る第4バルブである。
28 is a fourth valve that shuts off the second air supply line upstream of the moisture absorption stage 24.

次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

運転時には全てのバルブ18,20,26.28は開い
ており、給気ライン14、22から供給された反応空気
は電極で反応した後、生成水蒸気とともに排気ライン1
6により排気される。ここで第2の給気ライン22には
吸湿千段24があり給気にとって流路抵抗となるので、
運転中は第1の給気ラインがメインの給気通路となる。
During operation, all the valves 18, 20, 26, 28 are open, and the reaction air supplied from the supply air lines 14, 22 reacts at the electrodes, and then flows into the exhaust line 1 together with the generated water vapor.
It is exhausted by 6. Here, the second air supply line 22 has a moisture absorbing stage 24, which acts as a flow path resistance for the supply air.
During operation, the first air supply line serves as the main air supply passage.

運転停止に際しては、燃料ガスの供給を止めて発電反応
を停止し、この状態で空気の給・排バルブを操作する.
まずバルプ18を閉じて第1の給気ラインl4のみを遮
断する。電極10には第2の給気ラインを介して吸湿手
段24により吸湿された加熱乾燥空気のみが供給される
.これにより電極の温度低下を抑制して、リン酸電解液
中における反応時の水分蒸発を反応停止後も継続させる
ことができる.さらに排気ラインl6の排熱の低下に伴
ない吸湿手段24の吸湿機能が高まると、電極10のリ
ン酸電解液中にわずかに溶存する水分ち蒸発除去される
. 適当時間たって電極10内が乾燥空気で充填されたら、
残りのバルブ20,26.28全ても閉じ、電極10を
密封する.この状態で、電池の運転停止作業は終了し保
存することができる.運転再開時には、全てのバルプ1
8,20,26.28を開いて発電を開始する。運転停
止時に水分を吸湿した吸湿手段24は、排気ライン16
を流れる高温排ガスにより昇温・乾燥されて再生され、
次の運転停止時に備えることができる.この時吸湿手段
24から放出される水分は第2の給気ライン22を通り
電極10に導かれることになるが、電池反応時のリン酸
は高温であり水分を吸収することがないから、この水分
はそのまま排気ライン16を通って系外に排出される.
なお運転再開時には、バルブ18.20のみを開いて第
1の給気ラインのみを用いて発電し、排ガスが充分な温
度になってから、バルブ26.28を開いて第2の給気
ラインも作動させ、定常運転とするようにしてもよい。
When shutting down the operation, the fuel gas supply is stopped to stop the power generation reaction, and in this state the air supply and exhaust valves are operated.
First, the valve 18 is closed to cut off only the first air supply line l4. Only the heated dry air that has been absorbed by the moisture absorbing means 24 is supplied to the electrode 10 via the second air supply line. This suppresses the temperature drop of the electrode and allows water evaporation during the reaction in the phosphoric acid electrolyte to continue even after the reaction has stopped. Further, as the moisture absorbing function of the moisture absorbing means 24 increases as the exhaust heat from the exhaust line 16 decreases, the slight amount of water dissolved in the phosphoric acid electrolyte of the electrode 10 is evaporated and removed. When the inside of the electrode 10 is filled with dry air after a suitable period of time,
All remaining valves 20, 26, and 28 are also closed to seal the electrode 10. In this state, the battery operation shutdown work is completed and can be saved. When restarting operation, all valves 1
8, 20, 26. Open 28 and start power generation. The moisture absorbing means 24 that absorbed moisture when the operation was stopped is connected to the exhaust line 16.
The temperature is raised and dried by the high-temperature exhaust gas flowing through the
You can prepare for the next outage. At this time, the moisture released from the moisture absorbing means 24 is led to the electrode 10 through the second air supply line 22, but since the phosphoric acid during the battery reaction is at a high temperature and does not absorb moisture, this The moisture is directly discharged out of the system through the exhaust line 16.
When restarting operation, only valve 18.20 is opened to generate electricity using only the first air supply line, and after the exhaust gas has reached a sufficient temperature, valve 26.28 is opened and the second air supply line is also used. It may be activated to maintain steady operation.

この実施例では、吸湿手段24と大気とを連通ずるバル
プ28を閉じているが、再開後の運転により吸湿手段2
4の吸湿剤を充分に再生できるのであれば、このバルプ
28は省略してもよい.しかし、本実施例のように吸湿
手段も大気と隔離して保存するようにすれば、吸湿剤の
吸湿がより少なくなり次の運転時の再生が容易である.
本実施例では、第1、第2の給気ライン14,22をそ
れぞれ独立に電極10に接続しているが各ライン14.
22は第1図仮想線に示すように第1、第3のバルブ1
8.26の下流で合流させ一つのラインとして電極lO
に接続してもよく本発明はこのようなものも包含する. 第2図は本発明の他の実施例の電池システム概念図であ
る.この実施例で、第2の給気ライン14Aを流れる空
気は排気ライン16Aにより加熱されるのではなく、電
気ヒータで構成された独立の加熱手段30Aにより加熱
される.運転時は第l、2のバルプ18A,20Bのみ
を開き、第1の給気ライン14Aと排気ライン16Aに
より電池を作動させる.停止時には、第1のバルブ18
Aのみを閉じ、残りのバルプ2OA,26A,28Aを
全て開いて第2給気ライン22Aにより空気を流す.空
気は加熱手段30Aにより加熱される一方、吸湿手段2
4Aにより吸湿され、加熱乾燥空気として電極IOAの
ガススペースへ導入される.適当時間の後、加熱手段3
0Aを停止して吸湿手段24Aの吸湿機能を高め、導入
空気を乾燥する.電極内が乾燥空気で充填されたら、全
てのバルブを閉めてシステムを停止・保存する.運転再
開時にはバルブ18A,2OAのみを開いてもよいが、
吸湿手段24Aを再生するためには、一時バルブ26A
.28Aも開けて空気を流しながら加熱手段30Aを作
動させ、再生が終了した時点で再びバルブ26A,28
Aを閉じて、加熱手段24Aを停止するのが好ましい.
以上の実施例では、加熱手段を吸湿手段が設けられた第
2の給気ラインのみに設けているが、第1の給気ライン
にも加熱手段を設けておいて運転停止時には第1給気ラ
インからまず加熱空気を送って電解液中の水分を蒸発さ
せた後、第2の給気ラインにより乾燥空気を充填するよ
うにしてもよく、本発明はこのようなものも含む. (発明の効果) 以上のように本発明は、燃料ガスまたは空気の何れか一
方の反応気体の供給を停止した後、他方の反応気体を加
熱して電極に供給してリン酸電解液中の水分を蒸発させ
る一方、他方の反応気体を乾燥して電極に供給して、電
極内のガススペースに乾燥反応気体を充填した状態で電
極の給・排バルブを閉じるようにした。従って、停止・
保存中に電解液が水分を吸収することがなくリン酸濃度
が低下しない。
In this embodiment, the valve 28 that communicates the moisture absorbing means 24 with the atmosphere is closed, but after restarting the operation, the moisture absorbing means 24 is closed.
This valve 28 may be omitted if the moisture absorbent No. 4 can be sufficiently regenerated. However, if the moisture absorbing means is also stored isolated from the atmosphere as in this embodiment, the moisture absorption of the moisture absorbent will be reduced and it will be easier to regenerate during the next operation.
In this embodiment, the first and second air supply lines 14 and 22 are each independently connected to the electrode 10, but each line 14.
Reference numeral 22 indicates the first and third valves 1 as shown in the phantom lines in FIG.
8. The electrodes are merged downstream of 26 as one line.
The present invention also includes such a connection. FIG. 2 is a conceptual diagram of a battery system according to another embodiment of the present invention. In this embodiment, the air flowing through the second air supply line 14A is not heated by the exhaust line 16A, but by an independent heating means 30A comprised of an electric heater. During operation, only the first and second valves 18A and 20B are opened, and the battery is operated through the first air supply line 14A and exhaust line 16A. When stopped, the first valve 18
Only valve A is closed, and the remaining valves 2OA, 26A, and 28A are all opened to allow air to flow through the second air supply line 22A. The air is heated by the heating means 30A, while the moisture absorbing means 2
4A and introduced into the gas space of the electrode IOA as heated dry air. After a suitable period of time, heating means 3
0A is stopped, the moisture absorption function of the moisture absorption means 24A is increased, and the introduced air is dried. Once the electrode is filled with dry air, close all valves to stop and save the system. When restarting operation, only valves 18A and 2OA may be opened, but
In order to regenerate the moisture absorption means 24A, the temporary valve 26A
.. 28A is also opened and the heating means 30A is operated while air is flowing, and when the regeneration is completed, the valves 26A and 28 are opened again.
It is preferable to close A and stop the heating means 24A.
In the above embodiment, the heating means is provided only in the second air supply line in which the moisture absorption means is provided, but the heating means is also provided in the first air supply line, and when the operation is stopped, the heating means is provided in the first air supply line. It is also possible to first send heated air from the line to evaporate the moisture in the electrolyte and then fill it with dry air through the second air supply line, and the present invention also includes such a system. (Effects of the Invention) As described above, the present invention has the advantage of stopping the supply of one of the reactive gases, fuel gas or air, and then heating the other reactive gas and supplying it to the electrode. While the moisture was evaporated, the other reaction gas was dried and supplied to the electrode, and the supply/discharge valves of the electrode were closed with the dry reaction gas filling the gas space within the electrode. Therefore, stop
The electrolyte does not absorb water during storage and the phosphoric acid concentration does not decrease.

また本発明の燃料電池システムでは、吸湿手段と電極と
をバルブで分離したので、吸湿手段に吸収された水分が
停止・保存中に電極のリン酸電解液に移行することがな
い。また加熱手段で加熱することにより吸湿手段を再生
することができるので繰返し運転に対応できる。
Furthermore, in the fuel cell system of the present invention, since the moisture absorbing means and the electrode are separated by a valve, the moisture absorbed by the moisture absorbing means does not transfer to the phosphoric acid electrolyte of the electrode during stoppage and storage. Furthermore, the moisture absorbing means can be regenerated by heating with the heating means, so that it can be used repeatedly.

4.4.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電池システム概念図、第2
図は他の実施例の電池システム概念図である。 10,IOA・・・電極、 14.14A・・・第1の給気ライン、16.16A・
・・排気ライン、 22.22A・・・第2の給気ライン、24・・・吸湿
手段兼加熱手段としての熱交換器、24A・・・吸湿手
段。 30A・・・加熱手段
Fig. 1 is a conceptual diagram of a battery system according to an embodiment of the present invention;
The figure is a conceptual diagram of a battery system of another embodiment. 10, IOA... Electrode, 14.14A... First air supply line, 16.16A.
...Exhaust line, 22.22A...Second air supply line, 24...Heat exchanger as a moisture absorption means and heating means, 24A...Moisture absorption means. 30A...Heating means

Claims (2)

【特許請求の範囲】[Claims] (1)リン酸電解液を用いた燃料電池システムにおいて
、 燃料ガスの供給を停止した後、空気を加熱するとともに
乾燥して電極に供給して、電極内のガススペースに乾燥
空気を充填した状態で電極の給・排バルブを閉じること
を特徴とする燃料電池システムの停止方法。
(1) In a fuel cell system using a phosphoric acid electrolyte, after stopping the supply of fuel gas, air is heated and dried before being supplied to the electrodes, filling the gas space inside the electrodes with dry air. A method for stopping a fuel cell system, characterized by closing the supply/discharge valves of the electrodes.
(2)リン酸電解液を用いた燃料電池システムにおいて
、 電極と、電極へ空気を供給する第1及び第2の給気ライ
ンと、第2の給気ラインの途中に設けられ低温時は空気
中の水分を吸収し高温時は水分を放出する吸湿手段と、
この吸湿手段を直接或いは間接的に加熱する加熱手段と
、第1の給気ラインを遮断する第1のバルブと、電極の
排気ラインを遮断する第2のバルブと、電極と吸湿手段
の間で第2の給気ラインを遮断する第3のバルブとを備
えることを特徴とする燃料電池システム。
(2) In a fuel cell system using a phosphoric acid electrolyte, the electrodes, the first and second air supply lines that supply air to the electrodes, and the air supply line that is installed in the middle of the second air supply line to supply air at low temperatures. Moisture absorbing means that absorbs moisture inside and releases moisture at high temperatures,
A heating means that directly or indirectly heats the moisture absorption means, a first valve that cuts off the first air supply line, a second valve that cuts off the exhaust line of the electrode, and a heating device that directly or indirectly heats the moisture absorption means, a first valve that cuts off the first air supply line, a second valve that cuts off the electrode exhaust line, and a A fuel cell system comprising: a third valve that shuts off the second air supply line.
JP1229375A 1989-09-06 1989-09-06 Fuel cell system Pending JPH0393166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229375A JPH0393166A (en) 1989-09-06 1989-09-06 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229375A JPH0393166A (en) 1989-09-06 1989-09-06 Fuel cell system

Publications (1)

Publication Number Publication Date
JPH0393166A true JPH0393166A (en) 1991-04-18

Family

ID=16891189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229375A Pending JPH0393166A (en) 1989-09-06 1989-09-06 Fuel cell system

Country Status (1)

Country Link
JP (1) JPH0393166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246054A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
JP2006086015A (en) * 2004-09-16 2006-03-30 Nissan Motor Co Ltd Fuel cell system
US7939208B2 (en) 2005-10-27 2011-05-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246054A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
JP2006086015A (en) * 2004-09-16 2006-03-30 Nissan Motor Co Ltd Fuel cell system
US7939208B2 (en) 2005-10-27 2011-05-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Similar Documents

Publication Publication Date Title
CN103515636B (en) Fuel cell system, aircraft and the method for operating fuel cell system
JP2002208429A (en) Fuel cell system
JPS6235485A (en) Stoppage and preservation of fuel battery
JP2001216989A (en) Humidifying system for fuel cell
JPS5832903B2 (en) How to stop a fuel cell
JPS6326962A (en) Stop and storing method for fuel cell
JPH09312165A (en) Fuel cell generating device and operating method thereof
JPH0393166A (en) Fuel cell system
KR101299626B1 (en) Fuel cell system having dehumidifier
JPS58166673A (en) Temperature-humidity exchanger of fuel cell
JP4141819B2 (en) Fuel cell system
JPH0244654A (en) Gas replacement method for fuel cell
JP4864228B2 (en) How to shut down the fuel cell
JP2002015760A (en) Fuel cell device
JP2002313394A (en) Gas feeder of fuel cell
ES2558176T3 (en) Feeding system of a gas fuel cell
KR101091662B1 (en) Fuel cell system having improved humidification performance
KR100823928B1 (en) Desiccant apparatus using fuel cell system
JP2008269983A (en) Fuel cell system
JP2005063733A (en) Oxygen removing system and fuel cell system
KR100730400B1 (en) Humidifier for fuel cell
JP2004152600A (en) Shutdown method and shutdown device for fuel cell
JP2000117042A (en) Dry type dehumidifier
JPH0622154B2 (en) Nitrogen purging method for air-cooled fuel cells
JP2005322426A (en) Fuel cell system