JPH0622154B2 - Nitrogen purging method for air-cooled fuel cells - Google Patents

Nitrogen purging method for air-cooled fuel cells

Info

Publication number
JPH0622154B2
JPH0622154B2 JP58174517A JP17451783A JPH0622154B2 JP H0622154 B2 JPH0622154 B2 JP H0622154B2 JP 58174517 A JP58174517 A JP 58174517A JP 17451783 A JP17451783 A JP 17451783A JP H0622154 B2 JPH0622154 B2 JP H0622154B2
Authority
JP
Japan
Prior art keywords
air
exhaust
battery stack
path
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58174517A
Other languages
Japanese (ja)
Other versions
JPS6065471A (en
Inventor
六弥 斎藤
秀雄 萩野
信好 西沢
収 田島
正人 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58174517A priority Critical patent/JPH0622154B2/en
Publication of JPS6065471A publication Critical patent/JPS6065471A/en
Publication of JPH0622154B2 publication Critical patent/JPH0622154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は空冷式燃料電池の停止時における空気系窒素パ
ージ方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for purging air nitrogen when an air-cooled fuel cell is stopped.

(ロ) 従来技術 燃料電池の制御において、電池停止時電池システムの安
全性確保と電池寿命の保持のため、電池各反応ガスを窒
素で置換する窒素パージが行われる。
(B) Prior art In controlling a fuel cell, a nitrogen purge is performed to replace each reaction gas in the cell with nitrogen in order to secure the safety of the cell system and maintain the cell life when the cell is stopped.

この窒素パージは、燃料系については、第1図の経路に
おいて燃料供給及び排出用の各バルブ(1)(2)を閉じると
同時に窒素パーイ導入及び導出用の各弁(3)(4)を開い
て、燃料例えば、水素の代わりに窒素源(5)から電池ス
タック(S) へ窒素ガスを流すことにより行われる。
Regarding the fuel system, this nitrogen purge closes the valves (1) and (2) for fuel supply and discharge in the path of FIG. 1 and at the same time the valves (3) and (4) for introducing and discharging nitrogen purge are turned on. It is done by opening and flowing nitrogen gas from the nitrogen source (5) to the cell stack (S) instead of the fuel, eg hydrogen.

一方、従来の空気系については、吸気及び排気用各バル
ブ(6)(7)を閉じると同時に、窒素パージ導入及び導出用
各弁(8)(9)を開いて同様に窒素源(5)から電池スタック
(S) へ窒素ガスを流すことにより行われていた。
On the other hand, regarding the conventional air system, at the same time as closing the intake and exhaust valves (6) and (7), the nitrogen purge introduction and discharge valves (8) and (9) are opened, and the nitrogen source (5) is similarly set. From battery stack
This was done by flowing nitrogen gas into (S).

しかし、電池停止前空気の循環経路には反応空気の他に
多量の冷却用空気が流れているので、反応生成物である
水蒸気を含んだ多量の高湿度空気が電池停止時経路(ダ
クト)内に閉じ込められた状態となり、しかも電池停止
と同時に電池スタック温度の低下に伴いダクト内の空気
温度も低下して空気中の水蒸気は常に過飽和状態にあ
る。したがって、前記従来の空気系窒素パージでは、こ
のような系内に閉じ込められた高湿度の空気を完全に追
い出すことがむつかしく、また空気の湿度を低下させる
には相当の時間を要し、その間に電解液である高濃度リ
ン酸がこれら水分を吸収して電池寿命が著しく劣化する
という問題があった。
However, since a large amount of cooling air flows in addition to the reaction air in the circulation path of the air before the battery is stopped, a large amount of high-humidity air containing water vapor, which is a reaction product, is in the path (duct) when the battery is stopped. The temperature of the air inside the duct decreases as the battery stack temperature decreases at the same time as the battery stops, and the water vapor in the air is always in a supersaturated state. Therefore, in the conventional air-based nitrogen purging, it is difficult to completely expel high-humidity air trapped in such a system, and it takes a considerable time to reduce the humidity of the air, and There has been a problem that high-concentration phosphoric acid, which is an electrolytic solution, absorbs these moistures and the battery life is significantly deteriorated.

(ハ) 発明の目的 本発明の目的は電池停止時経路内に閉じ込められた高湿
度の空気を速やかに系外に排出して電解液の吸湿を防止
する窒素パージ方法を提供するものである。
(C) Object of the Invention An object of the present invention is to provide a nitrogen purging method for quickly discharging high humidity air trapped in the path when the battery is stopped to the outside of the system to prevent the electrolyte from absorbing moisture.

(ニ) 発明の構成 本発明は、電池スタック内の酸化剤極及び冷却プレート
に空気を供給する空気供給弁を有する空気供給路と、電
池スタックから排出された排空気を排出する空気排出弁
を有する空気排出路と、前記空気供給路の空気供給弁下
流側と空気排出路の空気排出弁上流側とを接続し、空気
排出路を流れる排空気を空気供給路に還流する空気還流
路と、前記空気排出路と空気還流路との接続部に設けら
れ、電池スタックから排出される排空気の空気排出弁へ
の流量及び空気還流路への流量の比率を制御する流量制
御手段と、前記空気供給路の空気還流路との接続部より
も下流側に設けられ、空気供給弁を介して供給される新
鮮空気及び/又は空気還流路を介して還流される排空気
を電池スタックに供給するブロワと、前記空気供給路の
ブロワ下流側に接続され、電池スタックにパージ用窒素
ガスを供給する窒素ガス供給弁を有する窒素ガス供給路
と、前記空気排出路の流量制御手段上流側に接続され、
パージ後の排窒素ガスを空気排出路外に排出する窒素ガ
ス排出弁を有する窒素ガス排出路と、を備えた空冷式燃
料電池の窒素パージ方法において、電池運転中から電池
停止に至る際に、流量制御手段を制御して空気還流路内
における排空気の流れを遮断すると共に、空気供給弁を
介して供給される新鮮空気をブロワの送風力によって電
池スタックに供給して電池スタック温度を低下させ、且
つ、電池スタック内及び空気給排路内に滞留する排空気
を空気給排路外に排出する第1ステップと、電池スタッ
ク温度が、前記流量制御手段による空気還流路への空気
の還流を遮断する直前の電池スタック温度以下で、且
つ、排空気に含まれる水蒸気が凝縮する温度以上の所定
温度まで下降すると、空気供給弁及び排出弁を閉弁する
と共に、ブロワの運転を停止して電池スタックへの空気
の供給を遮断する第2ステップと、第2ステップを終了
した後、窒素ガス供給弁及び排出弁を開弁して、電池ス
タックに窒素ガスを供給して空気のパージを行い、バー
ジ後の排窒素ガスを前記窒素ガス排出弁を介して空気排
出路外に排出する第3ステップと、から成ることを特徴
とする。
(D) Configuration of the invention The present invention provides an air supply path having an air supply valve for supplying air to the oxidizer electrode and the cooling plate in the battery stack, and an air discharge valve for discharging exhaust air discharged from the battery stack. An air return path that connects the air exhaust path having, an air supply valve downstream side of the air supply path and an air exhaust valve upstream side of the air exhaust path, and recirculates the exhaust air flowing through the air exhaust path to the air supply path, Flow rate control means provided at a connection portion between the air discharge path and the air return path, for controlling a ratio of a flow rate of exhaust air discharged from the battery stack to the air discharge valve and a flow rate to the air return path; A blower that is provided on the downstream side of the connection portion of the supply passage with the air return passage and that supplies fresh air supplied via the air supply valve and / or exhaust air recirculated via the air return passage to the battery stack. And the air supply path block Connected to the lower side of the lower, a nitrogen gas supply path having a nitrogen gas supply valve for supplying the purging nitrogen gas to the battery stack, and connected to the upstream side of the flow control means of the air discharge path,
In a nitrogen purging method of an air-cooled fuel cell having a nitrogen gas exhaust passage having a nitrogen gas exhaust valve for exhausting exhausted nitrogen gas after purging to the outside of the air exhaust passage, when the cell is stopped during the operation of the cell, The flow rate control means is controlled to block the flow of exhaust air in the air return path, and fresh air supplied through the air supply valve is supplied to the battery stack by the blower wind of the blower to lower the battery stack temperature. In addition, the first step of discharging the exhaust air accumulated in the battery stack and the air supply / exhaust passage to the outside of the air supply / exhaust passage, and the battery stack temperature is set so that the air flow to the air return passage by the flow rate control means is controlled. When the temperature drops below the temperature of the battery stack immediately before shutting off and drops to a predetermined temperature above the temperature at which the water vapor contained in the exhaust air condenses, the air supply valve and exhaust valve are closed and the blower operation is stopped. Stop the air supply to the battery stack and shut off the air supply to the battery stack, and after finishing the second step, open the nitrogen gas supply valve and the discharge valve to supply the nitrogen gas to the battery stack to supply air. And a third step of discharging the exhausted nitrogen gas after the barge to the outside of the air exhaust passage through the nitrogen gas exhaust valve.

(ホ) 実施例 本発明の実施例を第1図について説明するが、燃料系の
窒素パージは、前記(ロ) 項で示した方法と同一であるの
で説明を省略する。
(E) Embodiment An embodiment of the present invention will be described with reference to FIG. 1. Since the nitrogen purging of the fuel system is the same as the method described in the above (B), the description thereof will be omitted.

電池作動中、電池の反応と冷却に必要な空気は、吸気バ
ルブ(6)を介して空気供給路(10)に供給された後、ブロ
ワ(BW)の送風力により実線矢印の経路で電池スタッ
ク(S) 内の酸化剤極及び冷却プレート(いずれも図示せ
ず)に供給される。
During the battery operation, the air required for the reaction and cooling of the battery is supplied to the air supply path (10) through the intake valve (6), and then the air flow of the blower (BW) sends the air to the battery stack in the path indicated by the solid arrow. It is supplied to the oxidizer electrode in (S) and a cooling plate (neither is shown).

一方、電池スタック(S) から排出された空気は、空気排
出路(11)を経て流量制御手段の一例であるダンパ(D) 領
域まで流れ、このダンパ(D) によって排気バルブ(7)を
経て外部に排気される空気の流量と、空気還流路(12)側
に還流される空気の流量の比率が制御される。そして、
空気還流路(12)側に還流された空気は、前記吸気バルブ
(6)を介して供給された新鮮空気と共に、ブロワの(B
W)の送風力により空気供給路(10)を介して電池スタッ
ク(S) に供給される。
On the other hand, the air discharged from the battery stack (S) flows through the air discharge path (11) to the damper (D) region which is an example of the flow rate control means, and the damper (D) passes through the exhaust valve (7). The ratio of the flow rate of air exhausted to the outside and the flow rate of air recirculated to the air recirculation path (12) side is controlled. And
The air recirculated to the air recirculation path (12) side is
With the fresh air supplied via (6), the blower (B
It is supplied to the battery stack (S) through the air supply path (10) by the wind power of (W).

電池作動中から電池停止に至る際には、前記吸気バルブ
(6)及び排気バルブ(7)を開弁したままダンパ(D) を制御
して空気還流路(12)への空気の還流を遮断し、この状態
でブロワ(BW)を継続運転して電池スタック温度を低
下させる。この場合、空気経路はオープンとなり、吸気
バルブ(6)より吸込まれた新鮮空気はブロワ(BW)の
送風力により電池スタック(S) に供給されるので、電池
スタック(S) 内及び空気給排路(10)(11)内に滞留する多
量の高湿度空気は、ダンパ(D) を経た後、排気バルブ
(7)を介して速やかに系外に排出される。
When the battery is in operation and stopped, the intake valve
The damper (D) is controlled while the (6) and the exhaust valve (7) are open to shut off the recirculation of air to the air recirculation path (12), and the blower (BW) is continuously operated in this state to operate the battery. Reduce stack temperature. In this case, the air path is opened, and the fresh air sucked from the intake valve (6) is supplied to the battery stack (S) by the blower wind of the blower (BW). A large amount of high-humidity air that accumulates in the passages (10) and (11) passes through the damper (D) and then the exhaust valve.
It is promptly discharged out of the system via (7).

このブロワの運転はスタック温度が所定温度に低下する
まで継続して行う。前記所定温度は前記ダンパ(D) によ
る空気還流路(12)への排空気の還流を遮断する直前のス
タック温度以下で、且つ、排空気に含まれる水蒸気が凝
縮する温度以上であり、好ましくは水蒸気が凝縮しない
温度以上でスタック保温温度以上であり、より好ましく
は110℃前後である。
The operation of this blower is continuously performed until the stack temperature drops to a predetermined temperature. The predetermined temperature is equal to or lower than the stack temperature immediately before shutting off the circulation of the exhaust air to the air recirculation path (12) by the damper (D), and is equal to or higher than the temperature at which the water vapor contained in the exhaust air is condensed, preferably. The temperature is not lower than the temperature at which water vapor does not condense, and is not lower than the stack heat retention temperature, more preferably about 110 ° C.

次に、スタック温度が、前記所定温度まで下降すると、
吸気バルブ(6)及び排気バルブ(7)を閉弁すると共に、ブ
ロワ(BW)の運転を停止して電池スタック(S) への空
気の供給を遮断する。
Next, when the stack temperature drops to the predetermined temperature,
The intake valve (6) and the exhaust valve (7) are closed, and the blower (BW) is stopped to shut off the air supply to the battery stack (S).

続いて、窒素パージ用の導入弁(8)及び導出弁(9)を開弁
して、窒素源(5)より窒素ガスを点線矢印の経路で電池
スタック(S) に供給する。そして、電池スタック(S) 内
及び空気給排路(10)(11)内に滞留する空気を、前記導出
弁(9)を介して空気排出路(11)外に排出する。
Then, the introduction valve (8) and the discharge valve (9) for nitrogen purging are opened, and nitrogen gas is supplied from the nitrogen source (5) to the battery stack (S) through the path indicated by the dotted arrow. Then, the air accumulated in the battery stack (S) and the air supply / discharge passages (10) (11) is discharged to the outside of the air discharge passage (11) via the outlet valve (9).

電池停止中においては、保温ヒーター(13)を入れて電池
スタック温度を約110℃に維持した状態で、前記窒素
パージを継続して行う。
While the battery is stopped, the nitrogen purge is continuously performed with the heat-retaining heater (13) being inserted to maintain the battery stack temperature at about 110 ° C.

上記実施例においては、空気系窒素パージをブロワ(B
W)運転停止後に行ったが、オープン回路でのブロワ運
転中に開始することも可能である。しかしながら、燃料
系窒素パージは電池停止と同時に行われることから、ブ
ロワ運転中は危険性がないので、ブロワ運転停止後に窒
素パージを行えば、それだけ窒素チャージ量を減少でき
るので好ましい。
In the above-mentioned embodiment, the air-based nitrogen purge is applied to the blower (B
W) It was performed after the operation was stopped, but it can be started during the blower operation in the open circuit. However, since the fuel system nitrogen purge is performed at the same time as the cell is stopped, there is no danger during the blower operation. Therefore, it is preferable to perform the nitrogen purge after the blower operation is stopped because the nitrogen charge amount can be reduced accordingly.

(ヘ) 発明の効果 以上の本発明によれば、電池停止に際し、空気の吸排バ
ルブを開放したままブロワを継続運転して新鮮空気のオ
ープン流により電流スタック内及び空気給排路内に留ま
っている高湿度の空気を速やかに系外に追出すものであ
るから、従来のように系内に残存する高湿度の空気が電
池スタックに拡散することなく、電解液の吸湿を阻止し
て電池寿命の劣化を著しく改善することができる。
(F) Effects of the Invention According to the present invention described above, when the battery is stopped, the blower is continuously operated with the air intake / exhaust valve open, and remains in the current stack and the air supply / exhaust passage by the open flow of fresh air. The high-humidity air that exists in the system is expelled quickly from the system, so that the high-humidity air that remains in the system does not diffuse into the battery stack as before, and the absorption of electrolyte is prevented to prevent battery life. Can be remarkably improved.

また、前記オープン流は系内の水蒸気が凝縮する温度以
上で停止されるので、電解液の変質を起こすことなく直
ちに保温状態に入ることが可能となる。
Further, since the open flow is stopped at a temperature equal to or higher than the temperature at which water vapor in the system condenses, it becomes possible to immediately enter the heat retaining state without causing deterioration of the electrolytic solution.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による窒素パージ方法を説明するための
燃料電池経路図である。 S:電池スタック、BW:ブロワ、D:ダンパ、1・
2:燃料の供給及び排出各バルブ、3・4:燃料系の窒
素ガス導入及び導出各弁、5:窒素源、6・7:吸気及
び排気各バルブ、8・9:空気系の窒素導入及び導出各
弁、10:空気供給路、11:空気排出路、12:空気
還流路
FIG. 1 is a fuel cell route diagram for explaining a nitrogen purging method according to the present invention. S: Battery stack, BW: Blower, D: Damper, 1 ・
2: Fuel supply and discharge valves, 3.4: Fuel system nitrogen gas introduction and discharge valves, 5: Nitrogen source, 6.7: Intake and exhaust valves, 8.9: Air system nitrogen introduction and Derivation valves, 10: air supply passage, 11: air discharge passage, 12: air return passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 収 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 西岡 正人 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Osamu Tajima 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Masato Nishioka 2-18 Keiyo Hondori, Moriguchi City, Osaka Sanyo Electric Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電池スタック内の酸化剤極及び冷却プレー
トに空気を供給する空気供給弁を有する空気供給路と、 電池スタックから排出された排空気を排出する空気排出
弁を有する空気排出路と、 前記空気供給路の空気供給弁下流側と空気排出路の空気
排出弁上流側とを接続し、空気排出路を流れる排空気を
空気供給路に還流する空気還流路と、 前記空気排出路と空気還流路との接続部に設けられ、電
池スタックから排出される排空気の空気排出弁への流量
及び空気還流路への流量の比率を制御する流量制御手段
と、 前記空気供給路の空気還流路との接続部よりも下流側に
設けられ、空気供給弁を介して供給される新鮮空気及び
/又は空気還流路を介して還流される排空気を電池スタ
ックに供給するブロワと、 前記空気供給路のブロワ下流側に接続され、電池スタッ
クにパージ用窒素ガスを供給する窒素ガス供給弁を有す
る窒素ガス供給路と、 前記空気排出路の流量制御手段上流側に接続され、パー
ジ後の排窒素ガスを空気排出路外に排出する窒素ガス排
出弁を有する窒素ガス排出路と、を備えた空冷式燃料電
池の窒素パージ方法において、 電池運転中から電池停止に至る際に、流量制御手段を制
御して空気還流路内における排空気の流れを遮断すると
共に、空気供給弁を介して供給される新鮮空気をブロワ
の送風力によって電池スタックに供給して電池スタック
温度を低下させ、且つ、電池スタック内及び空気給排路
内に滞留する排空気を空気給排路外に排出する第1ステ
ップと、 電池スタック温度が、前記流量制御手段による空気還流
路への排空気の還流を遮断する直前の電池スタック温度
以下で、且つ、排空気に含まれる水蒸気が凝縮する温度
以上の所定温度まで下降すると、空気供給弁及び排出弁
を閉弁すると共に、ブロワの運転を停止して電池スタッ
クへの空気の供給を遮断する第2ステップと、 第2ステップを終了した後、窒素ガス供給弁及び排出弁
を開弁して、電池スタックに窒素ガスを供給して空気の
パージを行い、バージ後の排窒素ガスを前記窒素ガス排
出弁を介して空気排出路外に排出する第3ステップと、 から成ることを特徴とする空冷式燃料電池の窒素パージ
方法。
1. An air supply path having an air supply valve for supplying air to an oxidizer electrode and a cooling plate in a battery stack, and an air discharge path having an air discharge valve for discharging exhaust air discharged from the battery stack. An air recirculation path that connects the air supply valve downstream side of the air supply path and the air discharge valve upstream side of the air discharge path, and recirculates the exhaust air flowing through the air discharge path to the air supply path; Flow rate control means provided in a connection portion with the air return path for controlling a ratio of a flow rate of exhaust air discharged from the battery stack to the air exhaust valve and a flow rate to the air return path, and an air return path of the air supply path. A blower that is provided on the downstream side of the connection portion with the passage and that supplies fresh air supplied through the air supply valve and / or exhaust air that is recirculated through the air recirculation path to the battery stack; Blower downstream of the road And a nitrogen gas supply passage having a nitrogen gas supply valve for supplying a purging nitrogen gas to the battery stack, and a flow control means upstream side of the air discharge passage, the exhausted nitrogen gas after purging being discharged into the air discharge passage. A nitrogen purging method for an air-cooled fuel cell, comprising: a nitrogen gas discharge passage having a nitrogen gas discharge valve for discharging to the outside; and an air recirculation passage by controlling a flow rate control means during a cell operation to a cell stop. The flow of exhaust air in the inside of the battery stack is cut off, and fresh air supplied through the air supply valve is supplied to the battery stack by the blower wind of the blower to lower the temperature of the battery stack. A first step of discharging the exhaust air staying in the passage to the outside of the air supply / exhaust passage, and an electric power immediately before the battery stack temperature cuts off the return of the exhaust air to the air return passage by the flow rate control means. When the temperature drops below the pond stack temperature and rises above a certain temperature above the temperature at which the water vapor contained in the exhaust air condenses, the air supply valve and the exhaust valve are closed, and the blower operation is stopped to release air to the battery stack. The second step of shutting off the supply of electricity, and after finishing the second step, the nitrogen gas supply valve and the exhaust valve are opened to supply the nitrogen gas to the battery stack to perform the air purging and the exhaust after the barge. A third step of discharging nitrogen gas to the outside of the air discharge passage through the nitrogen gas discharge valve, and a nitrogen purging method for an air-cooled fuel cell, comprising:
JP58174517A 1983-09-20 1983-09-20 Nitrogen purging method for air-cooled fuel cells Expired - Lifetime JPH0622154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58174517A JPH0622154B2 (en) 1983-09-20 1983-09-20 Nitrogen purging method for air-cooled fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174517A JPH0622154B2 (en) 1983-09-20 1983-09-20 Nitrogen purging method for air-cooled fuel cells

Publications (2)

Publication Number Publication Date
JPS6065471A JPS6065471A (en) 1985-04-15
JPH0622154B2 true JPH0622154B2 (en) 1994-03-23

Family

ID=15979895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174517A Expired - Lifetime JPH0622154B2 (en) 1983-09-20 1983-09-20 Nitrogen purging method for air-cooled fuel cells

Country Status (1)

Country Link
JP (1) JPH0622154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134427B1 (en) * 2009-11-26 2012-04-10 기아자동차주식회사 Purge system for improved cold start-up performance of fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445145B2 (en) 2006-09-22 2013-05-21 GM Global Technology Operations LLC Stack shutdown purge method
CN110931829A (en) * 2019-12-06 2020-03-27 吉林大学 Fuel cell cold start system with purging device and control method
CN115036541B (en) * 2022-06-27 2023-09-22 北京亿华通科技股份有限公司 Durability control method and device for fuel cell stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134427B1 (en) * 2009-11-26 2012-04-10 기아자동차주식회사 Purge system for improved cold start-up performance of fuel cell

Also Published As

Publication number Publication date
JPS6065471A (en) 1985-04-15

Similar Documents

Publication Publication Date Title
JP4350944B2 (en) Method for improving operating efficiency of fuel cell power equipment
JP3654443B2 (en) Fuel cell having built-in humidifier and method for humidifying fuel cell process gas
JP2004022487A (en) Fuel cell system
US7678480B2 (en) Fuel cell system
JP3706937B2 (en) Fuel cell system
US10243224B2 (en) Method for switching off a fuel cell stack, and fuel cell system
JP2007273276A (en) Fuel cell power generation system and its operation method
JP2007317475A (en) Fuel cell system
JP2004031135A (en) Fuel cell and its control method
JP3858799B2 (en) Fuel cell vehicle and control method thereof
JP5383737B2 (en) Fuel cell system and power generation stopping method thereof
JP2017157281A (en) Control method for fuel battery system
JP2002373691A (en) On-vehicle fuel cell system
JP2005032652A (en) Fuel cell system
JPH0622154B2 (en) Nitrogen purging method for air-cooled fuel cells
JP5879440B2 (en) Method for operating a fuel cell system
JP3977228B2 (en) Method and apparatus for stopping fuel cell
JP2009266472A (en) Heating system of movable body including fuel cell
JPH0622155B2 (en) Nitrogen purging method for air-cooled fuel cell
JP2004265684A (en) Fuel cell system
JP2004179100A (en) Method for stopping operation of fuel cell system
JP4864228B2 (en) How to shut down the fuel cell
JP4397686B2 (en) Fuel cell reactive gas supply device
JP2005158554A (en) Fuel cell system
JP2004146147A (en) Fuel cell system and control method of the same